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Adaptive Robust Controller Design For
Non-minimum Phase Systems

M. Ataollahi and H. D. Taghirad

Abstract— Based on the synthesis algorithm of dynamical
backstepping design procedure, in this paper a new adaptive
robust approach for non-minimum phase systems is proposed.
The proposed controller consists of two parts; a backstepping
controller as the robust part and a model reference (MRAS)
controller as the adaptive part. In this control scheme the
adaptive part acts not only as a medium to converge to suitable
values for the unknown parameters and to reduce the
uncertainty, but also provides a minimum-phase model for the
robust controller to be well stabilized. A simulation case study is
studied to show how to perform the proposed control law, and to
illustrate the effectiveness of this method compared to that of
conventional robust controllers.

Index Terms—Adaptive robust controller, model reference
adaptive systems (MRAS), backstepping, non-minimum phase
systems.

. INTRODUCTION

EMAND for high performance in systems with nonlinear

behavior and model uncertainties is one of most
challenging area in control theory. An adaptive robust
controller (ARC) represents a systematic way to design a
controller for such requirement, and it combines adaptive and
robust control approaches to preserve the advantages of the
both methods while overcoming their drawbacks [1].
Alternatives of ARC controllers have been developed in
literature[2]. The saturated adaptive robust controllers (SARC)
developed in [3] for uncertain nonlinear systems in the
presence of practical constraint of control input saturation.
Also the output feedback ARC schemes that need the output
measurement sensor only are developed in [4].

Another approach that has been developed in [5], is to
combine the ARC control with dynamic backstepping method.
In this method the robust controller is used as the main
controller for trajectory tracking, and adaptive controller tries
to decrease the uncertainty and helps to reduce tracking error
especially at steady state [6]. This method is used to control
hard disk drives in [7]. Although this approach is very
promising in practice, it suffers from a stringent limitation that
cannot be applied to non-minimum phase systems.

In this paper, an ARC backstepping method is proposed to
guarantee the stability of non-minimum phase systems. In
order to accomplish this task a model reference adaptive
systems (MRAS) in addition to a robust controller to reclaim
the unstructured uncertainties and disturbances. Simulation
study shows how to implement such controller, and

Authors are with the Advanced Robotics and Automated Systems (ARAS),
Department of Systems and Control, Faculty of Electrical and Computer
Engineering, K. N. Toosi University of Technology, email:
taghirad@kntu.ac.ir.

furthermore, illustrates the effectiveness of the proposed
controller in comparison to a conventional robust controller
for a non-minimum phase system.

Il. CONTROL STRUCTURE

A. Problem Statement

Consider a SISO system described by a nominal model and
multiplicative uncertainty

B
Y(©) = Fu(®) + WEAG.0 (1)
in which
A(s) =s"+a, ;s 1+ +a;s+a, 2
B(s) = byys™ + by 5™ 1+ -+ by;s + b, (3)

where m < n. The plant parameters q;'s and b;'s are unknown
constants, d,, is the output disturbance and A(y,t) represents
any disturbance coming from the intermediate channels of the
plant. The state space representation of the plant (1) is given
as follows:

X =Xy — Ap_1X; + 44

(4)

Xp = Xpp1 — AmXq + 8, + bpu

Xp = —Qox, + A, + byu

y=x+d,

Note that in this representation, the uncertainty profile W (s)
must be transformed to state space uncertainties A;'s. Let’s
define the vector of uncertainty as below

A=A An]T ®)

The following standard assumptions indicate the framework of
the system and nonlinearities in which the system is
incorporating:

Plant is with order n, relative degree p, could be non-

minimum phase, and the sign of b, is known. The extent of
uncertain nonlinearities, 4, d,, and dy, are known, i.e.,
Ae 0, = {AlllAll < 6(0)}
dy € 0, 2 {dy[[[d, ]| < 84}
dy € 0 £ {d,|||d,[| < 5:(t)}
Where, §, 84, &, are assumed to be known. Given the
reference trajectory, y,.(t), the objective of the controller
design is to synthesize a control signal, u(t), such that output
y(t) tracks the reference trajectory as closely as possible, in
spite of various model uncertainties. The reference trajectory
and its derivatives up to n are assumed to be known, bounded,
and piecewise continuous.

(6)
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Fig. 1. The structure of ARC controller using MRAS and backstepping
method. Adaptive controller forces the plant to track the reference model, and
robust controller stabilizes the perturbed plant.

I1l. ADAPTIVE PART

Since only the output y(t), is measured and since , the full
state information of the system is required, a Kreisselmeier
observer [8] may be used to observe the states from the
outputs. This approach proceeds from a so-called
parameterized observer, which is only an alternative to the
customary representation of the Luenberger observer. Note
that any observer that can estimate states of a perturbed
system can be used as other alternatives.

A. Controller Design

In this section we describe a systematic algorithm to design
an ARC output tracking controller that consists of two parts:

1) Adaptive part: This part is designed by a model reference
adaptive system (MRAS) controller which tackles the
parametric uncertainty.

2) Robust part: This part may be designed from the rich
theory of robust control, to compensate unstructured
uncertainty, disturbances, state estimation errors and
tracking error of MRAS controller. In here a backstepping
controller is proposed.

The block diagram of the ARC controller is shown in Fig. 1.

B. MRAS Design for State Space Models

Model reference adaptive system is one of the most
celebrated adaptive controllers. In this method the required
performance is defined with respect to a reference model, and
the controller forces the plant to behave as the reference
model. In this paper a state space representation of MRAS is
used, in which the system states have to track the reference
model states. A general scheme of this method is shown in
Fig. 2. The closed loop system consists of two loops: An
ordinary feedback loop consisting of plant and controller, and
the adaptation loop that suitably changes the controller
parameters. Adaptation mechanism compares plant states and
model states, and updates the controller parameters to reduce
the tracking error of the states. The adaptation rules are
obtained using Lyapunov stability theorem. Here this method
is briefly reviewed from [9].
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Fig. 2. A model reference adaptive system represented in state space. The
adaptation mechanism compares system states to model states and updates
controller parameters.

Consider the linear SISO system described by

X = Ax + Bu @)
whose states should track the states of

X = ApXm + B, (8)
using the control law

u=Mu,— Lx 9

in which, M is a pre-compensator to eliminate steady state
error and L is gain of state feedback. The closed loop system
will be

X =(A—-BL)x +BMu, = A.(0)x + B.(0)u, (10)

in which the vector 6 contains controller parameters M and L.
Compare (8) and (10) to find an appropriate value for 6. A
sufficient condition to have a suitable value for @ is to find 6°
that satisfies

A.(6°) =4, = A-BL’ =4, (11)

B.(6°) = B,, = BM° =B, (12)

These conditions are called compatibility conditions. The
reference model must be chosen such that we can find M° and
L0 for initial condition.

C. Error Equation Formation and Adaptation Rule

To design a model reference controller, first define the error
equation

e=X—Xp (13)
Now write the derivative of error as below,
é=X—Xy, =Ax+Bu—A,xyn — Bpu. £ Apx (14)

=A,e+ (A— A, —BL)x + (BM — B,)u,
= Ame + (Ac(e) - Am)x
+ (Bc(e) - Bm)uc
=A,e+¥(0O-06°

in which, the matrix W contains generally states, output,
reference input and their derivatives.
Now consider the following Lyapunov function for the system

V(e,8) = %(yeTPe +(0-6097(0-69) (15)



in which, P is a positive definite matrix. The derivative of this
function is

. 1 .
V= —EyeTQe +y(0—-6°)"9TPe+ (0 —-0°T0  (16)
1
= —EyeTQe
+(0-097(6 +y¥TPe)
in which Q is a positive definite matrix that satisfies:
AT P+ PA,, = —Q 17

Note that if A, is Hurwitz, a pair of P and Q exists to satisfy
the equation above. Now choose the following adaptation rule

6 = —yWTPe (18)
This immediately leads to

. 1

V= —EyeTQe (19)

which is negative definite and makes the closed loop system
stable. In [9] by using Barbalat’s Lemma, it is shown that the
tracking error goes to zero. In (18) the parameter y is a
designing parameter that tunes the adaptation speed. This
parameter is positive and not too small; otherwise, the
adaptation does not work well. On the other hand if it is set
too large, the adaptation could not achieve the parameter
convergence properly and it leads to oscillate the system
output and even destabilize the system. The matrix ¥ consists
of two: One part is for state feedback and another is for pre-
compensator.

Y —0° = (A—A, —BL)x + (BM — B,))u, (20)
Simplify each part separately, for the first part we have
(A—A,, — BL)x = (BL® — BL)x = —B(L — L%)x. (21)
Next we define L — L° as below
L - LO = [ll lz ln] (22)
Substitute L — L° in (21) :

X1

X (23)
—B(L - Lo)x = —B[ll l2 ln] :

Xn

= —Bx"(L— LT
For the second part of (20), because the system is SISO, the
matrix M is scalar, so we can write

(BM — B,)u, = (BM — BM®)u, = Bu.(M — M°) (24)
Using (23) and (24), we can rewrite (20) as follows
Y@ -0%=(A-A,,—BL)x+ (BM — B,)u,
N (5 =
=[=Bx Bul [ M — MO ]
Define the parameter vector as
6=[b] (26)
M
Then,
Y =B[-xT u,] 27)

Now complete the adaptation rule expressed in (18) using V.

In this method a necessary condition for stability is that the
sign of by in the plant and the reference model must be equal
[9]. Also, the reference model must be stable [9] and
minimum phase, since we will use this reference model in
robust controller design.

IV. ROBUST PART

As said before this part can be any robust controller, but a
backstepping controller is proposed in this paper. The general
idea of such controller is developed in [5], however, for non-
minimum phase systems, the controller should be assigned for
the reference model. This means that all the parameters and
states that is used in this framework, corresponds to that of the
reference model, and not the original model.

The backstepping procedure is an iterative method.
Introducing the positive constants ¢;,i = 1,...,n as design
parameters, we can follow the following design procedure.

Step 1: The design procedure takes advantages of improved
backstepping via observer design in [10], and dynamic
backstepping in [5]. This procedure starts with the system
dynamics, and we derive the differentiation of the output
tracking error

71 = ym(t) — yr(0) (28)
by
Z] =Xy — Ap_qX1 + A1 + dy = y-(t) (29)

In this equation the control input variable does not show up
yet, and it cannot be directly stabilized. Hence, Choose one of
the parameters appearing in the equation to treat as the virtual
input as in usual backstepping procedures. One choice can be
x,, since dynamic equations of (4) shows that the actual
control u appears only after n —m differentiation of it, this
choice appears earlier than any other parameter in this
equation. Assuming x, as the virtual control input, a control
law a; can be designed to stabilize equation (29). As x, is not
the actual control, we define z, as the error between actual and
desired value of it

Z; =% —ay (30)
Now we can synthesize a virtual control law
Ay = Qg t Ay (31)

to force z; to become small in spite of the various system
uncertainties. For this reason, we separate the virtual control
input a; into two parts, in which the first term is designed to
deal with the error dynamics, and the second term guarantees
the robust stability of the system in presence of uncertain
dynamics. Generally, define

(32)

This error consists of two components, the estimation error of
the observer and the tracking error of the reference model
states. We use the reference model to design this controller,
but finally we employ the real states to the tracking error of
adaptive controller. Therefore, rewrite (29) as

J?L-=xl-—)?i
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Zl =Zy + A1q + (241 + fz - an_lJ’C\l - an_lfl + Al

. 33
+ dy - :)./T(t) ( )

and set
Aig = An-1%y + Y () — €124 (34)

This is the first subsystem to be stabilized using the virtual
input a4. In order to do this, the following Lyapunov function

is proposed.

W=z (35)
Differentiate the Lyapunov function as

v, = Zl(Zz -zt o+ X — a1 % +A + dy) (36)
Therefore,

Vi, = z,2, — ¢, 7} 37)

+ Zl(als + fz - an_lffl + Al + dy)
Since [1A4ll < 8,(6), ||dy|| < 84(t) and ||dy|| < 8;(t) are
known, there exist a robust control function a,, satisfying the
following conditions:

Zl(als + fz - an_ljl + Al + dy) < T'1 (38)

1521 <0 (39)

The parameter r; - and also, in the rest of paper r;'s - is an
arbitrary design parameter indicating the boundary layer width
of the sliding surface, and can be chosen arbitrarily small.
Essentially, condition (38) shows that robust control input is
synthesized to dominate the model uncertainties coming from
A; with the level of control accuracy being measured by
designating parameter 1y, and condition (39) ensures that a4,
is dissipating in nature so that it does not interfere with
functionality of the adaptive control part a,, [1], Examples of
smooth a; satisfying (38) and (39) can be found in [2] and
[11].

Remark 1: One example of a smooth a,, can be generated
in the following way. Let h;(x,t) be any smooth function
satisfying

hy(x, 8) = 1%, + llan-1 % Il + 14411 + | dy || (40)
Now it can be shown that
0.2785h,.z
a3 = —hy(x,t) tanh (T—ll) (41)
1

satisfies this condition. The following steps of the
backstepping procedure also requires the introduction of a
robustly stabilizing control term a;; which also uses the
relevant parameter r; in relation to the system dynamical
functions, states, A;, and z;.
Step 2: Develop the equation of second error dynamics as:

Zy =X — g (42)
Since a; is measurable, therefore, ¢, is available. Hence, the
second error subsystem can be rewritten as follows

Zy = X3~ AnpXy T A —ay (43)
Now the second Lyapunov function can be introduced as

1
V, =V, + EZZZ (44)

4

Like the first step, stabilizing the system through Lyapunov
function V,, chose x5 as the virtual input and introduce a new

variable as the deviation of it with the desired control a,. This
virtual control also consists of two parts

Ay = Qg T Qg (49)
With respect to deviation of virtual control to x4

Z3 = X3 —Q, (46)
Choose a,, as

Uzq 2 AnoX; + a4y — 22, — 23 (47)

where, c, is positive constant gain. Substitute (47) into (43),
and write the derivative of V, as
I‘/2 = 2,23 — C12{ — €32} (48)
+zy(ays + % —an % + A, + d))
+ zy(aps + X3 — ap_p%; +4;)

Similar to step 1, we consider same conditions on the
second part of control to meet the robust stability
requirements.

Step k: (3 < k < p —1): Mathematical induction can be
used to prove the general results for all intermediate steps up
to p — 1. At Step k , the same design as in the above two steps
will be employed to construct the control function a;,, for x; ;.
For these steps express derivation of

Zy = X — A_q (49)
as
Zg = Xjeyq — QuogXy + B — gy (50)

Treating x,,, as the virtual control input, the compensation
part a;, is synthesized as in (47).

(51)

Using mathematical induction, the control input and time
derivative of the Lyapunov function for step k can be
considered similarly, and the k-th Lyapunov function may be
defined as

QArq = Ap_g X1 + A1 — CxZig — Z—1

1
Vk = V(k—l) + EZ,% (52)

The time derivative of this Lyapunov function may be written

as
k

Vk = ZkZ(k+1) — Z CiZiZ
i=1 .
+ Zl(als + fz - an_lfl + Al + dy)
k

(83)

+ Z zi(@s + Xy — an_i %y +4)

i=2

The robust control part, a, is also chosen to satisfy
conditions (38), in order to overcome the various system
dynamical uncertainties or uncertain nonlinearities. This
induction can be proven in the same way as in [1] and [8].

Step p: This step is special, because in this step the actual
control input u, appears for the first time in the backstepping
design procedure. Like before define a deviation variable

Z, =%, — ay_4 (54)

130



Taking the known and unknown parts apart from ¢,_,, the
derivation of error parameter z, can be written as

Zy = Xpp1 — AmXqy + Ay + bpu —d,_ 4 (55)

In traditional backstepping algorithm this actual control input
is used to stabilize the system and the design procedure is
completed, however, similar to what is done in [5], continue
the procedure. Suppose that x,,,; is the virtual control input as
before, we can define

A, = Apg + Aps (56)

Moreover, a,, is synthesized in the same way as in (51),
except that it is extended by u:

Apq = A%y — bpu+ da,  — (57)

Using this control input, the derivative of this Lyapunov
function will be the same as in (44) up to the very last step
before, and similarly a,,; must satisfy the same conditions.

Step +j (j < m — 1): Continue the procedure like previous
step, the control input itself and the derivatives of it will
appear in the virtual control design at these steps. This will
lead to imposing dynamics into the control input. Defining
Z,; as the deviation between the virtual and proposed control
input leads to

Cpr - Zp—l

(58)

Once more, the «(,, ), Is synthesized in the same way as in
(57):
A(p+)a = m-jX1 = bn—jU + Gpsjo1 = CpujZps

Zp4j = Xpajer = QX1+ Bpuj + D jU = G jg

(59)
~ Zp+j-1
Step n: This is the final step of the design in which the
dynamic output tracking control law will be synthesized. As
the previous steps we express the derivative of z,, as

(60)

The key point of this step is that something like x,., which
can be treated as a virtual input, does not appear in this error
dynamics anymore. To negate the derivative of Lyapunov
function, a suitable dynamics must be imposed to this error
subsystem. Therefore, the following equation will be held for
the n-th error dynamics

Zn = _aoxl + An + bou - dn—l

(61)

By this means the time derivative of the overall Lyapunov
function

—QoXy + bou — Ay = —CpZy — Zp_1 + Uy

n
1
2¢
i=1
can be computed as
n
Vo= - Z izl + Z1(0~’1s +%, —a, 1% A+ dy) (63)
i=1
n-1
+ Z Zl'(a’is + Xy —an_i% + AL)
i=2

+ z, (o — apX; +A,)
Considering the conditions (38) and (39) for robust control

aTlS !

this Lyapunov function can satisfy the stability1

5

requirements for the overall system in spite of various
uncertainties. The control input u can be obtained implicitly as
the solution of the linear time-varying differential equation
defined by (59) and (61). First we define

;= am—ifl + d(p+i—1)s — Co+iZp+i ~ Zp+i-1 (64)
If we consider

% e . (65)
$iv1 = A(p+i)a I<is=sm-1)
as state variables, we can write (1 <i<m—1)

. by, ]

§i=S%m—oi t+ % (& + 9o+ a(p—l)a) (66)

m

. bo .
f‘m = —Qps — Py + b_ (_fl + @y + a(p—l)a)
m

1 :
U=- (& + @0 + a(p—l)a)
m
This u should be used as u, as the overall control input.

V. SIMULATION RESULTS

This section presents an example to illustrate how to
implement the proposed procedure in practice, and to examine
the effectiveness of the controller in comparison to that of a
conventional robust controller. The models used in this
example are based on a real experimental setup at the
University of Toronto [12]. Consider the 4™ order flexible
beam manipulator with the following nominal model

1.295(—s + 5.531)(s + 4.904)

Py(s) = 67
0(8) = 37071457 + 279057 + 0.0195 (67)
and uncertainty profile

0.881(s2 +1.2s + 1
W(s) = ( ) (68)

(s +0.001)(s + 1.2)(s + 1000)

Notice that this system is non-minimum phase and has an
unstable zero at 5.531 radians. Suppose that it is intended to
design a suitable controller for this manipulator to track the
reference trajectory y,., shown in Fig. 3. The trajectory settles
down in 5 seconds. Firs we choose the reference model
P (s) = . 1.29525 + 5.531)2(5 +4.904) _ (69)
s* 4+ 0.714s3 4+ 27.90s% + 0.019s + 10

This model has the same poles, zeros and DC gain of the real
system, and only the unstable zero of the original system is
replace by a stable zero at the same frequency, and since, the
reference model must be stable, a small term (107°) is added
to the denumerator of P,. Now apply the equations of
adaptation part given in Section I1l. The adaptive routine will
be completed by choosing the adaptation rate parameter as

y=10"* (70)
and the parameters initial values as
6°=[0 o o o 11" (71)

Next, the robust part should be designed. From Section 1V
the backstepping procedure is applied step by step. Since the
relative degree of the system is two, the controller may be
designed in only two steps to have a stable response.
However, dynamic backstepping up to four step may be
implemented to reach to more suitable performance. Here we
stay on the 2" step because the performance of backstepping

31controller is good enough. Finally, the controller parameters is



fine tuned as following to achieve a good performance:

L = 2.8 X 104, Cy = 5.5 x 102
1, =70,7, =20, hy = 2 x 103, h, = 10?

Now, simulate the designed controller on the perturbed
system using the uncertainty profile given in (68). As it shown
in Fig. 3 the output position of the manipulator well tracks the
trajectory, and finally reaches to the final value without any
steady state error. The tracking error is shown in the third
figure row, which shows that the maximum tracking error
occurs at transient response and is less than 0.1 radians. The
input signals show that the robust portion of the controller,
which produces the shown control signal u, in figure,
contributes to the main part of the output, and the adaptive
part, which receives u, as input and composes control signal u
in order to force the behavior of system close to the reference
model, is relatively smaller.

In order to show the significance of the proposed controller,
the same system is considered using a conventional pure

robust controller reported in [12].

In order to show the effectiveness of the proposed controller, the closed loop
response is compared to that of the same perturbed system with a robust H.,
controller reported in [12]. The closed loop performances of both controllers
are given in Fig. 3. As it is clearly seen the tracking performance of the
proposed controller is farther better than that of the H., controller. The ARC
response is much faster and more precise. Furthermore, its control effort of
using this controller is much less and more implementable than that of the H.,
controller.

(72)

TABLE | compares the transient and steady state
performance of these controllers using different measures, and
clearly verifies that ARC controller has reached to smaller
tracking errors in both transient and steady state, while the
control effort is reduced significantly compared to that of the
H,, controller. Finally, the settling time of the proposed

controller is in complete agreement with the required time
trajectory. Therefore, the ARC controller outperforms
conventional controller with a large margin.
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Fig. 3. The closed-loop response of a perturbed system with both the

proposed ARC controller and a robust H,, controller.

TABLEI
PERFORMANCE INDICES FOR COMPARING CONTROLLERS

Index ARC Controller Hoo Controller
Steady-state error (eg;) 2.12x 1078 1.8 x 1072
Max. of abs. error (max|e|) 0.134 0.510
Mean of error (Jle]]) 1.918 7.533
Settling time (¢t,) 4.42 5.66
Control effort (Jlul]) 2.935 7.533
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VI. CONCLUSIONS

In this paper, an alternative algorithm for synthesis of
dynamical backstepping design procedure is proposed to
develop an ARC controller of non-minimum phase systems. In
this method, the dynamic backstepping controller ensures the
robustness of the tracking error performance, while adaptation
mechanism enforces to control the system to behave as the
reference model. This procedure can significantly reduce the
uncertainty, and consequently, this combination reduces the
control effort exerted by the robust part of the controller.
Moreover, the lack of stability for non-minimum phase
systems is rectified using this adaptive procedure. Results of
simulations executed for a flexible manipulator verifies the
possible stable responses of non-minimum phase systems and
shows the effectiveness of this structure in terms of transient
and steady state performance, tracking errors, and disturbance
rejection. Finally, comparing the results obtained by the
proposed controller to that of a conventional robust H,
controller shows that the proposed method significantly
outperforms the latter.
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