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Abstract— This paper deals with the optimization of 3-
RPR planar parallel mechanisms based on different per-
formance indices including kinematic sensitivity, stiffness,
workspace and singularity. The optimization is imple-
mented in sequence using first a single objective tech-
nique, differential evolution, and then resorting to a multi-
objective optimization concept, the so-called nondomi-
nated sorting genetic algorithm-II. The results revealed
that the optimality of the mechanism under study is scale-
independent for the considered optimization objectives.
Moreover, based on the scale invariance property of the
main objectives, it follows that different kinetoestatic ob-
Jective functions must be scale invariant. The relations for
the kinetoestatic objective expressions as functions of mech-
anism scale are derived and to circumvent the problem of
unit inconsistency the rotational and translational parts of
these objectives are considered separately. To overcome
the problem of inconsistent objectives in optimization al-
gorithm, a Pareto-based multi-objective approach is used
which preserves the scale invariance property.

Keywords: Parallel mechanism, Scale-invariant mechanism per-
formance indices, Kinematic sensitivity, Rotational and translational
stiffness, Multi objective optimization, Differential evolution, NSGA-
11

1. Introduction

The last two decades have witnessed an important
spread in the use of parallel mechanisms in applications
such as motion simulators, machine tools and even nano-
manipulators. Parallel mechanisms have evolved from
rather marginal devices. They are becoming the state of
the art in the commercial world due to their high quality in
some kinematic properties, such as accuracy, although their
workspace is more constrained than their counterpart, serial
mechanisms.

Therefore, in order to displace the serial mechanisms in
some particular applications, the optimal design of paral-
lel mechanisms has received special attention in order to
alleviate some of their shortcomings in terms of kinematic
properties, such as limited workspace and complex singu-
larities. This is exemplified by a large increase in the num-
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ber of papers published on the singularity-free workspace
of parallel mechanisms.

For a long time, the synthesis of parallel mechanisms for
a given motion pattern has been carried out mainly using in-
tuition and ingenuity. The recent development of a system-
atic approach for the type synthesis of parallel mechanisms
has provided insight into the classification of a large num-
ber of parallel mechanisms based on their motion pattern
[1]. This is the first step toward designing a parallel mech-
anism which consists in selecting the architecture which
makes the most sense from the manufacturing, motion pat-
tern, assembly, workspace and stability perspectives. The
second step is to analyse the kinematic properties, such
Inverse and Forward Kinematic Problem (IKP and FKP),
workspace and singularity. The third step is to refine these
kinematic properties by selecting a set of criteria to ascer-
tain that the parallel mechanism under study reaches the
required performance for a given task, the central subject
of this paper.

The performances of parallel mechanisms are highly de-
pendent on their geometric properties. Numerous examples
show that a careful design optimization can lead to signif-
icant improvements over the initial design [2]. In practice,
there are always multiple performance requirements to be
satisfied. Usually, for each requirement an index is defined
which indicates to what extent the requirement is satisfied
or violated [2].

Numerous performance indices have been proposed to
compare robot architectures based on their kinematic prop-
erties. The most notorious kinematic indices, which are
manipulability and dexterity, still entail some drawbacks
[2-4], which are mainly due to problems which prevent
the definition of a single invariant metric for the special
Euclidean group. Recently, in [3], two distinct metrics
were defined and formulated, namely the maximum rota-
tion sensitivity and the maximum point-displacement sen-
sitivity. These two indices provide tight upper bounds to the
end-effector rotation and point-displacement sensitivity un-
der a unit-magnitude array of actuated-joint displacements.
Moreover, from a statics stand point, stiffness stands for the
ability of a body or structure to resist the deformations due
to the action of external forces. Usually, the sum of the di-
agonal elements of the stiffness matrix is used as the system
stiffness performance index, which suffers from the unit in-
consistency [5].

Independent investigation of different performance in-
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dices which can be achieved by resorting to single objec-
tive optimization is helpful to have a better understanding
of their effects on the mechanism performance. In this pa-
per, Differential Evolution (DE) [6,7] is proposed , which in
comparison with other Evolutionary Algorithms (EA), such
as genetic algorithms and evolutionary strategy [8], differs
significantly in the sense that distance and direction infor-
mation from the current population are used to guide the
search process. Moreover, the original DE strategies were
developed to be applied to continuously-valued landscapes.

Once the optimum value of one objective is obtained,
the corresponding optimum values of the design parameters
usually yield unsatisfactory results for the other objectives.
For instance, as it was revealed in [2], the SSM, a simplified
Gough-Stwerat platform, with maximal workspace volume
for a given stroke of the actuators has similar base and mov-
ing platform and is therefore architecturally singular. In the
case that more than one performance objective should be
considered, a graphical approach based on an atlas repre-
sentation of performance indices would be really helpful.
However, this approach may be useful only for a very small
set of design parameters.

Based on the methodology proposed in the literature,
when numerous performance objectives are in place the
problem can be made equivalent to a single objective op-
timization by combining them in a weighted linear sum.
Clearly, the solution obtained will depend on the relative
values of the specified weights and hence a priori informa-
tion on the problem is needed. Another drawback with this
method is that the sum of different objectives with incon-
sistent units may result in a meaningless concept for the
problem and therefore lead to erroneous conclusions.

The objective way of solving multi-objective problems
requires a Pareto-compliant ranking method [9], favouring
non-dominated solutions. Here, no weight is required and
thus Pareto solutions are those for which improvement in
one objective can only occur with the worsening of at least
one other objective. Thus, instead of a unique solution to
the problem, the solution to a multi-objective problem is a
set of Pareto points. Among this points the designer should
choose those which tend to fit closely with the specific de-
sign objective. In this paper, the Nondominated Sorting
Genetic Algorithm-IT (NSGA-II) [10] which is a standard
Pareto-based multi objective approach is used.

Defining a set of comprehensive and practical objectives
which covers all kinematic properties, such as singularity-
free workspace and mechanical interferences, is a delicate
task. Hence, before using intelligent methods the mecha-
nism must be investigated completely, workspace and sin-
gularities of the mechanism should be analysed and proper
constraints must be devised. Upon this investigation, intel-
ligent methods can be used to specify the remaining param-
eter selection freedom of design process. Using intelligent
methods solely, would result in a lengthy computation pro-
cess, and most of the times the designs obtained suffer from
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singularities and mechanical interferences, therefore the de-
signs are practically incompetent.

This paper aims at developing a general methodology
for the optimization of parallel mechanisms, as a follow
up of the study conducted in [3, 11], and the 3-RPR par-
allel mechanism is considered as a case study for this pur-
pose. The remainder of this paper is organized as follows.
First the geometric modeling and the first-order kinematic
analysis, Jacobian matrix, of 3-RPR parallel mechanisms
are reviewed. Then the constant-orientation workspace and
singularity configurations of a scaled 3-RPR parallel mech-
anism are investigated and extended to the unitary mech-
anism. The paper pursues the study by illustrating differ-
ent kinetostatic performance indices and their relations to
the scaled mechanism. The single and multi-objective op-
timization procedure is elaborated where the emphasis is
placed on refining the objective parameters to be suitable
to be implemented in the optimization procedure. The sin-
gle objective procedure is applied by resorting to the DE
concept in order to lay down the essentials for the multi-
objective optimization. Subsequently, Pareto-based multi-
objective optimization is considered and NSGA-II is used
to design the optimal mechanism. Finally, the paper con-
cludes with some remarks that provide insight into ongo-
ing works for extending this study to other types of parallel
mechanisms.

II. Architecture and First-order Kinematic Review of
3-RPR Parallel Mechanism

A. Architecture Review

Figure 1 illustrates the schematic representation of a 3-
RPR parallel mechanism. As depicted in Fig. 1, a planar
3-RPR parallel mechanism with actuated prismatic joints
consists of a fixed triangle base AA; A3 A3 and a mobile
triangle platform A B;BsBs. The passive revolute joints,
with coordinates A; and B;, are connected by the pris-
matic actuator of variable length p;, ¢ = 1,2,3, where
the unit vector along the prismatic direction is denoted by
n; = [n;,, n;,]*. The pose (position and orientation) of
the mobile platform is described by two coordinate systems
as shown in Fig. 1. A reference frame O, is attached to the
base by selecting A; = O as the origin. The mobile frame
O, o 1s attached to the platform by selecting a given point
on the mobile platform, C' = O’, as the origin. The position
of the mobile platform, coordinates of C, with respect to the
fixed frame, is represented by p = [z, y]7. The position
vector of point B; in the fixed and mobile frame is denoted
respectively by vector b; and b}, i = 1,2, 3. It should be
noted that in this paper the superscript ’ for a vector stands
for a representation in the mobile frame O;, Y Finally, vec-
tor connecting B; to C' expressed in the fixed frame is rep-
resented by s;. The rotation matrix, Q, representing the
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Fig. 1. Schematic representation of a 3-RPR parallel mechanism.

rotation of the platform from frame O,,, to frame O, is:
__|cosg —sing
Q= [singb cos ¢ } M

where ¢ stands for the rotation angle of the platform around
the axis perpendicular to the plane of the mobile platform.

B. First-order Kinematics and Jacobian Matrix

The IKP, FKP, and Jacobian matrix of a 3-RPR parallel
mechanism has been extensively studied [2]. The first-order
kinematic expression for the i limb can be written as:

pi =n;-p+(s;i xng) - Q @)
where p = [#, 9|7 is the rate change of the position of
point C' with respect to time and Q = [0, 0, w]T is the
angular velocity. Hence, the first-order kinematics of the
mechanism may be rewritten in terms of dimensionally ho-
mogeneous arrays for the unit mechanism:

p=J,w+JI,p 3)
where
1’1{ ‘]T'l
Jp = ng 5 J, = JIr2 “)
ng Jr3
In the above, p = [p1, p2, p3]7 and:

Jri=(si xn;) -k, i=1,2,3 5)
where k stands for the unit vector along the axis perpendic-
ular to the plane of the mobile platform. The lines of J,,
are unit vectors, meaning that it is unaffected by the over-
all scale of the mechanism. Emerging here is the notion
of scale of the mechanism and here and, throughout this
paper, its factor is denoted by I. However, J,. cannot be
considered as scale-independent due to the presence of the
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non-unite vector s;. Thus the scale factor appears in J,- and
upon considering J = [J, J,]7, one has: J = [J,, J,o]"
where J,.g = %J . A scaled Jacobian can then be defined
asJs = [J, Jro).

ITI. Preliminary Investigation for the Dimensional Syn-
thesis of 3-RPR Parallel Mechanisms

The dimensional synthesis of mechanical systems, in-
cluding parallel mechanisms, pertains to determining the
dimensions of the mechanism in such a way that it com-
plies as closely as possible to the performance needed for
the required task. In what follows, some kinematic proper-
ties of the 3-RPR parallel mechanisms, constant-orientation
workspace and singularities, are reviewed and their scala-
bility is examined. The discussion is based on the results
presented in [11-13] which leads to gain insight into an ap-
propriate initial design of 3-RPR parallel mechanisms for
launching the optimization procedure.

A. Scalability of Singularity Loci and Workspace of 3-RPR
Parallel Mechanisms

Major deterrents to the widespread of parallel mecha-
nisms in the industrial context are a limited workspace
and the presence of singular configurations within the
workspace. In singular configurations, the mechanisms
gain one or more degrees of freedom and consequently lose
their inherent rigidity. Mathematically, a parallel mecha-
nism exhibits a singularity when J becomes rank deficient
and this can happen when its determinant goes to zero,
det(J) = 0. The determinant of the Jacobian matrix of a
scaled 3-RPR parallel mechanism can be simplified as fol-
lows:

1 det(J5) = det(J) 6)

From the above, it is straightforward to deduce the scala-
bility of the singularity locus. Moreover, from a geometric
stand point, it is evident that a 3-RPR parallel mechanism
preserves its workspace optimality upon applying an overall
scale to the mechanism. Figure 2 illustrates the constant-
orientation workspace !, shaded area, and the singularity
locus, solid circle [13], of a 3-RPR parallel mechanism for
a given orientation. The vertex space of each limb is a
ring centred at a; + s;, where a; is the position vector of
point A;, with pyin and pmax as the radii for internal cir-
cle and external circle, respectively. In this paper, it is as-
sumed that all the prismatic actuators have similar stroke
defined by puin and pmax. As the constant-orientation
workspace is the common area of the vertex spaces gen-
erated by each limb, an optimized mechanism with only
optimal workspace as the optimization objective is a mech-
anism whose vertex spaces are lying completely on each
other. This happens instantaneously for ¢ = 0 and when

LConstant orientation workspace is the set of all possible locations of
a given point of the mobile platform that can be reached for a prescribed
orientation.
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Fig. 2. Mechanism workspace for A, = 1.45, \;, = .35, and ¢p = 7 /2.
Dash and dash-dot circles (with ppin and pmax, respectively) show the
limbs’ vertex spaces and the solid circle is the singularity locus.

the base and mobile platform of the mechanism are iden-
tical triangles, although this mechanism is singular for all
positions of its moving platform when ¢ = 0, i.e., an archi-
tecturally singular mechanism.

B. Preliminary Investigation of the Mechanism Architec-
ture

In [13], an algebraic expression for the singularity lo-
cus of a planar 3-RPR parallel mechanism with similar
base and platform is obtained which consists of a circle
passing through the centres of the three rings generated by
the vertex spaces, Fig. 2. Moreover, in [11] the question
of scalability for a optimal 3-RPR parallel mechanism is
formulated as follows which is the central idea to launch
our optimization procedure: The maximal singularity-free
workspace for a 3-RPR parallel mechanism is possible for
a design having equilateral triangle base (with unit area)
and mobile platform and for a special ratio of link lengths
of base and mobile platform. Henceforth, in this paper, a
3-RPR parallel mechanism with equilateral triangle for the
base and mobile platform is considered since it inherently
adopts some optimality for its singularity and workspace.
The aforementioned link lengths are )\, and A\, which are
respectively the radius of the base and the mobile platform,
Fig. 1.

IV. Kinetostatic Performance Indices

The analysis of the performance sensitivity to uncertain-
ties is an important task [14]. The quantification of perfor-
mance sensitivity, has attracted a lot of interest and many
indices are proposed, such as manipulability and dexterity.
As mentioned above, the most notorious indices, which are
manipulability and dexterity, still entail some drawbacks
[2—4] and the results obtained using them may be ques-
tioned. Therefore, in our optimization objectives these two
indices are not taken into account. Here, we close the dis-
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cussion about these two indices by only reviewing their
scalability. The manipulability and dexterity can be formu-
lated as follows:

w=4/det(JTT),

Geometrically, the manipulability is, up to a proportion-
ality constant, the volume of the manipulability ellipsoid
(which is the generalized Cartesian error ellipsoid resulting
from the hyper-sphere in the joint error space). It should
be noted that for a given scale, [, of the mechanism the ma-
nipulability, 1, would change, however optimal parameters
would not be affected because the value of i changes lin-
early and uniformly with [ for all different values of opti-
mization parameters. On the other hand, dexterity can be
regarded as the condition number of the Jacobian matrix
and provides an upper bound (and a lower bound) for the
relative-error amplification. The dexterity index does not
apply to dimensionally non homogeneous Jacobian matri-
ces. To circumvent this problem, homogeneous Jacobian
matrices have been proposed [4, 15-17]. It should be noted
that the condition number of these homogeneous Jacobians
result in scale invariant objectives.

r=l 3T )

A. Kinematic Sensitivity

Kinematic sensitivity is defined as the maximum rotation
sensitivity and the maximum point displacement sensitivity.
These two indices provide tight upper bound to the end-
effector rotation and point-displacement sensitivity under a
unit magnitude array of actuated-joint displacements. The
maximum magnitude rotation and point displacement under
a unit g-norm actuator displacement are respectively:

orq = max | ¢, ope= max fp| (8
lollg=1 lellg=1

These two indices provide separately upper bounds on the
amplitude of rotation and operating-point displacement in-
duced by a constant overall magnitude of the active-joint
displacements. Thus they are referred to as the maximum
rotation and point-displacement sensitivities, respectively.
These pieces of information are thought to be meaningful
for optimal design and have been proposed recently in [3].
Directly, from [3], it follows that the 2-norm of the above
equations are:

1

/ming—1.2.3 Arp;

where A, ;, i = 1,2, 3 are the eigenvalues of JZP,J, and
P, is:

Or2 =

= I @RI ©)

P, =133 -J,(J13,)7'J) (10)

and

JIP.J,) 2 (11)

1
Op2 = —— = /Il
V/IMiNi—12.3 Apri
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where A, ;, 1 = 1,2, 3, are the eigenvalues of JgPTJp and
P, is:
P, =133 —J,.(J77,)1J7 (12)

From the above it follows that since J,, is independent from
the scale factor, [, consequently, the corresponding sensitiv-
ity index, i.e., the point-displacement sensitivity o, 2, be-
comes invariant to the scale factor, which is suitable for our
optimization analysis. However, J,. and o, o are related to
the scale factor [ as follows:

Ur,21:1

JT = lJT ’
¢ l

Or2 = (13)
Since o 5 changes linearly and uniformly by % for all dif-
ferent value of optimization parameters, thus upon chang-
ing the scale factor, [, the optimal parameters remain un-
affected. Since the kinetostatic indices are, in general, de-
pendent on the pose of the mobile platform, thus the next
step consists in extending these two indices to all poses
which the mechanism can reach. Following the reasoning
presented in [18], instead of considering the index I for a
specific pose, a global index (; is introduced over the ma-
nipulator workspace W by:

1w

(= [

(14)

One should be aware that (; tends to infinity at singular
poses when it is applied for o, » and o, 5. Therefore it is un-
able to distinguish mechanisms which have singular poses
in their workspace. In the case that the dimensional synthe-
sis inherently removes singular poses, then Eq. (14) holds
for the entire workspace. However, in general, cleaning the
whole workspace from all singular poses directly from the
initial dimensional synthesis is often impossible and, con-
sequently, the kinematic sensitivity performance indices in
Eq. (14) must be defined accordingly. To circumvent this
problem the reasoning applied to the condition number in
[18] is considered. Point displacement and rotation sensi-
tivities are bounded from zero to infinity and hence their
inverses are not more helpful in the same interval. As the
minimization of these indices is of interest, the maximiza-
tion of the inverse of their offshoot is suggested. Conse-
quently, Egs. (11) and (9) are reformulated as follows to be
applicable to our optimization purpose:

_ 1
o ].-FO'»,"Q’

, 1

= 15
= Trey 09

07“,2

We then have:
0>0,,,0,,>1 (16)

B. Mechanism Stiffness

Although the stiffness of a mechanism is not a kinematic
property per se, the reason which encourages us to consider
it besides our kinematic optimization objectives is to have
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a better insight about the relation between the two recent
kinematic sensitivity indices and the stiffness of the mecha-
nism under study. In short, stiffness is the measured ability
of a body or structure to resist deformation due to the ac-
tion of external forces. More specifically, the stiffness of a
parallel mechanism at a given point in its workspace can be
characterized by its stiffness matrix which relates the forces
and torques applied at the gripper link in Cartesian space
to the corresponding linear and angular Cartesian displace-
ments. The stiffness matrix of the mechanism in Cartesian
space is then given by the following expression:

K,=J'K,;J (17)

In the above, K ; is the joint stiffness matrix of the paral-
lel mechanism. Specifically, K; = diag[k1, k2, k3], where
each of the actuator in the parallel mechanism is modelled
as an elastic component. Furthermore, k; is a scalar repre-
senting the joint stiffness of each actuator, which is mod-
elled as a linear spring. In the case for which all the actua-
tors have the same stiffness, k = k1 = ko = kg, then Eq.
(17) reduces to:

K.=kJ"J (18)

Moreover, the diagonal components of the stiffness ma-
trix are used as the system stiffness value. These compo-
nents represent the pure stiffness in each direction—in our
case, the translation along the x and y axes and the rotation
around the z axis— as well as reflecting the rigidity of ma-
chine tools more clearly and concisely. Hence considering
the consistency of the units, two objective functions could
be defined for the stiffness optimization:

Sr = Koy, (19)

Sy = ancu + 772K022 (20

In the above, S, and S; could be considered respectively
as the mechanism rotational and translational stiffness. Re-
lations, for ¢ = 1,2,3, K,,, represents the diagonal com-
ponents of the stiffness matrix of the mechanism and 7; is
the weight factor for each directional stiffness characteriz-
ing the priority of the stiffness in this direction. Equations
(19) and (20) can be rewritten as follows:

3
S = k1Y I3 @)
=1
3 3
Sp=k(m Y ni +my n) (22)
i=1 i=1

Equation (21) shows that the mechanism rotational stiffness
is a linear function of the mechanism scale, and as pointed
out for the manipulability index, u , and the kinematic ro-
tational sensitivity, o, o, this factor changes the value of
mechanism rotational stiffness. However, for a given scale



13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-25 June, 2011

of the mechanism, the optimal design parameters do not
change.

Equation (22) contains only unit vectors, thus this ob-
jective is independent from mechanism scale where 1; and
12 stand for the stiffness priorities along the = and y axes,
respectively. Usually, the task to be performed by the ma-
nipulators are unknown and unpredictable where the uncer-
tainty is prominently present. Hence, there should not be
any preferred general orientation for which the manipula-
tor should exhibit better performances and accordingly in
[19] the symmetry for a 3-RPR parallel mechanism is con-
sidered. By symmetry, the actuators are assumed identical,
ie., k = ki1 = ko = ks, and there is no priority direc-
tion for the stiffness (11 = 72 = 1). Asnf +nf =1
for ¢« = 1,2, 3, this assumption results in a constant value
of magnitude 3 for the translational stiffness of the mech-
anism for different poses of the mechanism and, therefore,
S; is excluded from the optimization objectives.

V. Optimization Procedures

In what follows for this section, first the optimization pa-
rameters, A\, and )\, are refined, by addressing their roles
in normalization, existence of the nonvanishing singularity-
free workspace and maximization of the global singularity-
free workspace. Then the single and multi optimization
procedures are presented, including the final results for the
optimized 3-RPR parallel mechanism.

A. Normalization According to Scalability

According to the scalability of the parallel mechanism
under study, it is proper to set up the optimization based on
the unit length of its actuators. Due to the scale invariance
of the optimality of the mechanism under study, the opti-
mization can be implemented by considering [ = 1, and the
obtained optimal mechanism can be modified according to
the desired workspace volume. This means that the opti-
mization results in an identity between the length of actua-
tors and the size of workspace and this should be consistent
with the actuators strokes. To do so, in this paper, it is as-
sumed that the strokes of actuators range from 0.9 to 1.9 of
their initial leg length which implies that:

Pmin = la Pmax = 1.91 (23)
To have a mechanism of practical interest, the mobile
platform which carries the manipulator tool must be con-
strained in order to have a reasonable size. As the scale of
the mechanism is approximately proportional to the instru-
ment that is used by its mobile platform, the constraint is
adopted as a linear function of robot scale such that:

Ay > 0.21 (24)

This constraint determines a half plane for choosing A\, and
/\b, Fig. 3.
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Fig. 3. Constraints and design space of g, Ap.

B. Existence of a Nonvanishing Singularity-free Workspace
for All Orientation

In order to have a mechanism of practical interest, the
optimization parameters, A, and )\, should be arranged
in such way that the optimization procedure ends up with
a nonvanishing workspace for every angle ¢. Moreover,
in general, the limited workspace of parallel mechanisms
which is also segmented by singularities, makes the tra-
jectory planning of parallel mechanisms a delicate task,
thereby justifying the maximal singularity-free workspace
analysis. This channels us to address the existence of a non-
vanishing singularity-free workspace for every orientation
of the mechanism under study. Refering to Fig. (2), coordi-
nates of the centre of each vertex space, w; = [wiz, wiy]7,
for different orientations of the moving platform could be
formulated as follows:

Ww; =a; — Qb/i (25)

For this particular design with equilateral triangle for the
base and mobile platform, the centres of three circles of
vertex spaces lie exactly on the singularity circle, Fig. 2.
The above leads to obtain explicitly the coordinate, wy =
[w,:, wy]T and radius, ps, of the singularity-free workspace
as follows:

o Wiy + Wz + W3y Wiy + Way + W3y

W = 3 ’ y =
(26)
Ps = \/(ww —wg)? + (wiy — wy)? (27)
For ¢ = 0 and ¢ = = nonvanishing singularity-free

workspace can be achieved by imposing the following con-
straints:
>\a - >\b > Pmin; )\a + >\b < Pmax (28)

In the above, from Eq. (23), since pyin and ppax are scaled
then the above constraints are not destroying the scalability
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Workspace
pi
pi
2 pil2
s 0 s 0
-pil2
—pil2}
-pi
0.6 )
-pi

0 02 04 06
Workspace Area

Fig. 4. Workspace as a function of ¢ for (Aq, Ap) sets which are located
in constraint Aq — Ap = Pmin (Vertex ap).

of the problem. As illustrated in Fig. 3, these two con-
straints determine the half planes which bound A, and \;.
Upon considering the constraint imposed by the dimension
of the platform, it can be concluded that the permitted set
of values for A, and ), are inside a triangle which is de-
fined by Eqgs. (24) and (28), Fig.3. Referring to Fig. 3,
points lying on the two boundary lines A\, — Ay = pPmin
and A\, + A\p = pmax. denoted as ay, o and «., have re-
spectively zero workspace area for ¢ = 0 and ¢ = =+m.
Therefore, the intersection of the two boundary lines, the
point denoted by «, results in a zero workspace area for

¢ ={0,£m7}.
C. Maximization of the Global Singularity-free Workspace

The global workspace of the mechanism can be regarded
as 3-dimensional space for (x,y, ¢), as shown in Fig. 4 and
5. These figures are obtained by incrementing ¢ and calcu-
lating the corresponding workspace in the (z,y) plane, for
every angle ¢. The volume of the workspace can be approx-
imated numerically using discrete integration over ¢ using
the following formulation:

us

W= [ A¢)ds (29)

—T

where A(¢) is the area of workspace for a given orientation
of the mobile platform, ¢. The area of the workspace for
each orientation, A(¢), can be computed by applying an in-
tegration on the boundary using Gauss Divergence theorem
as proposed in [19]. However, as other mechanism perfor-
mance indices should be computed using Eq. (29), the IKP
is considered here to obtain the workspace. For each pose
in the space, (x,y, ¢), if the IKP verifies the stroke of all
limbs (ppmin < pPi < Pmaz, for ¢ = 1,2, 3), this pose be-
longs to workspace. To decrease the computational burden
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Fig. 5. Workspace as a function of ¢ for (Aa, Ap) sets which are located
in constraint Aq + Ap = pmax (Vertex a.).

of this problem, an estimation of the area which is likely to
be a part of workspace is helpful. For each vertex space a
square shape area can be defined as follows:

lim @ Wiz — Pmax < T < Wiz + Pmaz : im = (30)
max

min ¢
lim ¥ : Wiy — Pmax <Y < Wiy + Pmax : lim y:  (31)
min max

Thus, conditions for the existence of all vertex spaces can
be formulated as follows:

max{lim z} < z < min{lim z}, i=1,2,3 (32)
min max?

max{lim y} <y < min{ lim y}, i=1,2,3 (33)

In order to compute the global mechanism performance in-
dices, Eq. (14), the value of local performance indices in
the workspace nodes should be accumulated and divided
by the total number of workspace nodes.

D. Single Objective Optimization Using Differential Evo-
lution

Usually in EA algorithms, variation from one generation
to the next is achieved by applying crossover and/or muta-
tion operators. In DE, mutation is applied first to generate
a trial vector, which is then used within the crossover op-
erator to produce one offspring. The DE mutation operator
produces a trial vector for each individual of the current
population by mutating a target vector with a weighted dif-
ferential. This trial vector will then be used by the crossover
operator to produce offspring. For each parent, x;(t), first
the trial vector should be generated, u;(t), as follows: Se-
lect a target vector, x;1(t), from the population. Then, ran-
domly select two individuals, x;2 and x;3, from the popu-
lation:

u;(t) = x1(t) + B(xi2(t) — x43(1)) (34)
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Fig. 6. Workspace as a function of ¢ for the mechanism with optimal
workspace.

Objective—
Performance| | Workspace | 0,2 | 0p2 S,
Aa 14 145 | 1.45 | 145
b 0.2 0.45 | 0.39 | 0.45
Workspace 3.39 145 | 1.71 | 1.45
Or2 1.23 1.68 | 1.57 | 1.68
Op,2 2.05 2.08 | 2.09 | 2.08
S 0.07 05 | 035] 05

TABLE 1. Results of single objective optimization of mentioned mecha-
nism performance indices

where Be(0, o) is the scale factor, controlling the amplifi-
cation of the differential variation. The DE crossover opera-
tor implements a discrete recombination of the trial vector,
u;(t), and the parent vector, x;(t), to produce offspring,
x’';(t). Binomial crossover and exponential crossover are
typical crossover methods, in which, some genes of the
parent vector would change by the genes of trial vector to
produce the offspring. To determine which individuals will
take part in the mutation operation to produce a trial vector,
and to determine which of the parent or the offspring will
survive to the next generation, a selection function is used.
Random selection is usually used to select the individuals
from which difference vectors are calculated. For most DE
implementations the target vector is either randomly se-
lected or the best individual is selected. To construct the
population for the next generation, deterministic selection
is used, in which the offspring replaces the parent if the fit-
ness of the offspring is better than its parent; otherwise the
parent survives to the next generation. This ensures that the
average fitness of the population does not deteriorate. In
this paper, DE with (random) best population chromosome
as target vector and binary crossover is used to find the pa-
rameters of optimal mechanism [8]. Table I represents the

IMD-123
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Fig. 7. Workspace as a function of ¢ for the mechanism with optimal
rotational stiffness and rotation sensitivity (vertex g ).

results of single objective optimization for the performance
criteria which was described in the previous sections. As it
can be observed from Table I, )\, finds its minimum value
which is 0.2 for the optimal workspace. This is consistent
with Eq. (25) where the minimum leg length of vector b’;,
which is related to Ay, results in three vertex spaces which
becomes closest as possible to each other and this for all
possible orientation of the mobile platform. From Fig. 3,
it can be deduced that when X\, = 0.2, then A, € [1.2,1.7]
and the mean values is 1.45. From Table I it follows that
Ao approximately falls into its mean value (A, = 1.4). This
can be justified by the fact that the boundary lines presented
in Fig. 3, Eq. (28), are lines which workspace in their
neighbourhood tends to zero (near planes ¢ € {0,+7})
and away from them, results in a larger global workspace,
Fig. 6. Thus the optimization procedure attempts to avoid
them and it seems that the mean value for )\, is the optimal
solution.

In addition, having in mind that a 3-RPR with equi-
lateral triangular base and mobile platform is singular in
all positions when the orientation of the platform becomes
¢ € {0, £7} and consequently o7, 5, 7,, , and S, have zero
value in these postures, and also close to these postures they
are approximately zero. Thus the best solution found by the
optimization for A\, and ) is close to the vertex point a,,
since in «a, and also in its neighbourhood the workspace
in singular postures tends to zero. When the orientation
of the platform approaches to ¢ € {0, =7} the workspace
is nearly zero and this results in a larger mean value for
7.9, 0po and S, which is the main purpose of applying
single objective optimization to them. Figure 7 shows the
workspace in (z, y, ¢) space and the area of the workspace
for different ¢, A(¢), for a, which is the optimal point in
optimizing mechanism for 04,72 and S.,.
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Fig. 8. Atlas representation for the results obtained form the single-objective optimization. The black marker e stands for the optimum value.

E. Multi-Objective Optimization Using NSGA-II

Multi-objective optimization is the problem of simulta-
neously optimizing two or more conflicting objectives with
specific constraints. Here, Pareto-based multi-objective ap-
proach is used to address the issue. Mathematically, the
multi-objective problem can be formulated as:

min [ (x), p2(x), .., (%)) (35)
s.t.
g(x) <0, h(x)=0, z<z<uz,

here 1, is the i objective function, g and h are the inequal-
ity and equality constraints, respectively, and x is the vector
of optimization or decision variables. The solution to this
problem is a set of Pareto points for which improvement in
one objective can only take place with the worsening of at
least another objective.

EA are well-known methods in multi-objective opti-
mization (MOEA). Genetic algorithms such as NSGA-
II and strength Pareto evolutionary approach 2 (SPEA-2)
are common methods. The objective approach of solving
multi-objective problems needs a Pareto-compliant ranking
method, favouring non-dominated solutions. In a problem
with more than one objective function there are two pos-
sibilities for any two solutions x; and x5: one dominates
the other or none dominates the other. If both the following
conditions hold a solution x; dominates xs: (i) the solu-

tion x; is not worse than xs among all objectives and (ii) is
strictly better than x5 in at least one objective. The Follow-
ing explains a step-by-step approach for NSGA-II [10].

« Combine parent and offspring populations and construct
R; = P, U Qy. Do non-dominate sorting to R; and identify
different fronts: F;,¢ =1,2,....

o Set new population P;;; = 0. Set a counter i = 1.
Until |Piyq1| + F; < N (N is size of P;) perform Py =
P+ Fyandi =1+ 1.

o If|P;1 1|+ F; > N, perform the crowding-sort procedure
and include the most widely spread (N — | P;11|) solutions
using the crowding distance value in sorted F;; to Pyy.

o Create offspring ;1 from P, by using crossover and
mutation operators.

In multi objective optimization, the number of objectives is
not limited, but when is less than three, the results for the
optimal Pareto could be depicted graphically which helps to
investigate the objective space better. For instance, in our
case, atlas maps for workspace optimization, Fig. 8(a), in
comparison to other objectives, exhibits a completely dif-
ferent region of design space for optimality of the mecha-
nism. As it can be deduced from atlas maps of o, 2, Fig.
8(c) and §,., Fig. 8(d), optimality patterns for selecting A,
and )\ are very similar. In addition, as it is a result of single
objective optimization, 0272 and S,., specify identical sets
of (Mg, Ap) for optimality of the mechanism. Thus in order
to have a visual conception of optimal Pareto, the mech-
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Workspace

Fig. 9. Pareto front according to multi-objective optimization of the
workspace, o 2 and o 2.

anism stiffness was not used in Pareto-based multi objec-
tive optimization. After optimization, all possible solutions
in the entire solution space are obtained without the need
for combining all objective functions into one. Figure 9
shows for the results of Pareto-optimal, where one can read-
ily determine the final solutions depending on their prefer-
ences. It should be noted that for each of the Pareto points,
an identity could be found between the minimum length
of actuator and the size of obtained workspace. Choos-
ing the Pareto point could be done based on the expected
workspace which we expect to obtain using unit length of
actuator (I = 1). The chosen optimal point according to
this assumption from optimal Pareto, also results in optimal
value for other two objectives. Then using the mentioned
identity, for a given desired workspace the required length
of actuator (and in fact the needed size of mechanism) could
be obtained.

VI. Conclusion

This paper investigated the optimization of the 3-RPR
parallel mechanism by the means of single and multi-
objective optimization concepts. Different optimization cri-
teria were addressed and according to the scale invariance
property of some kinematic properties, workspace and sin-
gularity, it was recommended that all kinetostatic perfor-
mance indices should be scale invariant. Kinematic sensi-
tivity, rotation and point-displacement sensitivity, and stift-
ness are considered as kinetostatic performance. Their scal-
ability was examined and it was revealed that both indices
are scalable. As kinematic sensitivity has been proposed
recently, more emphasis is place on how it should be con-
sidered in an optimization procedure. According to the op-
timization procedure, design parameters reduced to speci-
fying the radii of base and mobile platform A, and A, re-
spectively. The optimum parameters for each design crite-
rion were obtained using differential evolution. Moreover a
complete discussion about the obtained mechanism in each
case was presented. Finally, NSGA-II was used to optimize
the mechanism. Two features of the multi-objective opti-
mization technique applied in this study were of great im-
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portance: It circumvents the problem of different objectives
unit inconsistency and preserves the scale invariance prop-
erty of the problem. Ongoing work includes the develop-
ment of a simple guideline for the optimization of parallel
mechanisms.
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