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a b s t r a c t

This paper investigates the constant-orientation workspace of five-degree-of-freedom parallel mechan-

isms generating the three translations and two independent rotations and comprising five identical

limbs of the PRUR type. The general mechanism was proposed recently from the type synthesis

performed for 5-DOF parallel mechanisms with identical limb structures. In this study, the emphasis is

placed on the determination of the constant-orientation workspace using a geometric interpretation of

the so-called vertex space, i.e., the motion generated by a limb for a given orientation. The geometric

investigation is carried out using geometric constructive approach, which is implemented in a

computer algebra system and in a CAD system. This paper shows that these two approaches are

complementary tools to investigate the workspace of parallel mechanisms. The geometric constructive

approach proposed in this paper bring insight into the architecture optimization and it can be regarded

as a guideline for the workspace analysis of parallel mechanisms whose vertex spaces generate

Bohemian dome.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Due to some remarkable kinematic properties, parallel manip-
ulators have stimulated the interest of researchers and industries
and they have been extensively synthesized using intuition and
ingenuity. The development of the systematic type synthesis of
parallel mechanisms [1] channels researchers to synthesize par-
allel mechanisms with fewer than six degrees of freedom (DOF),
referred to as lower mobility mechanisms. As far as 5-DOF
parallel mechanisms with identical limb structures (PMILS) are
concerned, researchers have mainly worked on the type synthesis
[1–6]. It is worth noticing that most existing 5-DOF parallel
mechanisms, omitting the hybrid mechanisms [7], are built using
a 5-DOF constraining leg, referred to as passive leg, which
constrains some actuated 6-DOF limbs [8–10], which are referred
to as a limited-DOF parallel mechanisms with non-identical limb
structures. Recently, the type synthesis of 5-DOF parallel mechan-
isms, have been revised [1–6] and Huang and Li [11] and Liu et al.
[12] proposed a first architecture.

Since, in the industrial context, the 3T2R motion can cover a wide
range of applications including, among others, 5-axis machine tools
and welding, therefore, in this research, the kinematic properties of
this class of mechanisms will be investigated [13–16]. The kinematic
ll rights reserved.
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properties of 5-DOF PMILS performing the 3T2R motion pattern are
still not well understood and there are many issues which should
inevitably be addressed including the constant-orientation work-
space and forward kinematic problem (FKP) [17–23].

There has been a vast literature on various approaches to obtain
and optimize their workspace which ranges from discretization
algorithms to geometrical approaches [24]. In the majority of cases,
the complete workspace of spatial parallel mechanisms is embedded
into a six-dimensional space for which no visualization exists or
which is extremely difficult to assess geometrically. To circumvent
this problem, sections with fixed translation or rotation of the
complete workspace are proposed. The focus of this paper is on a
commonly used such section: the constant-orientation workspace.
The constant-orientation workspace consists of the set of feasible
positions of the mobile platform for a prescribed orientation of the
platform.

While most of the literature propounded on this topic is based
purely on numerical methods [25–30], including the continuation
method and interval analysis [24,31,32], we advocate the need for
a revival of the geometric approaches to obtain the constant-
orientation workspace which, in general, is twofold:
1.
 Geometric constructive approach.

2.
 CAD-based modelling approach.
Both approaches presented above are to the majority of intents
and purposes the same and in our case they only differ from their
way to formulate the problem, reason for which we consider
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them complementary rather than counterpart. There are host of
considerations relevant to choosing an approach, such as the
availability of the required CAD software (SolidWorks system is
used here) or the computer algebra system (like MATLAB soft-
ware), for the computation of the constant-orientation workspace
of complex mechanisms and they are well discussed in [33,34].

In what concerns the geometric constructive approach, in this
paper, the problem is investigated upon following the reasoning
proposed in [35] for the constant-orientation workspace analysis
of 6-DOF parallel mechanisms whose vertex space is a sphere.
Two important features of the method are its low computational
time [36] and the possibility to readily find the volume of the
workspace. Emerging here is the notion of the vertex space which
is the motion generated by one limb constituting the parallel
mechanism for a prescribed orientation of the mobile platform.

This can be achieved by inspiring the mathematical formula-
tion proposed in [35]. However, the approaches proposed in [35]
cannot be used directly to obtain the constant-orientation work-
space of a large class of parallel mechanisms, especially those
obtained recently using the type synthesis [1], for which:
1.
 The topology of the vertex space is not defined from the outset
and does not correspond to a simple pre-defined geometric
object, such as a sphere in the case of Gough–Stewart platform
and a circle in the case of a 3-RPR parallel mechanism.
2.
Fig. 2. Schematic representation of Pentapteron, a 5-DOF (3T2R) parallel mechanism.
The horizontal and vertical cross-sectional planes of the vertex
space do not result in homogeneous sections to which alge-
braic equations can be associated, such as circles.

To circumvent these problems, in this paper, the geometric con-
structive approach is divided into two steps: geometric constructive
approach of the vertex space (GCAV), and geometric constructive
approach of the constant-orientation workspace (GCACOW).

As a second approach, the CAD-based modelling approach, an in-
depth geometric inspection of the vertex space topology is performed.
This gives a proper insight into design of the mechanisms under study
and the obtained topology, which can be extended to other types of
mechanisms revealed in [1], can be made equivalent to a quadric
surface called Bohemian dome. The main challenge in obtaining the
topology of the vertex space is the extension of Bohemian domes to
the final vertex space, which should be performed by considering
particular cases and the stroke of the actuators. Due to some limits of
the CAD systems in generating complex geometric objects, the
extension of the Bohemian dome into the vertex space, which can
be regarded as an extrusion of the Bohemian dome along an axis,
cannot be done in one single step and several successive steps are
required to do so.

It can be shown that the vertex space of some of the mechan-
isms proposed in [1] for 4- and 5-DOF PMILS can be made
Fig. 1. Schematic representation of (a)
equivalent to a Bohemian dome, such as the 4-ŔŔŔR�R�� 4-RPUR
and 4-ŔR�R�ŔŔ� ŔR�UŔ, and the algorithm proposed in this paper
can be extended for them. Here and throughout this paper, R, P, U
and C stand, respectively, for the revolute, prismatic, universal
and cylindrical joint and the underlined joint is activated. In the
case of C joint, the prismatic joint is activated. It should be noted
that the mechanism under study in this paper, i.e., the 5-PRUR
parallel mechanism can be regarded as one of the most difficult
one which makes its workspace analysis to be considered as a
guideline for other mechanisms having Bohemian dome as vertex
space. Also, it is worth mentioning that the proposed methods in
this paper can be verified easily by using discretization method
for the 5-PRUR and other parallel mechanisms.

The remainder of this paper is organized as follows. First, the
architecture and the general kinematic properties of the 5-PRUR
parallel mechanism which originated from the type synthesis
performed in [1] are outlined. The IKP and two general classes for
PRUR arrangement are reviewed. The constant-orientation work-
space is interpreted geometrically and the results are implemen-
ted in a CAD system. More emphasis is placed on the geometric
constructive approach of the workspace carried out by computer
algebra systems, GCAV and GCACOW, and the CAD model of the
workspace. Finally, based on the latter algorithm, the volume of
the constant-orientation workspace is obtained and plotted with
respect to the two permitted rotational DOFs.
2. Architecture review and kinematic modelling of the
5-PRUR parallel mechanisms

Figs. 1 and 2 provide, respectively, representations of two possible
arrangements for a PRUR limb and a schematic representation for a
5-DOF parallel mechanism, called Pentapteron [1,5] which was first
CUR �G¼1 and (b) PRUR �G¼0.
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revealed in [37] where the corresponding kinematic arrangement of
the limbs is fully described.

Such a mechanism can be used to produce all three transla-
tional DOFs, plus two independent rotational DOFs (3T2R) of the
end-effector, namely ðx,y,z,f,yÞ. In the latter notation, ðx,y,zÞ
represent the translational DOFs with respect to the fixed frame O,
illustrated in Fig. 2, and ðf,yÞ stand, respectively, for the orientation
DOFs around axes x and y. In addition, the axes of the first R joints in
all the legs are arranged to be parallel to the direction of a group of
two of the linearly actuated joints. Therefore, two types of kinematic
arrangements are possible, as depicted in Fig. 1, for the legs: (a) the
parallel type, Fig. 1(a), and (b) the perpendicular type, Fig. 1(b). In
fact, G¼ 0 and G¼ 1 differ in some kinematic properties such as
constant-orientation workspace and the inverse kinematic problem
(IKP) formulation. It is noted that G designates the cosine of the
angle between the prismatic actuator axis and the first R joint axis.

The rotation from the fixed frame Oxyz to the moving frame
O0x0y0z0 is defined as follows: a first rotation of angle f is performed
around the x-axis followed by the second rotation about the
y-axis by angle y. The latter leads to the following rotation matrix:

Q ¼

cos y sin f sin y cos f sin y
0 cos f �sin f

�sin y sin f cos y cos f cos y

2
64

3
75: ð1Þ

In this paper the superscript 0 for a vector stands for its representa-
tion in the mobile frame. In a 5-PRUR parallel mechanism, the axes
of all the R joints are always parallel to a plane defined by its normal
vector e3 ¼ e1 � e2 where e1 and e2 are unit vectors defining the
direction of the R joints. From screw theory, it follows that the
mechanism has no possibility to perform a rotation about an axis
which is orthogonal to a plane spanned by ½e1,e2�. From a practical
point of view, for the proposed architecture vectors e1 and e2 are
orthogonal.
Fig. 3. Configuration which results in two solutions for the IKP of G¼ 1.
3. IKP of the 5-PRUR parallel mechanism

In the ith leg, the motion of the actuated prismatic joint is
measured with respect to a reference point Ai, located on the
direction associated with the prismatic actuator. Vector eri is in
turn defined as a unit vector in the direction of the prismatic joint
and therefore the vector connecting point Oi to point Ai can be
written as qi ¼ rieri. Vector ri is defined as the position vector of
point Oi, the starting point of the prismatic actuator, in the fixed
reference frame. Similarly, vector si is the vector connecting point
O0 of the platform to a reference point Di on the axis of the last
revolute joint of the ith leg. Point Ci is defined as the intersection
of the axes of the second and third revolute joints of the ith leg.
Vectors v1i and v2i are, respectively, the vector connecting point Bi

to point Ci and point Ci to Di.
Finally, the position of the platform is represented by vector

p¼ ½x,y,z�T connecting point O to point O0 and the orientation of
the moving frame with respect to the fixed frame is given by a
rotation matrix Q . For a given value of the angles f and y, matrix
Q is readily computed and vectors si can obtained as

si ¼Qs0i: ð2Þ

With reference to Fig. 1, the following equations, arising from
the kinematic constraint of the ith limb, can be written as

ðxCi�xBiÞ
2
þðzCi�zBiÞ

2
¼ l21i, ð3Þ

ðxDi�xCiÞ
2
þðyDi�yCiÞ

2
þðzDi�zCiÞ

2
¼ l22i, ð4Þ

ðxDi�xCiÞ cos y�ðzDi�zCiÞ sin y¼ 0 ð5Þ
such that the first two equations represent, respectively, the
magnitude of v1i and v2i and the last one corresponds to the
kinematic constraints between e2 and v2i, i.e., e2 ? v2i. The solution
of the IKP is different for each case, i.e., G¼ 1 and G¼ 0, and
requires to be investigated separately.
3.1. Solution of the IKP for G¼ 1

In this case, Eqs. (3)–(5) should be solved for yCi ¼
yri for a

given pose of the platform. Having in mind that for G¼ 1 one has
yCi ¼ yBi ¼

yri, then the coordinate of point Ci is unknown for the
IKP. Thus by eliminating passive variables, and skipping mathe-
matical details, it follows that the IKP formulation can be divided
into two expressions for two different sets of working modes:

yri ¼ yDiþd1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22i�ð

1K
0

i Þ
2

q
, ð6Þ

yri ¼ yDiþd1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22i�ð

2K
0

i Þ
2

q
, ð7Þ

where

1K
0

i ¼ 9vi � e39�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21i�ðai � e2Þ

2
q

, 2K
0

i ¼ 9vi � e39þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21i�ðai � e2Þ

2
q

ð8Þ

and

ai ¼ siþp�ri: ð9Þ

In the above, d1i ¼ f�1;1g stands for the two working modes.
From the above expressions it can be deduced that the IKP admits
up to four solutions. From a geometric stand point, as depicted in
Fig. 3 which results in two solutions, the IKP resolution for a G¼ 1
limb can be made equivalent to the intersection of a cylindrical
surface and a circle whose axes are orthogonal.

From the compact and rigorous formulation found for the IKP
we gain insight into the boundary curves of the limb which
prepares the essentials for the first step toward the constant-
orientation workspace analysis of the 5-PRUR parallel mechan-
isms. Boundary curves of a limb can be identified mathematically
by inspecting the conditions for which the IKP looses its capability
to produce real solutions. To lay down the essential tools for the
workspace analysis, we start to formulate the conditions for
which the IKP solutions for a given limb are on the verge of
having real solutions and to satisfy the corresponding stroke of
the actuator. These conditions are based on the inequality con-
straints of the IKP, plus the inequalities expressing the stroke of
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the actuator which can be written as

K1iZ0 K1i ¼ l21i�ðai � e2Þ
2, ð10Þ

K2i ¼ l22i�ð
1K

0

i Þ
2
Z0, ð11Þ

K3i ¼ l22i�ð
2K

0

i Þ
2
Z0, ð12Þ

Ksi
¼

Dri

2
�9yri�yAi9Z0: ð13Þ

The first one, K1i, should hold in order to have the primary
condition for having a real solution for the IKP and a pose which
fails to satisfy this condition will be definitely out of the reachable
region of the limb, regardless the stroke of the actuator. The next
two, K2i and K3i, are governing the number of the solutions to be
either two or four where upon each satisfaction two solutions are
generated. The fourth one, Ksi

, has the role to determine whether
the prismatic actuator is within the range of the motion defined
by its stroke, Dri ¼ rmax i�rmin i.

3.2. Solution of the IKP for G¼ 0

Let us consider the case for which the prismatic actuator is
along the x-axis, in which case its elongation is denoted as xri,
based on the defined convention. As it can be observed, Eqs.
(3)–(5) contain passive variables, CiðxCi,yCi,zCiÞ and DiðxDi,yDi,zDiÞ,
which are, respectively, the coordinates of the passive U and the
last R joints. Using the fact that the last R joint is attached to the
platform, the coordinate of point Di can be related to the pose of
the platform. Upon eliminating the above passive variables from
the system of equations presented in Eqs. (3)–(5) and by skipping
mathematical details, the following is obtained for the IKP:

xri ¼ xDiþd0i sin y
ffiffiffiffiffi
Ki

p
þu0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21i�ðzDiþd0i cos y

ffiffiffiffiffi
Ki

p
�zBiÞ

2
q

, ð14Þ

where d0i ¼ f�1;1g and u0i ¼ f�1;1g stand for the two different
working modes and:

Ki ¼ l22i�ðyDi�yCiÞ
2: ð15Þ

An analogous approach leads to obtaining the IKP when the
prismatic actuator is along z-axis, denoted as zri:

zri ¼ zDiþd0i cos y
ffiffiffiffiffi
Ki

p
þu0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21i�ðxDiþd0i sin y

ffiffiffiffiffi
Ki

p
�xBiÞ

2
q

: ð16Þ

From d0i ¼ f�1;1g and u0i ¼ f�1;1g, which stand for represent-
ing different working modes, it follows that the IKP admits up to
Fig. 4. Configuration which results in four solutions, only two are shown for clarity,

for the IKP of G¼ 0 with prismatic actuator along the x-axis.
four real solutions and 45
¼ 1024 for the mechanisms as a whole.

Fig. 4 shows a configuration for which the IKP admits four solutions.
In order to set down gradually the essentials for the workspace

analysis, which is the matter of the next section, the boundary
curves for G¼ 0 are obtained. By the same reasoning as for G¼ 1,
the boundary curves of G¼ 0 are:
1.
Fig.
For xri:

K1i ¼ KiZ0, ð17Þ

K2i ¼ l21i�ðzDi�cos y
ffiffiffiffiffi
Ki

p
�zBiÞ

2
Z0, ð18Þ

K3i ¼ l21i�ðzDiþcos y
ffiffiffiffiffi
Ki

p
�zBiÞ

2
Z0, ð19Þ

Ksi
¼

Dri

2
�9xri�xAi9Z0: ð20Þ
2.
 For zri:

K1i ¼ KiZ0, ð21Þ

K2i ¼ l21i�ðxDi�sin y
ffiffiffiffiffi
Ki

p
�xBiÞ

2
Z0, ð22Þ

K3i ¼ l21i�ðxDiþsin y
ffiffiffiffiffi
Ki

p
�xBiÞ

2
Z0, ð23Þ

Ksi
¼

Dri

2
�9zri�zAi9Z0: ð24Þ
4. From the vertex space to the workspace analysis of 5-PRUR
parallel mechanisms

Geometrically, the problem of determining the constant-orienta-
tion workspace for a limb of the 5-PRUR parallel mechanism can be
regarded as follows: For a fixed elongation of the prismatic actuator,
the first revolute joint provides a circular trajectory centred at Ai

with l1i as radius. The second link generates a surface by sweeping a
second circle, with e2 as axis and l2i as radius, along the first circle.
Since the direction of e2 is prescribed and must remain constant, the
surface obtained is quadratic and is called a Bohemian dome.

This quadratic surface can be obtained by moving a circle that
remains parallel to a plane along a curve that is perpendicular to
the same plane, as shown in Fig. 5. Once this surface is obtained, it
should be extended in such a way that it represents the vertex
space of the limb for different elongations of the prismatic
actuators with respect to its stroke Dri. The main challenge in
obtaining the topology of the vertex space of a PRUR limb is to
find a general, complete and systematic procedure to extend the
Bohemian dome to the vertex space. As mentioned above, G¼ 0
and G¼ 1 have different IKP formulations and vertex space
topologies. Moreover, the vertex space of each case falls into
different classes depending on the values of l1i, l2i and Dri. In
5. The lower half of a Bohemian dome. The representation is taken from [38].
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what concerns the rotational parameters, ðf,yÞ, only y influences
the vertex space topology, since the axis e2 which defines the
angle y is located intermediately in the limb, in contrast to f
which is remote to the platform. The influence of l1i, l2i, Dri and y
on the vertex space is the main reason that makes difficult the
geometric assessment of the vertex space of a PRUR limb. In the
following section, first, the topology of the vertex space, for both
cases G¼ f0;1g, is elaborated and then the constant-orientation
workspace is investigated.

Before presenting the details related to the construction of the
CAD model of the vertex space, the complexity of the model is
discussed briefly. In fact, y is the rotation angle around axis e1,
which is in the direction of the y-axis. Thus in the case for which
the prismatic actuator is along the y-axis, i.e., G¼ 1, the vertex
space for different angles y can be obtained by applying a rotation
around the prismatic actuators axis by y. It is apparent that the
latter rotation preserves the direction of the prismatic actuator.
Thus for G¼ 1 once the vertex space for y¼ 0 is in hand then it
can be readily extended to different values of y. By contrast, the
vertex space of G¼ 0 cannot be modelled readily in such a way
Fig. 6. Vertex space for G¼ 1 having both holes H1
1 and H1

2. (a) Schematic model.

(b) CAD model.

Fig. 7. CAD model of the vertex space for G0i , i¼
that covers different y since rotating the vertex space obtained for
y¼ 0 for G¼ 0 around e1 does not preserve the direction of the
prismatic actuator. In what concerns the second alternative
toward obtaining the boundary of the vertex space, a geometrical
constructive approach is used, called the geometric constructive
approach of the vertex space (GCAV).

4.1. Topology of the vertex space for G¼ 1

4.1.1. CAD-based modelling approach

Having determined that for a fixed prismatic actuator and fixed y
both G¼ f0;1g generate a Bohemian dome, the next step consists in
extending this surface in such a way that results in a general model
of the vertex space which considers the stroke of the actuator plus y.
For G¼ 1, one should first consider the motion generated by the
second moving link for which the Dri is considered. This surface is
represented in Fig. 6(a) as a shaded surface. Directly from Fig. 6, it
follows that two distinct types of holes can appear in the extension
from Bohemian dome to the vertex space of G¼ 1:
1.
1, .
A throughout hole called H1
1: when Drio l2i.
2.
 A side hole called H1
2: when l2io l1i.
Thus from the above, the topology of the vertex space for G¼ 1
falls into four cases:
1.
 G01 : DriZ l2i and l2iZ l1i, none of the holes appear.

2.
 G02 : DriZ l2i and l2ir l1i, only H1

2 appears.

3.
 G03 : Drio l2i and l2iZ l1i, only H1

1 appears.

4.
 G04 : Drio l2i and l2io l1i, both H1

1 and H1
2 appear.
Fig. 7 demonstrates the four different vertex spaces belonging to
G¼ 1. From the latter figure it can be observed how H1

1 and H1
2

may influence the vertex space. It can be readily deduced that an
optimal design for a G¼ 1 corresponds to G01. All the vertex
spaces depicted in Fig. 7 correspond to a configuration for which
y¼ 0. As mentioned previously, vertex spaces for different values
of y for G¼ 1 can be obtained by applying a rotation about the
axis of the prismatic actuator by y.
. . ,4. (a) G01. (b) G02. (c) G03 and (d) G04.
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4.1.2. Using the geometric constructive approach of the vertex space

(GCAV)

Since in this case we are dealing with a three-dimensional space,
a cross-sectional plane should be considered in order to reduce the
problem to a two-dimensional one. From a geometric inspection, it
follows that a cross-sectional plane with e3 ¼ e1 � e2 as normal,
called X , results in a homogeneous section for the vertex space and
leads to conventional geometric objects such as circles and lines.
This helps to reduce the complexity of the computation and, to be
precise, leads to an algorithm which consists in finding the inter-
sections of some known geometric objects such as intersections of
circles and lines. In the fixed frame, the vertex space, wi, can be
formulated mathematically as follows:

wi ¼ ri�Qs0i: ð25Þ

The particular cross section X defined above, implies that the above
expression should be multiplied by Q�1

y :

w0i ¼Q�1
y wi ¼Q�1

y ri�Qfs0i, ð26Þ

where

Q y ¼

cos y 0 sin y
0 1 0

�sin y 0 cos y

2
64

3
75, Qf ¼

1 0 0

0 cos f �sin f
0 sin f cos f

2
64

3
75: ð27Þ

In the above, one should be aware that Q ¼Q yQf which is coming
from the rotation sequence order as explained for
Eq. (1). Each limb is constituted of two moving links and their
corresponding motions are shown, respectively, in Figs. 8 and 9.
From Fig. 8 it follows that

ðz00�w00izÞ
2
þðx00�w00ixÞ

2
¼ l21i, ð28Þ

where w00i ¼ ½w
00
ix,w00iy,w00iz�

T . It should be noted that components in the
coordinate frame attached to the cross-sectional plane X with
Fig. 8. Boundary generated by the first moving link for G¼ 1.

Fig. 9. Boundary generated by the second moving link for G¼ 1 due to the motion

generated by the first moving link.
principal axes along e1 and e2 are distinguished by the ‘‘00’’ super-
script. The cross section is followed along the x00-axis. The intervals
of the vertex space are as follows:

BV
1i ¼

iXmin : w00ix�l1irx00rw00ixþ l1i :
iXmax,

iYmin : w00iy�l2i�
Dri

2
ry00rw00iyþ l2iþ

Dri

2
: iYmax,

iZmin : w00iz�l1irz00rw00izþ l1i :
iZmax:

8>>>><
>>>>:

ð29Þ

Note that BV
1i in Eq. (29) can be regarded as a box in which

the vertex space of limb i with structure G¼ 1 is contained. The
intersections of these boxes could be of great interest for the
workspace determination using a node search method or interval
analysis [24,31], where they have the potential to which will
decrease the computational complexity.

Thus, for a given x00 ¼ x00H , two solutions are in hand for z00,
called z00Hj, j¼ f1;2g, which are the z00 coordinates of the two sets of
circles in Fig. 9. The equation representing the four circles in Fig. 9
can be expressed as follows:

1Ci : ðz
00�z00HjÞ

2
þ y00�w00iy7

Dri

2

� �2

¼ l22i, j¼ 1;2: ð30Þ

Referring to Fig. 9, the expression of the four lines, called Li,
tangent to the above circles having zero slopes is

1Li : z00Hj7 l2i: ð31Þ

As it can be deduced from Fig. 9, the problem of obtaining the
vertex space for G¼ 1 is made equivalent to finding the intersections
of the four circles connected by four lines, respectively, Eqs. (30) and
(31), for a given cross-sectional plane X , with respect to the interval
given in Eqs. (29) and, finally, identifying which intersection is
constituting the boundary of the vertex space. To do so, we resort
to the algorithm presented in [35] for obtaining the constant-
orientation workspace of general 6-DOF parallel mechanisms.

Thus the last step consists in obtaining all the circular arcs and
lines defined by the intersection points found above and ordering
these points. This should be accompanied by a checking proce-
dure to identify the arcs and lines that constitute the boundary of
the workspace. To do so, for a given curve, belonging to a given
arc or line, a point lying on the curve is chosen, preferably not one
of the end points. Then, using the IKP, it is verified whether this
point has boundary condition, meaning that a little variation on
this point leads to violating either the constraint inequalities of
the IKP or the strokes of the prismatic actuator.

In summary, the following steps should be taken to determine
the GCAV:
1.
 Formulating the vertex space, Eq. (25).

2.
 Applying the cross-sectional plane X to the vertex space, Eq. (26).

3.
 Obtaining the interval for which the cross-sectional plane X

should be repeated, Eqs. (29).

4.
 Identifying circles, 1Ci and lines, 1Li, which are obtained by

applying the cross-sectional plane X to the vertex space, Eqs.
(30) and (31).
5.
 Finding all the intersection points among 1Ci and 1Li.

6.
 Identifying all the arcs and lines from the intersection points

obtained above.

7.
 Considering an arbitrary point, called Ap, preferably the mid-

point, for each arc and line obtained above.

8.
 Verifying whether Ap has boundary condition which, based on

Eqs. (10)–(13), can be classified as follows:
� K1i ¼ 0;
� K2i ¼ 0 and K3io0;
� K3i ¼ 0 and K2io0;
� K2i ¼ 0 and K3i ¼ 0;
� Ks¼0;
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� K2i ¼ 0 and K3i40 but Kso0 for the two solutions obtained
from K3i40;
� K3i ¼ 0 and K2i40 but Kso0 for the two solutions obtained

from K2i40.
Since a CAD model is presented for the vertex space of G¼ 1 thus
the vertex space obtained by using the above procedure is
omitted. However, the above formulation given for GCAV will
be used for obtaining the geometric constructive approach for the
constant-orientation workspace, the so-called GCACOW. It should
be noted that the GCAV introduced here can be regarded as a
general approach for obtaining the vertex space of other parallel
mechanisms whose vertex space is difficult to assess geometrically.

4.2. Topology of the vertex space for G¼ 0

4.2.1. CAD-based modelling approach

The vertex space generated by a PRUR limb having a prismatic
actuator along x-axis is equivalent to the vertex space generated
by the same leg having the prismatic actuators along z-axis but
rotated by p=2 around the axis of the prismatic actuator. Thus,
only the vertex space for the limb with prismatic actuator in the
direction of z-axis is elaborated.

Since in this case extruding a Bohemian dome in a CAD software
is nearly impossible and the angle y changes the topology of the
vertex space, thus the CAD model of the vertex space of G¼ 0
cannot be obtained directly and it is much more complicated than
the G¼ 1 one. Fig. 10 represents the CAD model of the vertex space
for a limb with l1i ¼ 100, l2i ¼ 160 and Dri ¼ 140 for y¼ p=6.
Therefore, a step-by-step procedure should be applied in order to
construct different parts of the vertex space and finally assemble
them to obtain the CAD model. These steps are presented in
Appendix A to have an insight into the complexity of the CAD
model of the vertex space of G¼ 0. The complexity of modelling the
vertex space of G¼ 0 encourages us to use the so-called GCAV. Here,
it can be concluded that the analysis of the workspace of a 5-DOF
parallel mechanism for which at least one limb belongs to G¼ 0
would be more constructive to be carried out using the GCAV, for
the vertex space, and subsequently the GCACOW for the constant-
orientation of the mechanism as a whole.

4.2.2. Using the geometric constructive approach of the vertex space

(GCAV)

In the case of G¼ 0, the topology of the vertex space is highly
related to y in such a way that the vertex space for y¼ 0 could not
be extended to other y by a simple rotation. Moreover, for
Fig. 10. CAD model of the vertex space of G¼ 0 for y¼p=6.
different y the shape and characteristic of the holes vary. In
contrast of G¼ 1, in the case with G¼ 0, as depicted in Fig. 10,
there are three types of holes:
1.
Fig
mo
H0
1: Always exists, except for y¼ f0,pg. This hole is overall with

respect to the following conditions:
� if ðl1i cos y�Dri sin yÞ40 the condition becomes:

l2i4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21i�ðDri=2Þ2

q
�ðDri=2Þ cos y;

� otherwise, the condition is: l2i4 l1i=sin y.
. 12.
ving
2.
 H0
2 and H0

3 exist when Drio2l1i:
� H0

2 is overall when: l1i sin ðy�bÞ=sin yo l2i where b¼ arcsin
ðDri sin y=2l1iÞ;
� H0

3 is not overall but it would be larger when Dri decreases.
The GCACOW requires the GCAV, thus in what follows the vertex
space for G¼ 0 is obtained using the GCAV. As each limb is con-
stituted of two moving links, thus their corresponding motions are
shown, respectively, in Figs. 11 and 12. Skipping mathematical
details, the equations for the circles and lines in Fig. 11 are

z00�w00iz7
Dri

2
sin y

� �2

þ x00�w00ix7
Dri

2
cos y

� �2

¼ l21i, ð32Þ

z00 sin yþx00 cos y¼wix7 l1i: ð33Þ

For a given x00 ¼ xH , solving z00 from above, called z00Hj, jZ0 provides

the number of intersections which may vary for different X , leading
to the following circles and lines which are depicted in Fig. 12:

0Ci : ðz
00�z00HjÞ

2
þðy00�w00iyÞ

2
¼ l22i, ð34Þ

0Li : y00 ¼w0iy7 l2i: ð35Þ
Fig. 11. Boundary generated by the first moving link for G¼ 0.

Boundary generated by the second moving link for G¼ 0 due to the first

link.



Fig. 13. Vertex space for G¼ 0, prismatic actuator along z-axis and y¼p=6,

obtained by GCAV.

Fig. 14. Schematic representation of a 5-DOF (3T2R) parallel mechanism in which

all limbs belong to G¼ 1.
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The intervals which include the vertex space are

BV
0i ¼

iXmin : w00ix�l1i�
Dri

2
9sin y9rx00rw00ixþ l1iþ

Dri

2
9sin y9 : iXmax,

iYmin : w00iy�l2iry00rw00iyþ l2i :
iYmax,

iZmin : w00iz�l1i�
Dri

2
9 cos y9rz00rw00izþ l1iþ

Dri

2
9cos y9 : iZmax:

8>>>>><
>>>>>:

ð36Þ

Thus the problem of obtaining the vertex space for G¼ 0 is made
equivalent to finding the intersections of circles and lines, Eqs. (34)
and (35), for a given cross-sectional plane X and identifying which
arc or line is constituting the boundary of the vertex space. This can
be done by resorting to the GCAV for G¼ 1. Fig. 13 illustrates the
vertex space for G¼ 0 for a configuration for which y¼ p=6 and
design parameters as l1i ¼ 100, l2i ¼ 90 and Dri ¼ 140.

4.3. Constant-orientation workspace

Reaching this step, having the topology of the vertex space and
the GCAV, we pursue the study, respectively, on two fronts: CAD
model and GCACOW.

4.3.1. CAD model of the constant-orientation workspace

Up to this point, the analysis of the vertex space in the
preceding sections was arranged in such a way that allows to
conduct the analysis of the constant-orientation workspace using
both approaches mentioned above. Having in place the CAD
model of the vertex space, the final step is to apply an offset vector
to all the five vertex spaces which is in the direction opposite of the
vector connecting the last joint of the limb to the mobile frame
attached to the platform, si. Finally, the workspace will be the
intersection of the five offset vertex spaces. Fig. 15(a) shows the
CAD model of the constant-orientation workspace of a parallel
mechanism for which all the limbs belong to G¼ 1, Fig. 14.
Fig. B1(a) illustrates the CAD model of the constant-orientation
workspace for the mechanism in Fig. 2 having some limbs which
belong to G¼ 0. As mentioned previously, the complexity of the
CAD model of G¼ 0 vertex space is the major deterrent to obtain
easily the CAD model of the constant-orientation workspace of its
corresponding parallel mechanism. However, since the CAD model
of a mechanism having only G¼ 1 is comparatively easier than the
G¼ 0, thus the CAD model of its corresponding parallel mechanism
would be easier to obtain.
4.3.2. Geometrical constructive approach of the constant-orientation

workspace (GCACOW)

Emphasis in this section is placed on GCACOW which can be
regarded as the extension of GCAV for five limbs.

Based on the reasoning given for the GCAV, the following steps
should be considered for the GCACOW:
1.
 Reduce the three-dimensional problem to a two-dimensional
one by using the cross-sectional plane X defined in Eq. (26) for
the five vertex spaces.
2.
 Consider a 5-PRUR comprising ng r5 limbs having G¼ 0 and
5�ng limbs with G¼ 1. The set of all the circles and lines
segments obtained by applying the cross-sectional plane X for
the five vertex spaces is defined, respectively, as C and L:

C¼ f0C1, . . . ,0Cng
,1C1, . . . ,1Cng�5g, ð37Þ

L¼ f0L1, . . . ,0Lng
,1L1, . . . ,1Lng�5g: ð38Þ
3.
 The cross-sectional plane X is repeated along the x00 axis, x00H ,
over the following interval:

max fiXmingox00H ominfiXmaxg, i¼ 1, . . . ,5: ð39Þ

In the above, iXmin and iXmax were defined in Eqs. (29) and
(36) for G¼ 1 and G¼ 0, respectively.
4.
 Having in place all the information concerning the circles
(centre and radius) and lines (expression) from Eqs. (37) and
(38), then upon considering the required interval for applying
the cross-sectional plane X , the following steps should be
followed:
(a) Finding the intersection points of all the circles in C.
(b) Finding the intersection points of circles, C, with lines, L.
(c) Finding the intersection points between line segments, L.
(d) Ordering the intersection points found above. (Hint: The

intersection points of circles are ordered using ‘‘atan2’’
function and intersection point of lines in ascending order);
5.
 Determining each arc or line constituting the boundary of the
constant-orientation workspace by using the seven boundary
conditions. To do so, the mid-point of the arc or line, is
considered and substituted into the IKP of all the limbs. If the
selected point satisfies the seven boundary conditions of its limb
and IKP of other limbs, it will be a boundary of the workspace.

Fig. 15 represents the constant-orientation workspace for a
given orientation of the platform of mechanism in Fig. 14 with
geometric properties stated in Table 1. The constant-orientation
workspace obtained by implementing the GCACOW, Fig. 15(b), is



Fig. 15. Constant-orientation workspace for y¼ p=3 and f¼ p=4 for the design

presented in Table B1. (a) CAD model. (b) GCACow.

Table 1
Geometric properties (in mm) assumed for the 5-PRUR parallel mechanism of

Fig. 14.

i ðriÞx ðriÞy ðriÞz ðs0iÞx ðs0iÞy ðs0iÞz

1 0 0 �70 0 0 0

2 0 0 70 0 40 0

3 �70 70 0 �20 20 20

4 70 70 0 20 20 20

5 0 140 70 0 40 20

Fig. 16. Volume of the constant-orientation workspace with respect to ðf,yÞ for

the design presented in Table B1.
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compared with the one obtained by the CAD software, Fig. 15(a), as
it can be observed that they are consistent. However, the consis-
tency of the results is a must for the analysis but it is not the main
concern of this paper. As pointed out previously, the main concern of
this paper is to find a judicious synergy between the two approaches
presented which can be summarized as follow. The CAD-based
modelling approach is more suitable for the constant-orientation
workspace analysis of the mechanisms with only G¼ 1 since, in this
case, the topology of the vertex space is invariant to the rotation of
the mobile platform and only four possible cases are possible, Fig. 7.
On the contrary, for the mechanisms with G¼ 0 it turns out that the
geometric constructive approach is more suitable, since the vertex
space is not invariant to the rotation of the mobile frame and for
each orientation set the vertex space should be regenerated in the
CAD system which is a delicate task.
5. Volume of the constant-orientation workspace

As elaborated in [35], reaching this step the volume of the
constant-orientation workspace can be obtained. The technique is
based on the Gauss divergence theorem which can be applied to
planar regions. As mentioned previously, the constant-orientation
workspace for a given cross-section consists of the intersection of
circles, resulting in some arcs, and lines. Thus, in order to
compute the area, AX , for a given section obtained from the
cross-sectional plane X , the area generated by both arcs and lines
should be considered, namely Aa

X and Al
X . Based on the results

obtained in [35], apart from some minor modifications, the area
created by an outer-arc – with centre as ½ar

x,ar
y�

T , its radius ra and
the angle corresponding to the end points y1 and y2, (not to be
confused with y for DOF) – can be written as

Aa
X ¼ ar

xra½sin y2�sin y1�þar
yra½cos y1�cos y2�þr2

a ½y2�y1�: ð40Þ

In what concerns the area created by the lines based on the
formulation given in [35] for the Gauss divergence theorem, upon
performing the integration, for the outer lines, it follows that

Al
X ¼

�y00l ðz
00
u�z00l Þ vertical line located in the left side of w00iy,

y00r ðz
00
u�z00l Þ vertical line located in the right side of w00iy,

�z00l ðy
00
r�y00l Þ horizontal line located in the lower side of w00iz,

z00uðy
00
r�u00l Þ horizontal line located in the upper side of w00iy,

8>>>>><
>>>>>:

ð41Þ

where ðz00l ,z00uÞ and ðy00r ,y00l Þ stand, respectively, for the z00 (lower and
upper) and y00 (right and left) components of the line constituting
the boundary of the constant-orientation workspace found by the
GCACOW. For the inner arcs and lines the negative values of Aa

X
and Al

X should be, respectively, considered. Finally, the area of the
cross section is

AX ¼
X Aa

XþAl
X

2

 !
: ð42Þ

Finally, the volume of the workspace, Vw is obtained as follows:

Vw ¼
X

AXDx, ð43Þ

where Dx is the distance between two successive cross-sections. The
above formulation for computing the volume of the constant-
orientation workspace is integrated inside the GCACOW. Fig. 16
represents the volume of the constant-orientation workspace with
respect to two permitted orientations, ðf,yÞ, for the design pre-
sented in Table 1. Due to the symmetry of the proposed mechanism
in Fig. 14 about the e1 axis, the corresponding surface for the
volume of the workspace with respect to the two permitted angles,
Fig. 16, is also symmetric with respect to the plane f¼ 0 which is
the angle of the rotation of the mobile platform around e1 axis.
6. Conclusion

This paper investigated the constant-orientation workspace of
5-DOF parallel mechanisms (3T2R) with a limb kinematic
arrangement of type PRUR. From the results of the IKP, two types
of 5-PRUR limbs were presented, G¼ 0 and G¼ 1, whose IKP and
vertex spaces are different. Bohemian domes appeared in the
geometrical interpretation of each limb and led to a CAD repre-
sentation of the constant-orientation workspace. An algorithm,
the so-called geometric constructive approach, was also proposed
in order to find the boundary of the vertex space and the
constant-orientation workspace which can be implemented in
any computer algebra system. From the results obtained from
both approaches, i.e., CAD-based modelling and geometric construc-

tive approach, it can be deduced that there are host of advanta-
geous to proceed geometrically the workspace analysis of such
complex mechanisms. Moreover, both approaches used in this
paper are complementary and, in general, there is no question of



Fig. 17. CAD model of a 4-RPUR parallel mechanism for which the vertex of each

limb is a Bohemian dome.

Fig. A1. The three steps for obtaining the main body of G¼ 0. (a) Step 1, (b) step 2

and (c) step 3. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Fig. A2. First and second steps for obtaining H0
1: (a) eBr

lu ð
sBr

lu Þ, (b) eBu
and sBl

together and (c) their intersection esBlu .
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superiority. However, in some particular designs, such as mechan-
isms with only G¼ 1, it is advantageous to obtain the constant-
orientation workspace in a CAD system since the four possible
vertex spaces are invariant to the rotational DOF of the platform and
once obtained they can be readily applied for all orientation set of
the platform. This is not the case for mechanism with G¼ 0 which
makes the CAD approach more challenging. The geometric con-
structive approach made it possible to find the volume of the
constant-orientation workspace by applying the Gauss divergence

theorem and provided some insight into the optimum synthesis of
5-PRUR parallel mechanisms. The approach proposed in this paper
can be regarded as an exhaustive guideline for the determination of
the constant-orientation workspace of parallel mechanism whose
the vertex space can be made equivalent to a Bohemian dome, such
as the 4-RPUR parallel mechanism presented in Fig. 17. Ongoing
works include the determination of the workspace upon considering
the mechanical interferences and passive joint limits and the
optimum design of such mechanisms.
Appendix A. Steps to obtain the CAD model of the vertex space
for C¼ 0

Before entering into the details, we direct our attention to
Fig. A1(a). As it is illustrated in the latter figure, the vertex space is
limited by two Bohemian domes called eB and sB which are,
respectively, the Bohemian domes generated by assuming the
prismatic actuator positioned at rmax i and rmin i. The procedure
which should be followed in order to obtain the CAD model of the
vertex space of G¼ 0 comprises three major steps:
1.
Fig. A3. Third step for H0
1: (a) assembling eBr

lu , sBr
lu and esBlu and (b) the final

result for H0
1.
Obtaining the main body: First, the sketch presented in Fig.
A1(a), called S, should be considered where the centre of the
circles with radius as l1i are the end and the start points of the
prismatic actuator. In this step, we use this sketch in order to
define two vertical planes, Y1 and Y2. These two planes pass
through two points, namely, Pl and Pr , as illustrated in Fig.
A1(a).
Having obtained Y1 and point Pl then the green sketch called S1,
presented in Fig. A1(b), should be swept by Dri along the axis
called Ax which is the axis connecting the two circles of S. It
should be noted that the radius of the semi-circle in S1 is equal
to l2i and the rectangle should be as large as possible to cover the
space between sB and eB . The same reasoning should be applied
for Y3 and point Pr . Finally, the main body is the common
intersection of the latter two objects with sB and eB , as it is
depicted in Fig. A1(c).
2.
 Modelling the holes H0
1, H0

2 and H0
3: Reaching this step, we need

to divide the eB and sB into two parts. Each of the latter
Bohemian domes, for instance eB , can be divided into two
parts namely, the upper, eBu, and the lower, eBl, with respect
to the symmetrical vertical plane. Similarly, the right and left



Fig. A4. Steps for obtaining H0
2: (a) intersection of eBl and sBu , (b) adding the two

cylindrical shape and (c) the final results for H0
2.

Table B1
Geometric properties (in mm) assumed for the 5-PRUR parallel mechanism of

Fig. 2.

i ðriÞx ðriÞy ðriÞz ðs0iÞx ðs0iÞy ðs0iÞz

1 140 0 70 0 �30 30

2 140 70 0 30 0 0

3 70 140 0 0 30 0

4 0 70 0 �30 0 0

5 0 140 70 0 30 30

Fig. B1. Constant-orientation workspace for y¼ p=6 and f¼p=3 for the design

presented in Table 1. (a) CAD model. (b) GCACow.

Fig. A5. Steps for obtaining H0
3: (a) putting together sBu and eBu , (b) subtracting

with eBl and (c) the final results for H0
3.
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sides of eB and sB are, respectively, referred to as eBl
and eBr

with respect to the symmetrical horizontal plane. (The sub-
script u and l stand, respectively, for the upper and lower parts
of a Bohemian dome and the superscript l and r represent,
respectively, the left and right sides of a Bohemian dome.)
� Modelling H0

1: The procedure to find the H0
1 comprises

three steps:
First the hole appearing in the extreme sides of the vertex
space should be obtained. To this end, we direct our
attention to the one which is due to eB . To this end, the
common intersection of eBr

l and eBr
u should be first con-

sidered, called eBr
lu , Fig. A2(a). Similarly, one could find sBr

lu .
The second step consists in obtaining the common inter-
section of eBu

and sBl
, called esBlu , Fig. A2(c). In the case

that the vertex space does not have an overall hole there
will not be a common intersection for this step.
The last step consists in assembling the objects found in the
latter two steps and to apply nearly the same reasoning
explained for the first step. As it can be seen from Fig. A3(a), a
semi-circle with l2i as radius tangent to the corresponding
circular surface in Y1 accompanied with a large enough
rectangular should be extruded along axis Ax by Dri and
should be removed from the objects obtained in the previous
steps. The same reasoning should be repeated for Y2. The final
results for the CAD model of H0

1 is presented in Fig. A3(b).
� Modelling H0

2: The second hole H0
2 is due to the space

between eBl and sBu. In order to obtain H0
2, one should first

intersect two circles with radius l1i where the centre is the
start and the end points of the slider of the prismatic actuator.
Then extruding by 2l2i, the common intersection surface of
the latter two circles results in a volume which can be
regarded as the intersection of two cylinders. Then by inter-
secting the latter shape with the lower part of eB , eBl, and the
upper part of sB , sBu, leads to the H0
2 hole which is presented

in Fig. A4(c).
� Modelling H0

3: The third hole, H0
3, can be obtained as

follows: First, the intersection of sBu, the upper part of sB ,
and the eBu, the upper part of eB , should be found. The
obtained objects should be subtracted from eBl, the lower
part of eB , which leads to H0

3, Fig. A5(c).

3.
 Removing the above holes from the main body: Finally, the

vertex space can be obtained by removing the three holes
obtained above from the main body. Fig. 10 represents the CAD
model of the vertex space for a limb with l1i ¼ 100, l2i ¼ 160
and Dri ¼ 140 for y¼ p=6.
Appendix B. Constant-orientation workspace for the
mechanism in Fig. 2 having some limbs that belong to C¼ 0

Table B1 presents the geometric properties of the mechanism in
Fig. 2. In this mechanism first, third and fifth limbs belong to G¼ 0.
Fig. B1(a) and (b) represents the constant-orientation workspace
obtained by the CAD software and obtained by implementing the
GCACOW, respectively. It can be observed that the constant-orienta-
tion workspace is highly irregular, and from Fig. B1 it can be inferred
that the constant-orientation workspace may have small isolated parts.
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