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Abstract—In this paper, redundancy resolution of a cable-driven par-
allel manipulator is performed through an analytic-iterative scheme. The
redundancy resolution scheme is formulated as a convex optimization prob-
lem with inequality constraints that are imposed by manipulator structure
and cable dynamics. The Karush-Kuhn-Tucker theorem is used to ana-
lyze the optimization problem and to draw an analytic-iterative solution
for it. Subsequently, a tractable and iterative search algorithm is proposed
to implement the redundancy resolution of such redundant manipulators.
Furthermore, it is shown through simulations that the worst case and av-
erage elapsed time that is required to implement the proposed redundancy
resolution scheme in a closed-loop implementation is considerably less than
that of other numerical optimization methods.

Index Terms—Analytic solution, motion control, parallel robots, redun-
dancy resolution, redundant robots.

1. INTRODUCTION

Although redundancy is a desirable feature in robot manipulators,
the presence of redundant actuators will considerably complicate the
manipulator control. Since redundancy resolution plays a crucial role in
manipulator design and control, the redundancy resolution techniques
have been extensively worked out during the past three decades. Despite
this long history, previous investigation is often focused on the Jaco-
bian pseudoinverse approach that is proposed originally by Whitny [1]
and improved, subsequently, by Liegise [2]. By using the Jacobian
pseudoinverse approach, Hollerbach and Suh [3] have suggested meth-
ods for minimizations of instantaneous joint torques. Khatib [4] has
proposed a scheme to reduce joint torques through inertia-weighted Ja-
cobian pseudoinverse. Dubey and Luh [5] and Chiu [6] used the pseu-
doinverse approach to optimize the manipulator mechanical advantage
and velocity ratio using the force and velocity manipulability ellipsoids.
Furthermore, Seraji proposed a configuration-control approach for re-
dundancy resolution of serial manipulators [7]. Some of these methods
would automatically generate trajectories that avoid kinematic singu-
larities [8], while other approaches maximize some functions of the
joint angles, such as the manipulability measure [9], [10].

Similar to the open-chain serial manipulators, the redundancy reso-
lution of parallel manipulators presents an inherent complexity because
of their dynamics constraints [11], particularly when a parallel manip-
ulator is cable driven and the cables’ dynamics restriction is added
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to the manipulator behavior [12]. Some works on redundancy resolu-
tion of cable robots are reported based on wrench feasibility of cable
robots [13]-[18]. In [13], Bosscher et al. present a method for analyti-
cal generation of the wrench-feasible workspace boundaries for cable
robots. In the numerical algorithm proposed for redundancy resolution
by Oh and Agrawal [14], if the tension force of the minimum-norm so-
lution is positive, it is directly applied to the robot. Otherwise, the inputs
are all biased to become positive by using the null space contribution of
feasible solution. Barrette and Gosselin also showed that it is possible
to study redundancy resolution of cable robots as an optimal problem
with equality and inequality constraints [15]. In [16], the computa-
tion of force distribution is represented as a constrained optimization
problem, and different numerical algorithms for force distribution are
proposed with respect to their ability to be used in a real-time system.
Hassan and Khajepour [17] study actuators’ force distribution in a ca-
ble robot as a projection problem. In this work, they presented two
numerical solutions. A minimum-norm solution is presented first by
minimizing the 2-norm of all forces in the cables and redundant limbs,
and another solution is given to minimize the 2-norm of just the cable
forces. The optimization problem is expressed as a projection on an
intersection of convex sets, and Dykstra’s projection scheme is used
to obtain the solutions. In some recent works, the redundancy resolu-
tion of a planar cable robot is studied in the kinematic and dynamic
levels [18], in which the redundancy resolution problem is studied as
to minimize the 2-norm of actuator forces as well as to minimize the
2-norm of the mobile platform velocity, subject to positive tension in
the cables.

It is important to note that, in the implementation of all the afore-
mentioned optimal techniques, numerical methods are the common and
the only means to perform the optimization solution [19]. In order to
use such techniques in the closed-loop control algorithm, it is required
to solve the problem in real time, and therefore, the optimization rou-
tine must converge to a solution in a fixed and small period of time.
However, this is in direct contrast with generic numerical algorithms,
which take a variable step time and exit only when a certain precision
has been achieved. The main benefit to have an analytic-iterative so-
lution to the redundancy resolution is to guarantee that the amount of
time required for the overall solution remains within an acceptable and
small period of time that can be used in real-time implementation of
the closed-loop system.

In this paper, an analytic-iterative solution of the redundancy res-
olution problem and its implementation on a cable-driven redundant
manipulator are studied in detail. This is formulated into an optimiza-
tion problem with equality and inequality constraints. Nonlinear pro-
gramming techniques, particularly the Karush—-Kuhn-Tucker theorem
(KKT), are used to analyze this optimization problem and to generate
an analytic-iterative solution. Subsequently, a tractable and iterative al-
gorithm is proposed to effectively generate such a solution. It is shown
through simulations that the elapsed time that is required to implement
the analytic-iterative redundancy resolution scheme is considerably less
than that of other numerical optimization methods.

II. MECHANISM ORIGIN AND TECHNICAL DESCRIPTION

To achieve a significant improvement in sensitivity of conventional
radio telescope technologies, it is required to drastically increase the
instrument’s collecting area. A novel concept to increase the collecting
area of a single telescope while retaining the functionality of a fully
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Fig. 1. Schematics of a 2x4RPR mechanism that is employed for the analysis
of the LCM/CPM structure.

steerable reflector was devised by researchers at the National Research
Council of Canada’s Dominion Radio Astrophysical Observatory [20],
[21]. The proposed Large Adaptive Reflector (LAR) design is based
on two central components: The first is a 200-m reflector which is
comprised of actuated panels that form an adjustable paraboloid with a
focal length of 500 m and the second is a focal package that is held in
place by a multitethered aerostat system. This study focuses exclusively
on the analysis of the aerostat positioning system, which uses ground-
based winches to actuate the tethers to achieve the telescope’s desired
workspace.

As is detailed in [22], in order to accurately position the receiver a
macro—micro structure is proposed, in which at both macro and micro
levels two parallel manipulators with redundant cable-driven actuators
are used. In order to keep the analysis complexity at a managing level,
while preserving all the important analysis elements, as proposed in
[22], a simplified version of the macro—micro structure is considered
in the simulation analysis of this paper. This structure is composed of
two parallel 4RPR mechanisms, both actuated by four cables. In this
simplified structure, although a planar version of the original structure
is considered, two important features of the original design namely the
actuator redundancy for each subsystem and the macro—micro structure
of the original design are employed.

The architecture of the planar macro—micro 2x4RPR parallel ma-
nipulator that is considered for our studies is shown in Fig. 1. This
manipulator consists of two similar 4RPR parallel structures at macro
and micro levels. At each level, the moving platform is supported by
four limbs of identical kinematic structure. At macro level, each limb
connects the fixed base to the moving platform of the macro manipu-
lator by a revolute joint (R) followed by an actuated prismatic joint (P)
and another revolute joint (R). The kinematic structure of a prismatic
joint is used to model the elongation of each cable-driven limb. At
micro level, similar 4RPR structure is used; however, the base points
of the micro manipulators are located on the moving platform of the
macro manipulator. Angular positions of base and moving platform
attachment points are fully given in [22], and a thorough analysis on
the kinematics and dynamics of the macro—micro manipulator is given
in [22] and [23]. From the kinematic analysis of this manipulator, the
total macro—micro manipulator of the Jacobian matrices J; is defined
as the projection matrices of the total macro- and micro-link veloci-
ties £ = [Lmac,.o, I'/mk.,m]T to the vector of macro and micro moving
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platform velocities X = [X macros X micro] as follows:

Lnxl = (Jf)nxm : )emxl- (1)

In fact, the Jacobian matrices J; are derived by augmenting the
macro and micro Jacobian matrices as follows:

Ju 0 }

2
_J;‘Um Jm ( )

(J t )n xm — I:
in which the total Jacobian matrices of the macro—micro manipulator
are block triangular matrices, which contain the macro and micro indi-
vidual Jacobian matrices, i.e., J; and J,, , as the diagonal blocks and
the coupling Jacobian matrices J »/,, as the off-diagonal block [22].

III. REDUNDANCY RESOLUTION

It can be shown that Jacobian matrices not only reveal the relation
between the velocity variables, but also construct the transformation
needed to find the actuator forces 7,, .1 from the forces that act on the
moving platform F',, ., [22]:

melz(J?)nzxzz'Tnxl~ (3)

Because of the redundancy in actuators, J; in (2) is a nonsquare matrix
with m < n. If the manipulator has no redundancy in actuators, the
Jacobian matrix J; would be a square matrix and the actuator forces
can be uniquely determined by 7 = J, T . F, .1, provided that J, is
nonsingular. For redundant manipulators, however, there are infinitely
many solutions for 7 to be projected into F',,, ;. The simplest solution
is @ minimum-norm solution, which is found from the pseudoinverse
of JT . The Penrose-Moore pseudoinverse of Jacobian matrices J that
is denoted by J' may be calculated as follows:

JEJT (T I for m<n; JER"T. (@)
By this means, the actuator forces can be simply obtained through

Towr = (I - Fo for m <n. &)

This simple solution of the redundancy resolution problem chooses the
minimum-norm solution for the actuators among many solutions that
satisfy F' = (J;)T - 7. However, this solution does not ensure positive
actuator forces in the cables. Therefore, among the optimal solutions
of the redundancy resolution that satisfy the main equality constraint of
the projection equation (2), the ones that satisfy the following inequality
constraint are of inherent interest for a cable-driven manipulator:

Tnx1 2 Fmin~ (6)

By choosing F',,,;,, > 0 as a nonnegative constant, this inequality con-
straint ensures that the cables are all in tension. In view of this, the
redundancy resolution problem for cable-driven manipulators can be
reformulated into an optimization problem with equality and inequality
constraints. Nonlinear programming methods are used to solve such
a problem, and the KKT theorem has served as the basis of those
solutions.

A. Karush—Kuhn—Tucker Theorem

Implementation of nonlinear programming theorems, especially the
KKT theorem, is directly used in redundancy resolution techniques
that are developed for serial redundant manipulators [24]. This opti-
mization problem must satisfy the projection map of (3), as equivalent
constraint, and in addition it should provide only the positive tension
forces in the cables as the inequality constraint (6). Therefore, it is
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possible to formulate the redundancy resolution problem as computing
the minimum-norm actuator forces

min |7, x1 |2
under the following two set of constraints:

T
Fm><1 - (Jf )mxn-‘rnxl7
Tnxl 2 Fmin~ (7)

If there exists a solution for this optimization problem, it can be
written in the following general form:

Tnxl = FO + Ay7 ye R" (8)

in which Fj is the force that is projected by the pseudoinverse of the
Jacobian matrix as defined by the following equation and has minimum-
norm property, but it is not generally positive:

Fo= ) F, .. ©)

In this equation, (JT ) is the pseudoinverse of Jacobian matrix J
defined by (2). Furthermore, denote b as the dimension of the null
space of J lT and A as the augmented matrix build from orthonormal
column vectors of the null space of J! :

A = orthonormal{null space of (J7)}. (10)

It can be inferred that matrices A may be generated by the collection
of the linearly independent column vectors of the real square matrix
M=1,.,—(J tT yeg tT , and then make it orthonormal. Returning
to the general solution of the redundancy resolution problem, the first
term of (8), namely F'y, can be viewed as an element of orthogonal
complement of the null space of J tT (range of J ,T) and the second
term Ay as an element of the null space of J fT . Now, let us rewrite the
optimization objective equation (7) as follows:

H7-n><1 |B - (Tnxl)T . (Tnxl)
= (Fy+ Ay)" . (F, + Ay). (11)

Therefore, (7) can also be represented by

min f(y) = (Fy + Ay)" . (Fy + Ay).

Y

(12)

Under the inequality constraint
T(y) = Fmin

Note that, in this formulation, the equality constraint g (y) is always
satisfied by choosing proper matrix A as defined in (10). Therefore,
from (12) the problem to find minimum-norm and positive tension
actuator forces is reduced to minimizing a quadratic function with linear
and first-order constraints. To obtain the solution y, the KKT theorem
can be applied. This is done by defining a function ¢ (y, pt) from
the corresponding Lagrange multipliers g = [p11, pi2, .. ., un}T >0
as follows:

ey, pm) = fy) +p" -r(y). (13)

From the KKT theorem, a necessary condition can be derived for y,

to yield to a local minimum of f(y) under the condition r(y) < 0. This

conditionis p® > 0 (u® = [, 13, ..., 18], u? > 0) that satisfies the
following equations:

D (y) ly-wo =
oy

(14)

K= ko

3 (F@) 47 r(w) gy =0

in which y,, is a stationary point. Furthermore, the following condition
must be also satisfied:

T

BT (Y)ly=y, = 0. (15)
Substitution of f(y) and r(y) into (13) gives
e(y.m) =F Fo+ Fj Ay +y" ATF +y" A" Ay
+ " (Fuin — Fy — Ay). (16)
Differentiate the aforementioned equation and simply to
Sy, =
2FTA+2yt ATA - " A =o0. (17)
Substitution of r(y) into (15) gives
p' (Fiim — Fg — Ay,) = 0. (18)
Writing (17) and (18) together, we reach to
{2F0TA+2y0TATA—pTAO 19
pI (Fum — Fy — Ay,) = 0.

In this set of nonlinear equations, Fy and A are known from (9) and
(10), respectively. Note that the last equation of (19) is a nonlinear
equation, and it may lead to multiple solutions for this set of equations.
By solving this set of equations, y, and u” vectors are obtained. How-
ever, only the set of solution that satisfy the KKT theorem condition
o= [, 2, ..., un]T > ( are acceptable. If there is no set of solution
with positive g, the optimization problem does not lead to any solution.
Moreover, it is well known that the KKT theorem provides only the
necessary condition to derive the local minimum of the optimization
problem. In order to have sufficient condition for the solution and to
ensure that the solution is not local but global, the convexity of the
Lagrangian function ¢ (y, ;) must be analyzed. This analysis is done
in Section III-B.

B. Lagrangian Function Convexity

By substituting 7(y) into the Lagrangian function detailed in (16)
and using the fact that F'y and Ay are orthogonal to each other, this
function is simplified to

e(y,p) =y " AT Ay + (F{ A — " A)y

+y " ATFo+ F{ Fy + p" (Fuiw — Fo).  (20)

Equation (20) represents a quadratic form for the Lagrangian function
e (y, p). Convexities of quadratic functions are guaranteed provided
that the second-order term of the quadratic form is positive definite.
In such case, the solution of optimal problem is globally optimal.
However, if this term is positive semidefinite, the quadratic function
has an infinite number of local minimums. The second-order term of
(20) is as follows:

AT A. 21

Thus, sufficient condition for regular point y,, to be a global minimum
of the function is that AT A is positive definite. As we explained earlier
in (10), the matrix A is generated by collecting and orthonormalizing
the linearly independent column vectors of I, ., — (J fT )T -J f . There-
fore, column vectors of A are linearly independent, and each column
vector of A is orthogonal to other columns, and therefore

ATA=1,.,. (22)
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Therefore, A7 A is always positive definite, and the quadratic
Lagrangian function given in (20) is always convex. Through this
analysis, the sufficient condition for regular point y, to be a global
minimum is established.

IV. ANALYTIC-ITERATIVE SOLUTION TO THE OPTIMIZATION PROBLEM

In this section, a procedure is given to generate the solution of the
optimization problem in an analytical way. Note that  (y, p) is con-
vex; AT A = T becomes positive definite and, therefore, nonsingular.
Rewrite (19) by substitution of AT A = T as

2FfA+2yl —pTA=0
{ To Yo — 1 23)
12 (Fmin 7FU - Ay(]) = 0
Use the transpose of the first equation as follows:

24T Fy + 2y, —ATpu=0
{ 0 + 2y, iz 24)

IJ'T(Fmin _FlJ _Ay(]) = 0

Equation (18) is calculated as follows:

Zuiri(yo) =0.
i=1
Since p; > 0 and from (15) r; (y,) < 0, then (25) yields

w; = 0forr;(y,) <0
wi >0 forr;(y,) = 0.

(25)

(26)

This equation implies that the inequality 1; > 0 holds only at instances,
where the following equality constraints hold: 7;(y) = (Fuin); —
(Tux1); =0 or (Tpx1); = (Fmin);. In fact, in this case, the spe-
cific actuator forces lie at the boundary of the inequality constraint
and should be set by the constant (F';y,),. Furthermore, the condi-
tion p; = 0 is satisfied only when the inequality constraint r; (y) =
(Fuin); — (Tnx1); < 0holds. In other words, the actuator force lies
inside the solution set defined by this inequality constraint. Consider-
ing these facts, the solution of the optimization problem can be derived
from three different cases.

A. Case 1

Assume that all forces are inside the solution set which is defined
by the inequality constraint and p; = 0. Hence, in this case, r; (y) > 0
forallt =1,2,...,n, and (24) is simplified to

—2y, =2A"Fy -y, = —A" F,. 27

Equation (27) can be written as a set of linear equations in the
following matrices form:

[Bol,, i + [Xo]

nxn nxl — [Co]nxl (28)

in which

By = 2L, Xo=9,,,, Co=[2ATF] 29)

nx1

These linear equations can be easily solved, and the value of y,, be
obtained as given in (27), with the assumption applies in this case that
T
p=10,...,0]" . Therefore,
Tpxl = FO + AyO (30)

It is clear that the matrix B in (29) is always invertible.
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B. Case 2

Consider the case in which for the optimal solution p; > 0 for
some ¢s within [1,2,...,n], and p; = 0 for the rest of them, namely,
j#iand j=1[1,2,...,n]. In this case, for the elements in which
u; > 0, the corresponding forces 7/s are obtained from

Ti = [Fo+ Ayol;, = [Fuinl; (3D

and for the rest of y; s their corresponding forces are calculated from an
equation deduced from (24) by the elimination of the rows and columns
of matrices A related to the zero p;’s. Therefore, y,, and p can be
obtained by solving the following linear equations:

BO [5{ d]T} Yo ZATFU
a:l H1 Fmi111 7F0|
. 0 . = .
5j Hj Fminj - F()j
(32)
In this equation, we suppose that
ai
A=
5:7L

nx1

and each @; is a row vector, and only the row vectors corresponding
to the nonzero p!s are left in this equation. It is important to note that
always the left-hand side matrix B in (32) is always invertible. The
proof is given in the Appendix.

C. Case 3

Assume that all forces are on the boundary of the inequality con-
straints, and yp; > 0. Therefore, r;(y) = 0 forall i = 1,2,...,n, and
thus, the optimal actuator forces for all joints are obtained from

Tnxl :FU+Ay():Fmin~ (33)

In other words, in this case, the solution is known, and therefore, it
is not necessary to find y, from (24). Finally, assuming that F',,,;,, > 0
and the fact that  (y, p) is convex, there is a unique minimum solution
for this problem that can be found from the three cases. The unique
solution can, therefore, be found through a search procedure that is
detailed in Section IV-A.

D. Search Algorithm

This section is devoted to develop a search routine for the proposed
algorithm given for the redundancy resolution solution. In this search
routine and in the first loop, we assume that all forces lie on the bound-
ary of solution set which is defined by the inequality constraints, i.e.,
Vu; > 0, and therefore, we know that the solution and all forces equal
to Fluin by (33). If this solution can satisfy all the optimization condi-
tions, i.e., 7; (y) < 0 Vi, then it is a valid solution for the optimization
problem and the search algorithm is terminated. Otherwise, the com-
binations of forces that can lie on the boundaries of the inequality

constraints must be checked and found. For this search, there are ( rg )

combinations with m = [1,2,..., n]T and S = 1 to n, which might
be a plausible solution for the problem. These solutions can be checked
by sweeping all possible combinations through changing .S in a loop.
However, only a solution to the optimization problem is acceptable
if it satisfies all the optimization constraints, i.e., 7;(y) < 0, Vi. As
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shown in Fig. 2, the last loop is in fact the implementation of case 1, in
which all forces are inside the boundary, or in other words, all forces
are larger than Fi,;,. Note that, in this algorithm, we solve the set of
equations corresponding to the KKT theorem condition (Vy; > 0), and
there is no need to recheck this condition. Therefore, the search al-
gorithm can be summarized as follows. Denote pt = [p1, ft2, . - ., fn ]
then the following steps will execute.
Step 0. Set S = 0.
Step 1. Assume S forces are inside the boundary of the inequality
constraints (x; > 0) and n — S forces are on the boundary
(p; = 0). Find the possible combinations of the forces that
lie on the boundaries of the inequality constraints by

M
combinations s and M =[1,2,...,n]".

For each combination
1) For each ¢ that y1; = 0, compute y, and corresponding
forces from

Step 2.

Ti = [Fmin]i .

2) For each j that u; > 0, eliminate the rows and columns
of matrices B and corresponding elements of vectors X
and, C related to the zero of /s and compute y,, and
the rest of u;’s by solving the linear equations given in
(32). Then, compute corresponding forces as follows:

T; = [Fo + Ay,l; .

Augment p}s and y;’s to generate 41, and consider the set of
solution [y, p].
Check if all derived p;’s that satisfyy; > 0 are also satisfy-
ing 7; (y) < 0 condition. If this is true, this set of solution
is the optimal solution and stop the search algorithm; other-
wise, continue.
If S < m,thenset S = .S+ 1, and go to Step 1.
If S = m, then the optimization problem does not have any
solution and the resultant forces 7,,; cannot be generated
under these constraints. Finally, we can represent this solu-
tion as an optimal projection map that projects forces from
Cartesian space into joint space.

It can be shown that if there exists a solution, the number of iterations
to perform in order to find the solution lies between

n
1 < Number of iterations < Z (Z) .

5=0

Step 3.

Step 4.
Step 5.

(34)

For example, for our case study, the cable driven redundant manipulator
with six degrees of freedom and two degree of redundancy, we have
1 < Number of iterations < 256.

V. IMPLEMENTATION RESULTS

In this section, the developed redundancy resolution technique is
implemented on the cable-driven redundant manipulator that is de-
scribed in Section II, and its performance in the closed-loop control
system is evaluated. The block diagram of closed-loop simulations is
given in Fig. 3, in which a simple inverse dynamics control in addi-
tion to a decentralized Proportional-Derivative (PD) controller is used
for the closed-loop system. By proper tuning of the controller gains,
this control topology is capable of providing the required tracking per-
formance, despite the actuator saturation limits. For the sake of com-
parison, different redundancy resolution schemes, which include the
proposed analytic-iterative method and three other numerical methods,

First loop

Some " 0

[ 50 |
LI
<G>}

YES: = Fmin EXIT
I s=s+1 I 1> Fonin
No

Last loop

& others n;=0

Ve U> Fnin

Fig. 2. Flowchart of the search algorithm.
F T X
Xq+ PD * Redundancy Robot >
Y : —>
Controller Dy
- +
Inverse
Dynamics
Fig. 3. Block diagram of the closed-loop control topology using an inverse

dynamics control in addition to a decentralized PD controller.

are used as the redundancy resolution engines. The numerical meth-
ods used here are trust-region-reflective [25], [26], active-set [27], and
interior-point optimization [28]. All the methods are simulated using
MATLAB and are computed in a PC with a “core2 Duo E4300 (1.8
GHz)” CPU and 2-GB RAM. In order to implement this comparison,
MATLAB fmincon function has been used that allows applying these
three numerical-iterative methods in the MATLAB environment. The
proposed analytic-iterative method is also implemented in MATLAB.
A typicaltrajectory of the macro manipulator in the Cartesian space
is considered for the simulations, in which the x and y motion of the
platform is considered to be 20 m, while the orientation changes about
45° within 600 s. It can be shown that the motion of this manipulator in
closed loop well tracks the desired trajectory. Since the main purpose
of this paper is to evaluate the redundancy resolution technique, and
not the control structure itself, the composition of the cable forces to
achieve such performance is shown in Fig. 4. As is clearly seen in Fig. 4,
all the cables remain in tension, and the forces are always higher than
the minimum tension force threshold, i.e., set to F},;, = 10 N in these
simulations. It is clearly seen from Fig. 4 that the proposed redundancy
resolution routine is capable of projecting the required Cartesian forces
into all tension forces in the cables. Fig. 5 illustrates the elapsed time
that is required to calculate the redundancy resolution scheme through
different methods. As is seen in Fig. 5, the worst case elapsed time that
is required to perform our proposed method is about 3.8 ms, which
is much less than that of the other numerical optimization methods.
Furthermore, the average elapsed time that is required to perform the
proposed method at each step is also much better than that of the other
methods. Moreover, in the numerical algorithms that are simulated for
this case, the elapsed time is significantly varying in different iterations,
and, in some instances, there are abrupt changes in their variation. This
is because of the fact that in these algorithms the number of iterations
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Fig. 5. Total elapsed time to calculate optimal forces in analytic-iterative re-

dundancy resolution and other numerical optimizations methods at all iterations.

greatly depends on the robot configurations. In order to quantitatively
compare different routines, the average elapsed time that is used in
different redundancy resolution routines is given in Table I. To track a
desired 600-s trajectory, it is seen that the average elapsed time in our
proposed analytical method is about 1.02 s, which is more than 39 times
shorter than the interior-point method, and is the fastest scheme among
all analyzed routines. This benefit is much more appreciated comparing
the result with the trust-region-reflective optimization method, which
is more than 65 times slower than our proposed method.

In order to compare our proposed method by another means with the
best performed numerical method, namely the interior point method,
the number of iterations that is required at each step to reach to the
solution is illustrated in Fig. 6. This figure indicates that for the desired
trajectory, in the worst case the solution is reached after 30 iterations
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Fig. 6. Number of iterations at each step performed in the proposed method

and that in the interior point algorithm.

TABLE I
AVERAGE ELAPSED TIME TO EXECUTE REDUNDANCY RESOLUTION
. Average elapsed time at Speed
Algorithms eachgiteratiIZ)n (msec) ComI}))arison

Proposed Method 1.0199 1

Trust-Region-Reflective 65.8845 65
Interior-Point 39.8523 39
Active-Set 55.8867 55

(S = 2), while this is about 200 iterations for the interior point method,
which is the best among the numerical-iterative methods. This result
confirms the superior performance of the proposed method and its
suitability for its future online implementations.

VI. CONCLUSION

In this paper, an analytic-iterative solution for the redundancy resolu-
tion problem is proposed, and its implementation on a cable-driven re-
dundant manipulator is studied in detail. This task is formulated into an
optimization problem with inequality constraints. Nonlinear program-
ming techniques, particularly the KKT theorem, are used to analyze
this optimization problem and to generate the analytic solution. Subse-
quently, a tractable search algorithm is proposed to effectively search
for the conditions that such a solution may exist. It is shown through
simulations that the average elapsed time of the proposed redundancy
resolution scheme in the closed-loop structure is considerably less than
those of other numerical-iterative optimization methods.

APPENDIX

The following proof shows that matrix B in (32) is always invertible.
For this purpose, let us calculate the determinant of this matrix. Note
thatif A, B, C, and D are matrices with proper dimensions augmented
into the following form and if A is invertible, the determinant of the
augmented matrix can be written as follows:

det ([é g]) =det(A)det (D—-CA'B). (35
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The determinant of the B matrix in (32) reads

=21, [af ...a" |
a
det
0
a;
We suppose that
ai
A =
a

and each d@; is a row vector, and only the row vectors that correspond
to the nonzero y;s are left in this equation. Use (35) to calculate this
determinant

|B

= (=2)" [Lusal10; — A'(=2L0 ) AT = (-2)" 7| AAT .

The vectors of matrices A are orthonormal; therefore

{Ei,-(_i;‘-r = 1 wheni=7 and [ii(_ijT =0wheni#j} = A'A" =1

1Bl = (-2)"".

Therefore, the matrix B is always invertible.
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