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 Abstract— Based on the synthesis algorithm of dynamical 

backstepping design procedure, in this paper a new adaptive 

robust approach for non-minimum phase systems is proposed. 

The proposed controller consists of two parts; a backstepping 

controller as the robust part and a model reference (MRAS) 

controller as the adaptive part. In this control scheme the 

adaptive part acts not only as a medium to converge to suitable 

values for the unknown parameters and to reduce the 

uncertainty, but also provides a minimum-phase model for the 

robust controller to be well stabilized. A simulation case study is 

studied to show how to perform the proposed control law, and to 

illustrate the effectiveness of this method compared to that of 

conventional robust controllers. 

 

Index Terms—Adaptive robust controller, model reference 

adaptive systems (MRAS), backstepping, non-minimum phase 

systems. 

I. INTRODUCTION 

EMAND for high performance in systems with nonlinear 

behavior and model uncertainties is one of most 

challenging area in control theory. An adaptive robust 

controller (ARC) represents a systematic way to design a 

controller for such requirement, and it combines adaptive and 

robust control approaches to preserve the advantages of the 

both methods while overcoming their drawbacks [1]. 

Alternatives of ARC controllers have been developed in 

literature[2]. The saturated adaptive robust controllers (SARC) 

developed in [3] for uncertain nonlinear systems in the 

presence of practical constraint of control input saturation. 

Also the output feedback ARC schemes that need the output 

measurement sensor only are developed in [4].  

Another approach that has been developed in [5], is to 

combine the ARC control with dynamic backstepping method. 

In this method the robust controller is used as the main 

controller for trajectory tracking, and adaptive controller tries 

to decrease the uncertainty and helps to reduce tracking error 

especially at steady state [6]. This method is used to control 

hard disk drives in [7]. Although this approach is very 

promising in practice, it suffers from a stringent limitation that 

cannot be applied to non-minimum phase systems.  

In this paper, an ARC backstepping method is proposed to 

guarantee the stability of non-minimum phase systems. In 

order to accomplish this task a model reference adaptive 

systems (MRAS) in addition to a robust controller to reclaim 

the unstructured uncertainties and disturbances. Simulation 

study shows how to implement such controller, and 
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furthermore, illustrates the effectiveness of the proposed 

controller in comparison to a conventional robust controller 

for a non-minimum phase system. 

II. CONTROL STRUCTURE 

A. Problem Statement 

Consider a SISO system described by a nominal model and 

multiplicative uncertainty 

 ( )  
 ( )

 ( )
 ( )   ( ) (   ) (1) 

in which 

 ( )          
             (2) 

 ( )     
       

             (3) 

where    . The plant parameters   's and   's are unknown 

constants,    is the output disturbance and  (   ) represents 

any disturbance coming from the intermediate channels of the 

plant. The state space representation of the plant (1) is given 

as follows:  

 ̇               
  
 ̇                   

  
 ̇               
        

(4) 

Note that in this representation, the uncertainty profile  ( ) 
must be transformed to state space uncertainties    s. Let’s 

define the vector of uncertainty as below 

  ,     -
  (5) 

The following standard assumptions indicate the framework of 

the system and nonlinearities in which the system is 

incorporating: 

Plant is with order  , relative degree  , could be non-

minimum phase, and the sign of    is known. The extent of 

uncertain nonlinearities,  ,    and   ̇ , are known, i.e., 

     * |‖ ‖   ( )+ 

      {  |‖  ‖    ( )} 

 ̇     { ̇ |‖ ̇ ‖    ( )} 

(6) 

Where,  ,   ,    are assumed to be known. Given the 

reference trajectory,   ( ), the objective of the controller 

design is to synthesize a control signal,  ( ), such that output 

 ( ) tracks the reference trajectory as closely as possible, in 

spite of various model uncertainties. The reference trajectory 

and its derivatives up to   are assumed to be known, bounded, 

and piecewise continuous. 
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 2 

 
Fig. 1. The structure of ARC controller using MRAS and backstepping 

method. Adaptive controller forces the plant to track the reference model, and 

robust controller stabilizes the perturbed plant. 

III. ADAPTIVE PART 

Since only the output  ( ), is measured and since , the full 

state information of the system is required, a Kreisselmeier 

observer [8] may be used to observe the states from the 

outputs. This approach proceeds from a so-called 

parameterized observer, which is only an alternative to the 

customary representation of the Luenberger observer. Note 

that any observer that can estimate states of a perturbed 

system can be used as other alternatives. 

A. Controller Design 

In this section we describe a systematic algorithm to design 

an ARC output tracking controller that consists of two parts: 

1) Adaptive part: This part is designed by a model reference 

adaptive system (MRAS) controller which tackles the 

parametric uncertainty. 

2) Robust part: This part may be designed from the rich 

theory of robust control, to compensate unstructured 

uncertainty, disturbances, state estimation errors and 

tracking error of MRAS controller. In here a backstepping 

controller is proposed. 

The block diagram of the ARC controller is shown in Fig. 1. 

B. MRAS Design for State Space Models 

Model reference adaptive system is one of the most 

celebrated adaptive controllers. In this method the required 

performance is defined with respect to a reference model, and 

the controller forces the plant to behave as the reference 

model. In this paper a state space representation of MRAS is 

used, in which the system states have to track the reference 

model states. A general scheme of this method is shown in 

Fig. 2. The closed loop system consists of two loops: An 

ordinary feedback loop consisting of plant and controller, and 

the adaptation loop that suitably changes the controller 

parameters. Adaptation mechanism compares plant states and 

model states, and updates the controller parameters to reduce 

the tracking error of the states. The adaptation rules are 

obtained using Lyapunov stability theorem. Here this method 

is briefly reviewed from [9].  

Model

Adaptation

mechanism

Controller

uc

u

Controller 

Parameters

Plant
y

xm

x

 
Fig. 2. A model reference adaptive system represented in state space. The 

adaptation mechanism compares system states to model states and updates 

controller parameters. 

 

Consider the linear SISO system described by 

 ̇        (7) 

whose states should track the states of 

 ̇            (8) 

using the control law 

         (9) 

in which,   is a pre-compensator to eliminate steady state 

error and   is gain of state feedback. The closed loop system 

will be 

 ̇  (    )         ( )    ( )   (10) 

in which the vector   contains controller parameters   and  . 
Compare (8) and (10) to find an appropriate value for  . A 

sufficient condition to have a suitable value for   is to find    
that satisfies 

  ( 
 )          

     (11) 

  ( 
 )        

     (12) 

These conditions are called compatibility conditions. The 

reference model must be chosen such that we can find    and 

   for initial condition. 

C. Error Equation Formation and Adaptation Rule 

To design a model reference controller, first define the error 

equation 

       (13) 

Now write the derivative of error as below,  

 ̇   ̇   ̇                      
     (       )  (     )  

     (  ( )    ) 
 (  ( )    )  
      (   

 ) 
 

(14) 

in which, the matrix   contains generally states, output, 

reference input and their derivatives.  

Now consider the following Lyapunov function for the system 

Plant

Observer

Robust

Controlleryref

u y

xhatModel

Adaptive 

Controller

uc

+

_

xm

e

 (   )  
 

 
(      (    ) (    )) (15) 
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in which,   is a positive definite matrix. The derivative of this 

function is 

 ̇   
 

 
       (    )      (    )  ̇

  
 

 
     

 (    ) ( ̇       ) 

(16) 

in which   is a positive definite matrix that satisfies: 

  
          (17) 

Note that if    is Hurwitz, a pair of   and   exists to satisfy 

the equation above. Now choose the following adaptation rule 

 ̇         (18) 

This immediately leads to 

which is negative definite and makes the closed loop system 

stable. In [9] by using Barbalat’s Lemma, it is shown that the 

tracking error goes to zero. In (18) the parameter   is a 

designing parameter that tunes the adaptation speed. This 

parameter is positive and not too small; otherwise, the 

adaptation does not work well. On the other hand if it is set 

too large, the adaptation could not achieve the parameter 

convergence properly and it leads to oscillate the system 

output and even destabilize the system. The matrix   consists 

of two: One part is for state feedback and another is for pre-

compensator. 

Simplify each part separately, for the first part we have 

Next we define      as below 

Substitute      in (21) : 

For the second part of (20), because the system is SISO, the 

matrix   is scalar, so we can write 

(     )   (     
 )      (   

 ) (24) 

Using (23) and (24), we can rewrite (20) as follows 

 (    )  (       )  (     )  

 ,       - [
(    ) 

    
]  

(25) 

Define the parameter vector as 

  [ 
 

 
] (26) 

Then, 

Now complete the adaptation rule expressed in (18) using    
In this method a necessary condition for stability is that the 

sign of    in the plant and the reference model must be equal 

[9]. Also, the reference model must be stable [9] and 

minimum phase, since we will use this reference model in 

robust controller design. 

IV. ROBUST PART 

As said before this part can be any robust controller, but a 

backstepping controller is proposed in this paper. The general 

idea of such controller is developed in [5], however, for non-

minimum phase systems, the controller should be assigned for 

the reference model. This means that all the parameters and 

states that is used in this framework, corresponds to that of the 

reference model, and not the original model. 

The backstepping procedure is an iterative method. 

Introducing the positive constants             as design 

parameters, we can follow the following design procedure. 

Step 1: The design procedure takes advantages of improved 

backstepping via observer design in [10], and dynamic 

backstepping in [5]. This procedure starts with the system 

dynamics, and we derive the differentiation of the output 

tracking error 

     ( )    ( ) (28) 

by 

 ̇                ̇   ̇ ( ) (29) 

In this equation the control input variable does not show up 

yet, and it cannot be directly stabilized. Hence, Choose one of 

the parameters appearing in the equation to treat as the virtual 

input as in usual backstepping procedures. One choice can be 

    since dynamic equations of (4) shows that the actual 

control   appears only after     differentiation of it, this 

choice appears earlier than any other parameter in this 

equation. Assuming    as the virtual control input, a control 

law    can be designed to stabilize equation (29). As    is not 

the actual control, we define    as the error between actual and 

desired value of it 

    ̂     (30) 

Now we can synthesize a virtual control law 

            (31) 

to force    to become small in spite of the various system 

uncertainties. For this reason, we separate the virtual control 

input    into two parts, in which the first term is designed to 

deal with the error dynamics, and the second term guarantees 

the robust stability of the system in presence of uncertain 

dynamics. Generally, define  

 ̃      ̂  (32) 

This error consists of two components, the estimation error of 

the observer and the tracking error of the reference model 

states. We use the reference model to design this controller, 

but finally we employ the real states to the tracking error of 

adaptive controller. Therefore, rewrite (29) as 

 ̇   
 

 
      (19) 

 (    )  (       )  (     )   (20) 

(       )  (  
    )    (    )   (21) 

     ,       - (22) 

  (    )    ,       - [

  
  
 
  

]

     (    )  

(23) 

   ,     - (27) 
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 ̇              ̃       ̂       ̃    
  ̇   ̇ ( ) 

(33) 

and set 

         ̂   ̇ ( )       (34) 

This is the first subsystem to be stabilized using the virtual 

input   . In order to do this, the following Lyapunov function 

is proposed. 

   
 

 
  
  (35) 

Differentiate the Lyapunov function as 

 ̇    (             ̃       ̃      ̇ ) (36) 

Therefore, 

 ̇            
 

   (     ̃       ̃      ̇ ) 
(37) 

Since ‖  ‖    ( ), ‖  ‖    ( ) and ‖ ̇ ‖    ( ) are 

known, there exist a robust control function    , satisfying the 

following conditions: 

  (     ̃       ̃      ̇ )      (38) 

        (39) 

The parameter    - and also, in the rest of paper      - is an 

arbitrary design parameter indicating the boundary layer width 

of the sliding surface, and can be chosen arbitrarily small. 

Essentially, condition (38) shows that robust control input is 

synthesized to dominate the model uncertainties coming from 

   with the level of control accuracy being measured by 

designating parameter   , and condition (39) ensures that     
is dissipating in nature so that it does not interfere with 

functionality of the adaptive control part     [1], Examples of 

smooth     satisfying (38) and (39) can be found in [2] and 

[11]. 

Remark 1: One example of a smooth     can be generated 

in the following way. Let   (   ) be any smooth function 

satisfying 

  (   )  ‖ ̃ ‖  ‖     ̃ ‖  ‖  ‖  ‖ ̇ ‖ (40) 

Now it can be shown that 

       (   )     (
           
  

) (41) 

satisfies this condition. The following steps of the 

backstepping procedure also requires the introduction of a 

robustly stabilizing control term     which also uses the 

relevant parameter    in relation to the system dynamical 

functions, states,   , and   . 
Step 2:  Develop the equation of second error dynamics as: 

  ̇   ̇   ̇  (42) 

Since    is measurable, therefore,  ̇  is available. Hence, the 

second error subsystem can be rewritten as follows 

 ̇                ̇  (43) 

Now the second Lyapunov function can be introduced as 

      
 

 
  
  (44) 

Like the first step, stabilizing the system through Lyapunov 

function   , chose    as the virtual input and introduce a new 

variable as the deviation of it with the desired control   . This 

virtual control also consists of two parts 

            (45) 

With respect to deviation of virtual control to    

    ̂     (46) 

Choose     as 

         ̂   ̇          (47) 

where,    is positive constant gain. Substitute (47) into (43), 

and write the derivative of     as 

 ̇           
      

 

   (     ̃       ̃      ̇ )

   (     ̃       ̃    ) 

(48) 

Similar to step 1, we consider same conditions on the 

second part of control to meet the robust stability 

requirements. 

Step    (       ): Mathematical induction can be 

used to prove the general results for all intermediate steps up 

to    . At Step   , the same design as in the above two steps 

will be employed to construct the control function    for     . 
For these steps express derivation of 

    ̂       (49) 

as 

 ̇                  ̇    (50) 

Treating      as the virtual control input, the compensation 

part     is synthesized as in (47). 

          ̂   ̇              (51) 

Using mathematical induction, the control input and time 

derivative of the Lyapunov function for step   can be 

considered similarly, and the  -th Lyapunov function may be 

defined as  

    (   )  
 

 
  
  (52) 

The time derivative of this Lyapunov function may be written 

as  

 ̇     (   )  ∑    
 

 

   

   (     ̃       ̃      ̇ )

 ∑  (     ̃         ̃    )

 

   

 

(53) 

The robust control part,    , is also chosen to satisfy 

conditions (38), in order to overcome the various system 

dynamical uncertainties or uncertain nonlinearities. This 

induction can be proven in the same way as in [1] and [8].  

Step  : This step is special, because in this step the actual 

control input  , appears for the first time in the backstepping 

design procedure. Like before define a deviation variable 

     ̂       (54) 
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Taking the known and unknown parts apart from  ̇   , the 

derivation of error parameter    can be written as 

 ̇                    ̇    (55) 

In traditional backstepping algorithm this actual control input 

is used to stabilize the system and the design procedure is 

completed, however, similar to what is done in [5], continue 

the procedure. Suppose that      is the virtual control input as 

before, we can define 

            (56) 

Moreover,     is synthesized in the same way as in (51), 

except that it is extended by  : 

        ̂       ̇              (57) 

Using this control input, the derivative of this Lyapunov 

function will be the same as in (44) up to the very last step 

before, and similarly     must satisfy the same conditions. 

Step    (     ): Continue the procedure like previous 

step, the control input itself and the derivatives of it will 

appear in the virtual control design at these steps. This will 

lead to imposing dynamics into the control input. Defining 

     as the deviation between the virtual and proposed control 

input leads to 

 ̇                              ̇      (58) 

Once more, the  (   )  is synthesized in the same way as in 

(57): 

  (   )       ̂         ̇              
        

(59) 

Step n: This is the final step of the design in which the 

dynamic output tracking control law will be synthesized. As 

the previous steps we express the derivative of    as 

 ̇                ̇    (60) 

The key point of this step is that something like      which 

can be treated as a virtual input, does not appear in this error 

dynamics anymore. To negate the derivative of Lyapunov 

function, a suitable dynamics must be imposed to this error 

subsystem. Therefore, the following equation will be held for 

the  -th error dynamics 

    ̂       ̇                   (61) 

By this means the time derivative of the overall Lyapunov 

function 

     
 

 
∑  

 

 

   

 
(62) 

can be computed as 

 ̇   ∑    
 

 

   

   (     ̃       ̃      ̇ )

 ∑  (     ̃         ̃    )

   

   

   (       ̃    ) 

(63) 

Considering the conditions (38) and (39) for robust control 

   , this Lyapunov function can satisfy the stability 

requirements for the overall system in spite of various 

uncertainties. The control input   can be obtained implicitly as 

the solution of the linear time-varying differential equation 

defined by (59) and (61). First we define 

        ̂   ̇(     )                  (64) 

If we consider 

       

      (   )   (       ) 
(65) 

as state variables, we can write (       ) 

  ̇          
    
  
(        ̇(   ) ) 

  ̇          
  
  
(        ̇(   ) ) 

  
 

  
(        ̇(   ) ) 

(66) 

This   should be used as    as the overall control input. 

V. SIMULATION RESULTS 

This section presents an example to illustrate how to 

implement the proposed procedure in practice, and to examine 

the effectiveness of the controller in comparison to that of a 

conventional robust controller. The models used in this 

example are based on a real experimental setup at the 

University of Toronto [12]. Consider the 4th order flexible 

beam manipulator with the following nominal model 

  ( )  
     (        )(       )

                         
 (67) 

and uncertainty profile 

 ( )  
     (         )

(       )(     )(      )
 (68) 

Notice that this system is non-minimum phase and has an 

unstable zero at 5.531 radians. Suppose that it is intended to 

design a suitable controller for this manipulator to track the 

reference trajectory   , shown in Fig. 3. The trajectory settles 

down in 5 seconds. Firs we choose the reference model 

  ( )  
     (       )(       )

                              
 (69) 

This model has the same poles, zeros and DC gain of the real 

system, and only the unstable zero of the original system is 

replace by a stable zero at the same frequency, and since, the 

reference model must be stable, a small term (    ) is added 

to the denumerator of   . Now apply the equations of 

adaptation part given in Section III. The adaptive routine will 

be completed by choosing the adaptation rate parameter as 

       (70) 

and the parameters initial values as 

   ,     - . (71) 

Next, the robust part should be designed. From Section IV 

the backstepping procedure is applied step by step. Since the 

relative degree of the system is two, the controller may be 

designed in only two steps to have a stable response. 

However, dynamic backstepping up to four step may be 

implemented to reach to more suitable performance. Here we 

stay on the 2nd step because the performance of backstepping 

controller is good enough. Finally, the controller parameters is 131
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fine tuned as following to achieve a good performance: 
 

         
 ,          

  

     ,      ,        
 ,      

  
(72) 

 

Now, simulate the designed controller on the perturbed 

system using the uncertainty profile given in (68). As it shown 

in Fig. 3 the output position of the manipulator well tracks the 

trajectory, and finally reaches to the final value without any 

steady state error. The tracking error is shown in the third 

figure row, which shows that the maximum tracking error 

occurs at transient response and is less than 0.1 radians. The 

input signals show that the robust portion of the controller, 

which produces the shown control signal    in figure, 

contributes to the main part of the output, and the adaptive 

part, which receives    as input and composes control signal   
in order to force the behavior of system close to the reference 

model, is relatively smaller. 

In order to show the significance of the proposed controller, 

the same system is considered using a conventional pure 

robust controller reported in [12].  
In order to show the effectiveness of the proposed controller, the closed loop 

response is compared to that of the same perturbed system with a robust H∞ 

controller reported in [12]. The closed loop performances of both controllers 

are given in Fig. 3. As it is clearly seen the tracking performance of the 

proposed controller is farther better than that of the H∞ controller. The ARC 

response is much faster and more precise. Furthermore, its control effort of 

using this controller is much less and more implementable than that of the H∞ 

controller.  

 

TABLE I compares the transient and steady state 

performance of these controllers using different measures, and 

clearly verifies that ARC controller has reached to smaller 

tracking errors in both transient and steady state, while the 

control effort is reduced significantly compared to that of the 

H∞ controller. Finally, the settling time of the proposed 

controller  is in complete agreement with the required time 

trajectory. Therefore, the ARC controller outperforms 

conventional controller with a large margin.   

 
Fig. 3.  The closed-loop response of a perturbed system with both the 

proposed ARC controller and a robust H∞ controller.  

 

TABLE I 

PERFORMANCE INDICES FOR COMPARING CONTROLLERS 

 

Index ARC Controller H∞ Controller 

Steady-state error (   )                    
Max. of  abs. error (   | |)             
Mean of error (‖ ‖)             
Settling time (  )           
Control effort (‖ ‖)             

VI. CONCLUSIONS 

In this paper, an alternative algorithm for synthesis of 

dynamical backstepping design procedure is proposed to 

develop an ARC controller of non-minimum phase systems. In 

this method, the dynamic backstepping controller ensures the 

robustness of the tracking error performance, while adaptation 

mechanism enforces to control the system to behave as the 

reference model. This procedure can significantly reduce the 

uncertainty, and consequently, this combination reduces the 

control effort exerted by the robust part of the controller. 

Moreover, the lack of stability for non-minimum phase 

systems is rectified using this adaptive procedure. Results of 

simulations executed for a flexible manipulator verifies the 

possible stable responses of non-minimum phase systems and 

shows the effectiveness of this structure in terms of transient 

and steady state performance, tracking errors, and disturbance 

rejection. Finally, comparing the results obtained by the 

proposed controller to that of a conventional robust H∞ 

controller shows that the proposed method significantly 

outperforms the latter.  
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