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Abstract—In this paper the problem of model based internal 

control of singular systems is investigated. The limitations of 

directly extending the control schemes for normal systems to 

singular ones are thoroughly developed, and a robust approach is 

proposed in order to establish a control scheme for singular 

systems. The proposed method presents a general framework for 

robust control design of singular systems in presence of modeling 

uncertainties. Two simulation examples are given to how the 

proposed method can be implemented, and to show the 

effectiveness of such controllers in closed loop performance.  

Keywords- Singular systems, impulsive behavior, internal model 

control, model based control,rRobust control, tracking problem.  

I.  INTRODUCTION  

Singular systems represent a more general framework for 

linear systems [1]. A singular model is an appropriate model for 

describing large scale interconnected systems, constrained 

robots and other differential algebraic systems with linear 

algebraic constraints [2]. Also singular models can be utilized 

to model a system when the dependent variable is displacement 

and not the time [3]. Since the first time this representation is  

introduced [4], several efforts have been made to control 

singular systems [5-9]. As the singular systems were firstly 

introduced in the state space form representation [4], they were 

usually studied in time domain. In [5] the problem of finite 

mode pole placement is studied, while simultaneous impulse 

elimination and robust stabilization problem is considered in 

[6], robust Eigen-structure assignment of finite modes is 

studied in [7]. In [8] strict impulse elimination is studied using 

time derivative feedback of the states and [9] investigated the 

output feedback control using a compensator. In fact most of 

the existing methods are extensions of the control schemes for 

standard representation of such systems [5-10]. In the singular 

system control context the control objectives are more 

complicated due to the stringent requirements such as algebraic 

loop phenomenon, impulsive behavior [11] , and regularity of 

the closed loop [8,9] . Unlike the time domain methods, there 

are very few works on the frequency domain control of singular 

systems. In the frequency domain, the tracking problem, robust 

control problem and impulse elimination can be treated more 

convenient. Specifically the so called Internal Model Control 

(IMC) method provides a very interesting framework for 

analyzing the algebraic loop, regularity of the closed loop and 

impulse elimination problems of singular systems. 

Furthermore, most of existing methods in robust control of 

singular systems are limited to study a special case of 

uncertainty. They assumed matrix E to be exactly known [6, 7 

and 10]. This assumption is more restrictive than it appears, 

because it limits the system to be impulsive while some 

uncertainties may exist, which lead to a strictly proper system 

for a singular model. The internal model framework for 

controlling singular systems provides a more logical 

uncertainty model and release the restrictive assumptions made 

in the existing state space methods for robust control of 

singular systems. Also it provides offset free tracking capability 

of the closed loop as well as being able to well treat delayed 

systems. The main challenge which arises in the internal model 

control of singular systems is that the internal model cannot be 

modeled easily, because it is generally improper. Even in 

computer aided control systems it is not easy to simulate a 

singular system, since the discrete model needs future input 

data to determine the system state vector at the present time [1]. 

This problem results in an inevitable mismatch between the 

plant and the parallel model used in IMC. Therefore, the robust 

control scheme should be extended to tackle this situation, 

which is fully examined in this paper. 

Note that, general disk shaped representation of modeling  

uncertainty leads to an unbounded uncertainty profile, and  is 

not suitable for robust design of singular systems. This paper 

provides a solution to this problem by introducing a singular 

internal model filter in series with the conventional internal 

model filter. This filter not only eases the design procedure, but 

also bounds the uncertainty profile and offers more degrees of 

freedom in the design by introducing an additional filter time 

constant. Also it makes the closed loop system to become 

strictly proper and eliminates impulsive modes by smoothing 

the control action as much as needed. Another role of the 

introduced filter is to make it possible to design robust 

controller in the conventional context.   

The paper is organized as follows. In the next section 

backgrounds are discussed and the challenges arising in control 

of singular systems are presented, and some major limitations 

of the direct extension of IMC is explained. In the third section 

the proposed method is studied and the filter design procedure 

is illustrated. In the fourth section the examples and simulations 

are given to examine the algorithm both in terms of robustness 

properties and closed loop performance. Finally, the concluding 

remarks are given in last section.   

II. CONTROL OBJECTIVES IN SINGUALR CONTROL SYSTEMS 

A. Definitions and Singular Systems Characteristics 

As Descriptor models are a straight extension of standard 
state space models [1], control problem for these systems has a 
wider range of objectives. A control system for a standard plant 
is designed such that the closed loop is stable and has a 
predefined performance and acceptable robustness properties. 
A singular control system, on the other hand, should be 
designed such that it is impulse free, regular and doesn’t 
include any algebraic loops in addition to the aforementioned 
properties. These control objectives combined with the standard 
objectives make the control of singular systems more 
challenging. Robust control of singular systems is the most 
stringent requirement, since it requires robustness not only in 
the stability and performance, but also it necessitates regularity 
and properness. State space robust control schemes require 121



robust observers in order to work properly and do not guarantee 
strict properness of the closed loop system, and they usually 
result in more complicated derivation algorithms. The main 
advantage of using internal model control scheme in here is to 
provide an effective tool in frequency domain without 
introducing complicated methods in evaluation of closed loop 
performance and stability. Therefore, IMC can be regarded as a 
proper alternative for existing state space methods. Moreover, 
IMC provides a simple framework for algebraic loop and 
properness analysis of singular control systems, which is 
relatively much simpler than that in state space methods or 
other frequency domain schemes.  

Consider the following state space description: 
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Definition1: System (1) is impulse free if and only if: 

ErankAsE deg              (2) 

The nullity index of E is called singularity index of a singular 
system (1) in this paper.   

Remark1:  Note that the following general inequality always 
holds: 

)(deg ErankAsE               (3) 

Corollary1: A singular system described by the following state 
space equations is called impulse free, if and only if, it doesn’t 
exhibit impulses in its impulse response. 

Definition2: A singular system is called minimal if it is 
observable and controllable.  

Definition3: A transfer function is strictly proper, bi-proper and 
improper if the following limit is zero, a finite nonzero value 
and infinite respectively. Strictly proper and bi-proper systems 
may be generally recalled as proper.   
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s 

  

Lemma1: An observable state space realization of a singular 
system is impulse free, if and only if, its transfer function has a 
nonnegative relative degree. (i.e. it is proper)  

Proof: The transfer function matrix from input to state for 
system (1) can be computed as: 
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It is known that degree of the nominator is equal to rank of E at 
most, therefore, if condition (2) is satisfied then the system 
transfer matrix will be proper. On the other hand if transfer 
matrix is not proper condition (2) is certainly not satisfied.  

Remark2: The observability assumption is essential for the 
above lemma because it can be easily shown that it may be a 
number of unobservable impulsive modes which do not appear 
in the output. Also note that condition (2) is a general condition 
for impulse free systems but in order to compare it to corollary 
1, the observability assumption is needed.   

Lemma2: In the unity output feedback structure the closed loop 
system is strictly proper if the compensator/plant combination 
is strictly proper.  

Proof: Expand the nominator and denominator by their 
respective Taylor series.  
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Because CP is supposed to be strictly proper, the largest term in 
its expansion has a negative power, thereforem the denominator 
has a greater degree than the nominator and thus the closed 
loop system is strictly proper.  

 

Figure1: Feedback structure  

 
Remark3: Note that Lemma2 provides a sufficient condition. 
The necessary and sufficient condition is derived later. 
Lemma2 shows that why the objective of properness has not 
been considered before the introduction of descriptor systems. 
Assuming strictly proper functions for plant and compensator, 
it is trivial that the closed loop system is strictly proper. Also 
for a strictly proper plant and a bi-proper compensator the 
closed loop will be bi-proper.    

Lemma3: For a bi-proper plant and a bi-proper compensator, 
the closed loop will be improper, if and only if: 
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Lemma4: In order to have a strictly proper closed loop system 
with a unit feedback, if the plant is improper the compensator 
should be strictly proper with a sufficiently large relative 
degree.  

Proof: According to lemma 2, for the closed loop to be strictly 
proper, the compensator/plant should be strictly proper. 
Therefore, the compensator should be strictly proper.  

B. Robust Internal Model Control Of Singular Systems  

In IMC structure internal model is inevitably proper or 
strictly proper. Therefore, there always exists a mismatch 
between the plant and that of the model. For a continuous 
output especially in case of initial jumps of the input, it is 
required that the plant and the internal model have the same 
infinite gain and the compensator is strictly proper. This issue 
can be treated by a smoothing pre-filter for reference signal, 
however by introducing such filter the method is not any robust 
against model uncertainties. The IMC filter is conventionally 
used to enhance robustness properties by penalizing the closed 
loop response and making the compensator implementable (i.e. 
proper). Moreover, it accounts for online adaptation of the 
control system by adjusting the filter time constant. In this 
paper we extend this approach by using a second IMC filter 
which assures the closed loop to be strictly proper and has a 
smooth response by compensating the singular plant impulsive 
behavior. The singular internal model control filter or SIMC 
filter is designed to yield a continuous smooth response and a 
robust IMC design for singular systems. In fact by using a 
strictly proper model in parallel to IMC, the uncertainty will 
become unbounded and the robust control will not be feasible 
any more. Therefore, the SIMC filter has another role of 
bounding the uncertainty profile and making the robust control 
problem feasible. The disk-type uncertainty profile is usually 
assumed in robust control schemes, which is described by the 
following  relation.  
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This uncertainty description allows us to incorporate several 
singular systems in the design, while the state space uncertainty 
descriptions are limited to represent only singular systems with 
a pre-specified singularity index.  If one augments the improper 
plant by high frequency stable poles a strictly proper model can 
be obtained, which has a very close behavior to plant at least at 
low enough frequency range. Larger poles result in a closer 
response to that of the plant in wider bandwidths. However, in 
this way the uncertainty becomes unbounded. In particular 
assume a polynomial of stable real poles with a unit steady state 
gain namely D, then one can write: 
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The above description for model is the most natural selection 
for a strictly proper model, whose behavior is as close as that of 
the plant. However, in this situation the mismatch between 
plant and model is not included in a disk shaped region. In 
other words the uncertainty bound will be infinity. Now we can 
take different approaches: Choose another internal model which 
yields bounded uncertainty; Developing new theory for this 
kind of uncertainty; Or modify the plant input in order to bound 
the uncertainty as well as removing impulses from the 
response. The following lemmas are introductory materials for 
the theorems developed later in this paper.  

Lemma5:  A control system is robustly stale, if and only if, the 
complementary sensitivity function fulfills the following 
inequality: [12] 

1)(sup mls                                                                   (6) 

Remark4: For IMC structure the complementary sensitivity 
function and the uncertainty can be computed as follows: 
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Therefore, in this case condition (6) cannot be satisfied. Thus 
we need to modify the IMC structure or algorithm in order to 
gain a more tractable uncertainty profile. In the following 
section the SIMC filter is introduced and the proposed method 
is studied.  

III. THE SIMC FILTER  

The idea of augmenting the IMC compensator by an IMC 
filter can be extended to singular systems in a different manner. 
According to the previous discussions one way to overcome the 
obstacles in IMC of singular systems is to augment the 
compensator by an additional IMC filter, we call it SIMC. This 
filter have the same structure as the conventional IMC filter for 
step reference signals, and therefore, the IMC problem of 
singular systems consists of finding two time constants; One for 
the conventional IMC which adjusts the closed loop 
performance, robustness and noise amplification; and one for 
the feasibility of robust control and impulse elimination of the 
singular plant. It is expected that for a singular system more 
parameters are required to be controlled, because a singular 
system is a general form of a linear system and cannot be 
treated by the same existing methods in standard form. One 
advantage of SIMC is to solve the problem by introducing an 
additional filter without any need of complicated design 
procedures. Define the SIMC filter as a low pass filter as 
follows. 
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Lemma6: Define SIMC filter as stated in (9), therefore the 
closed loop system is strictly proper, if and only if: 

m              (10) 

In which, parameter  denotes the relative degree of the plant.  

Proof: Using (9-10) as the SIMC filter, the relative degree of 
plant/compensator becomes strictly proper. Therefore, by 
means of lemma2, the closed loop system is strictly proper.  

Remark5: There is no need to introduce pole zero cancellation 
issues, because SIMC filter cancels minimum phase zeros of 
the plant. 

Lemma7: Together with SIMC filter the singular plant is 
capable of being robustly controlled, if (6) can be satisfied.  

Proof: The new uncertainty profile have the following shape: 
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Now it is easy to choose SIMC filter such that the uncertainty 
profile is bounded.  

Remark 6: Note that the real uncertainty profile between actual 
plant and assumed singular model is unchanged. SIMC 
manipulates only the mismatch between singular model and the 
implemented parallel strictly proper model of IMC. Also note 

that 
ml̂ represents the uncertainty caused by singular system 

while 
ml is the actual uncertainty. 

Lemma8: The closed loop system with SIMC structure 
characterized by equations (9-11) is robustly stable, if and only 
if: 

mlqp
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Proof: The complementary sensitivity function can be stated as: 
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Therefore condition (6) can be states as in (12).  

Remark7: The above lemma states an essential character of 
SIMC, the SIMC filter caused the uncertainty to remain in a 
disk shaped region and the robust stability criterion is then 
applicable to the problem. If one studies condition (6) with and 
without SIMC filter, it can be seen that thos filter imposes a 
bound on the uncertainty. Also choosing D as the inverse of 
SIMC filter, the uncertainty profile remains unchanged and the 
uncertainty caused by singular system will be zero as can be 
seen from (11).  

When there are some model inaccuracies or disturbances, 
condition (12) cannot be met easily because a specific 
performance index is expected in the control objectives. In 
these situations a natural compromise exists and the penalizing 
the performance is inevitable. Note that one can set the IMC 
filter to zero in order to satisfy (12) but this means open loop 
control of the system, and therefore, losing performance. The 
uncertainty bound generally increases at higher frequencies. A 
natural routine for making the controller robust is to design a 
nominal H2-optimal controller according to performance 
specifications and then increasing the filter time constant to 
meet the desired robustness properties.  
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 Theorem1: Assuming 1

2

 fD  then there exists an IMC filter 

such that the closed loop system is robustly stable, and 
furthermore, the system exhibits robust performance at zero 
frequency, if and only if: 

     1)0(ˆ ml              (13) 

Proof: The IMC filter should satisfy (12) for robust stability, 
because of the structure selected for IMC filter, the maximum 
value for the filter is unity and it occurs at zero frequency. 
Therefore, for the nominal plant (12) can be satisfied only if the 
uncertainty upper bound is smaller than unity, and therefore, 
the necessary condition for existence of such IMC filter is (13). 
The proof of sufficiency follows immediately from the above 
condition.      

Remark8: Note that theorem 1 is an extension of the existing 
result in standard systems. Although the SIMC filter does not 
appear explicitly in the theorem, it has an essential role in the 
derivation of the theorem as well as the lemmas. In other words 
introducing SIMC makes it possible to apply the existing 
framework for robust control to singular systems.  

Remark9: Theorem1 just considers the solvability of (12). In 
other words it studies the existence of an appropriate IMC filter 
which solves the robust control problem. In order to find such 
IMC filter one should increase the time constant and check that 
the robust stability criterion is satisfied.  

Remark10: It should be noticed that there exists no constraint 
on the SIMC filter time constant and any positive time constant 
can be chosen for this filter. However when smoothness of the 
response is also a requirement, large time constant is required, 
and when a fast response is desired, it is better to choose the 
time constant as small as possible. Note that if the SIMC filter 
time constant is larger than that of IMC filter and the plant 
dominant time constant, this will dominate the closed loop time 
constant. In fact the closed loop time constant is the largest 
time constant among the plant, IMC filter and SIMC filter time 
constants. Because of robustness considerations SIMC filter 
time constant may be smaller than that of IMC filter, and 
therefore, it does not restrict the closed loop performance. It is 
not possible to decrease SIMC filter time constant as much as 
desired, since input noises may be amplified.     

Remark11: Note that (13) means that steady state gains for the 
plant and model should have the same sign. A little mismatch 
between plant and model steady state gain may cause instability 
if their signs are different. This a common drawback of robust 
control systems for plants with zeros near the origin. By a slight 
change of the zero location the closed loop may become 
unstable if the zero is near the origin. 

Lemma8: The irregularity of closed loop occurs, if and only if: 

       sallforcp 1  

Proof: From the definition of regularity, a singular system is 
irregular if and only if: 

      0 AsE                                                                     (14) 

In the frequency domain context of output feedback control 
systems the above determinant is the characteristic polynomial 
of system or the denominator of complementary sensitivity 
function. Write the closed loop transfer function as: 
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According to (14) and (15) the closed loop system is irregular, 
if and only if: 

      MN   

which, can be rewritten as: 

      sallforcp 1             (15) 

The last equality also means an unsolvable algebraic loop in the 
simulation.  

Corollary2: For a strictly proper plant/compensator, (15) does 
not occur because polynomial (16) is never zero. 
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As a result for a strictly proper compensator/plant combination 
the regularity issue will not occur. This corollary depicts the 
fact that why the regularity control objective is introduced only 
for singular systems and not for standard strictly proper ones.  

In the following theorem we may introduce the significant 
characteristics of the proposed algorithm.    

Theorem2: The closed loop system with an appropriate IMC 
filter designed according to (12) is robustly strictly proper and 
robustly regular for all uncertainties described by (4). 

Proof: Note that from theorem1, the closed loop robust stability 
and zero frequency performance are assured. The family of 
plants described by (4) have all a singularity index smaller than 
or equal to that of nominal plant. This can be shown as follows; 
assume that there is a plant in the family (4) that has a larger 
singularity index than the nominal plant. Then uncertainty 
profile can be written as: 
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From the above assumption uncertainty will increase by 
frequency because it has an improper transfer function. 
Therefore, (4) cannot be satisfied as the uncertainty is 
unbounded.  Moreover, for any plant being in family (4) the 
relative degree of SIMC filter is greater than or equal to the 
plant singularity index and thus the closed loop system is 
robustly strictly proper according to lemma2. Also note that 
regularity of the plant is guaranteed by lemma8 because of 
strict properness of plant/compensator combination. 

The following design procedure can be followed for robust 
internal model control of a singular plant.   

 

   Design Procedure:  

A. Choose the polynomial D and set 2f as its inverse. The 

polynomial time constant should be smaller than the 

dominant time constant of plant. According to nominal 

singular plant choose m such that the strictly properness 

of closed loop is guaranteed.  

 

B. For the nominal plant check the feasibility of robust 

control having uncertainty profile as (4) according to (12), 

if this is satisfied, design IMC filter for a good 

performance in nominal case.  

 

 

C. Redesign SIMC filter for having better performance if it is 

required.  
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D. Simulation Results 

Simulation of an improper system is not possible with the 

existing numerical methods, since simulation needs future data 

for computing the present state vector. This` is why many 

papers in the field of singular systems do not include any 

simulation examples or just simulate causal singular systems. 

However, if the closed loop system is proper, any simulation 

software can easily implement the closed loop system 

regardless of the inner unsolvable loops, which form singular 

systems in the inner parts of the closed loop system. In this 

paper, some illustrative but simple examples are chosen in 

order to show the effectiveness of the proposed algorithm.  

 
Example1: Consider the nonlinear system described by the 
following equations: 
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The latter output equation describes the simplest form of output 
equation. Nonlinear output may occur in a singular system, and 
can treated the same way as in here. The algebraic part of a 
singular system denotes its limitations for having arbitrary 
initial conditions. The system described by (17) can be modeled 
as a standard state space system, too. For a nominal input of 
u=9, the equilibrium point is:  
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                                          (18) 

In case of nonlinear term in (17), the nonlinearity can be 

considered as an uncertainty, and not included in the linear 

model representation.  

The process model may be considered as a bi-proper transfer 

function. 
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The compensator, IMC and SIMC filters may be chosen as: 
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The closed loop system responses to different inputs with 

different initial conditions are shown in figures 1 to 3. As it is 

seen in these figures, before and after the abrupt change in the 

set point, initial condition response is vanished and then the set 

point signal is tracked without any offset. Disturbance 

rejection is also well performed as seen in these figure, and the 

stability of the closed loop system is well illustrated in the 

phase portraits given in fugure 4 for different initial 

conditions. 
 

This example shows that the closed loop system is strictly 
proper regardless of any bounded model uncertainties. 
Moreover, it provides an example of robust stability and zero 
frequency performance design.  

 

 

 

 

 

 
 

Figure 1: System response to initial condition 
 

 
Figure 2: Set point and disturbance response 

 

 
Figure 3: Set point response with initial condition 

 

 
Figure 4: phase portrait of closed loop near the origin 

 

 

 

 

0 10 20 30 40 50 60 70
-2

-1

0

1

2

3

4

5

6

Time (sec)

In
iti

al
 c

on
di

tio
n 

re
sp

on
se

0 10 20 30 40 50 60
0

2

4

6

8

10

12

Time (sec)

S
te

p 
re

sp
on

se
 w

ith
 d

is
tu

rb
an

ce

Disturbance occured

Disturbance rejected

0 10 20 30 40 50 60 70
-1

0

1

2

3

4

5

6

7

8

9

Time (sec)

S
te

p 
re

sp
on

se

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

X1

x2

125



Example2: Consider a group of linear singular systems as 
described by the following set of transfer function.  
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And assume that the nominal plant (model) is as follows. 
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The parallel model and compensator are selected as: 
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The uncertainty norm is bounded for all of the models 
described in (19), however, its infinity norm is near the unity 
for case of p4. Following figures depict closed loop behavior in 
tracking step set point.   

As the uncertainty bound increases, the system response is 
deteriorated in terms of both performance and stability margin. 
In the last case the oscillating behavior of plant is not included 
in the model and therefore closed loop response is not 
satisfactory. Note that while steady state gains of plant and 
model have the same sign, the closed loop is robustly stable, 
and while the uncertainty is bounded it is robustly strictly 
proper.  This example shows that even for such wide 
uncertainty spectrum the proposed method is able to stabilize 
the system, while at the cases where the stability conditions are 
close to be deteriorated, the performance of the system 
becomes oscillatory. 

 

Figure 5: step response for p1 

 

Figure 6: Step response for p2 

 

Figure 7: Step response for p3 

 

IV. CONCLUSIONS 

In this paper an effective and simple control scheme is 

proposed for robust internal model control of singular linear 

systems. The method has many advantages over the existing, 

state space methods including robust strict properness of the 

closed loop, avoiding algebraic loops, robust tracking of 

specific signals and the ability to robustly stabilize a larger 

group of singular systems comparing to that of other methods. 

Two simulation examples are included to depict the algorithm 

performance. It is shown that robust stability of the closed loop 

system is preserved in the presence of large uncertainty 

spectrum, provided that the stability conditions provided in 

this paper is satisfied. 
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