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Abstract The kinematic sensitivity has been recently proposed as a unit-consistent
performance index to circumvent several shortcomings of some notorious indices
such as dexterity. This paper presents a systematic interval approach for computing
an index by which two important kinematic properties, namely feasible workspace
and kinematic sensitivity, are blended into each other. The proposed index may be
used to efficiently design different parallel mechanisms, and cable driven robots.
By this measure, and for parallel manipulators, it is possible to visualize constant
orientation workspace of the mechanism where the kinematic sensitivity is less than
a desired value considered by the designer. For cable driven redundant robots, the
controllable workspace is combined with the desired kinematic sensitivity property,
to determine the so-called feasible kinematic sensitivity workspace of the robot.
Three case studies is considered for the development of the idea and verification of
the results, through which a conventional planar parallel manipulator, a redundant
one and a cable driven robot is examined in detail. Finally, the paper provides some
hints for the optimum design of the mechanisms under study by introducing the
concept of minimum feasible kinematic sensitivity covering the whole workspace.

1 Introduction

Cable driven redundant parallel manipulators (CDRPMs) consist of a moving plat-
form which is connected by the means of actuated cables to the base. Redundancy
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is an inherent requirement for CDRPMs due to the fact that cables can only pull but
cannot push the moving platform. Thus, in a non-singular posture, the moving plat-
form can perform n Degree-Of-Freedom (DOF) provided that at least n+ 1 cables
are used. CDRPMs are special design of parallel manipulators (PMs) that heritage
the advantages of PMs such as high acceleration and high load carrying capability
and at the same time, have alleviated some of their shortcomings, such as restricted
workspace. Due to the several eminent features of CDRPMs, they have stimulated
the interest of many researchers and they are becoming the state-of-the-art in many
real applications, such as telescope [24], haptic interface [3], motion trackers [6],
rescue robotics [25], metrology [27], rehabilitation [18], sport training [16], heavy
load transportation [9] and surgery [7]. However there are still some gap to fill in the
kinematic properties of such mechanisms, such as workspace and kinematic sensi-
tivity, which is the concerns of this paper.

The workspace of CDRPM are investigated upon different perspectives and dif-
ferent types of workspace are proposed in the literature. In short, four different types
of workspace have been introduced: (1) Wrench feasible workspace [4], (2) Dy-
namic workspace [1], (3) Static workspace [5] and (4) Controllable workspace [26].
In this paper, more emphasis is placed on the controllable workspace which repre-
sents the most general feasible workspace. Controllable workspace pertains at find-
ing the set of poses (position and orientation) of the moving platform in which any
wrench can be generated by the moving platform while cables are all in tension.

Extensive presence of singular points in PMs and the challenge to obtain and
avoid them is one of the major drawbacks of this kind of mechanisms. In the design
of PMs, usually kinematics performance indices are used to reduce the singulari-
ties and to improve the performance of the mechanism under study. Most popular
indices are Yoshikawa manipulability [28] and the dexterity indices [23], which en-
tail some limits and as stated in [2], seems to have not drawn a consensus among
the robotics community. The latter problem relies on the impossibility to define a
single invariant metric for the special Euclidean group, i.e., the Jacobian matrices
are nonhomogeneous. To circumvent the latter problem, recently two different in-
dices named point-displacement and rotational kinematic sensitivities are proposed
which their meaning is thought to be clear and definite to the designer of a robotic
manipulator [21]. These indices provide tight upper bounds on the magnitudes of the
end-effector rotations and point-displacements, respectively under a unit-magnitude
array of actuated-joint displacement [20].

The kinematic analysis of PMs require a suitable framework in order to propose
a proper and systematic method. The mathematical framework of this paper is based
on interval analysis [14], using the intlab package [19]. There are host of advantages
relevant to using interval analysis as an alternative numerical method in order to ob-
tain practically competent results for the analysis of kinematic properties of robotics
mechanical systems [8]. In this paper our intrench toward applying interval analy-
sis to the kinematic analysis can be summarized as follows [12]: (1) In contrast to
many other intelligent mathematical tools which would result in a lengthy compu-
tation process and may converge to a local optimum, interval analysis is not a black
box, since it requires to combine heuristics and numerical concepts to make it more
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effective, (2) It allows to find all the solutions with inequalities within a given search
space [13, 17] (3) For two and three-dimensional problem one can see the evolution
of the solutions and to monitor the procedure in order to have better insight into the
problem, (4) it allows to take into account uncertainties in the model of the robot
and (5) For the problem in which infinity norm are involved, interval analysis may
solve the problem more efficiently rather than other methods since infinity norm is a
non-analytical function and consequently mathematical operations are not tractable.

This paper aims at introducing a more practical workspace for the CDRPMs
in which the kinematic sensitivity is also taken into account while computing the
controllable workspace. To this end, upon blending these two concepts, a new
workspace is introduced which is referred to as Feasible Kinematic Sensitivity (FKS)
and can be also regarded as a performance index. FKS pertains at finding a part of
controllable workspace in which the kinematic sensitivity is less that a desired value.
As it is the case for kinematic sensitivity and controllable workspace, the mathemat-
ical framework to obtain FKS is based on interval analysis and, to do so, a systematic
approach is proposed.

The remainder of this paper is organized as follows. First, interval analysis is re-
viewed and the general concepts are introduced. Then based on the work presented
in [20], the general idea of kinematic sensitivity is reviewed. The paper follows by
exploring the concept of kinematic sensitivity by means of interval analysis upon
proposing some systematic algorithms where it is applied to 3-RPR PM and 4-RPR
redundant PM. Then the interval formulation of the controllable workspace is inves-
tigated for 3-DOFs CDRPMs with four cables. As the central subject of this paper,
feasible kinematic sensitivity workspace is introduced and examined for the case
studies. Finally, the paper concludes with some remarks to provide some insight to
the optimum synthesis of CDRPMs.

2 Background Materials

2.1 Interval Analysis

Interval analysis is amongst the numerical methods proposed in the literature that
allows to safely solve the problem, and to obtain a guaranteed result. The basic
principles of interval analysis are simple, where efficient implementation requires a
high expertise level. In interval analysis, one deals with intervals of numbers instead
of the numbers themselves [14]:

[X] =[x,x] = {x]xeRx<x <X} (1)

where x is the left endpoint and X is the right endpoint of the interval. By an n-
dimensional interval vector, we mean an ordered n-tuple of intervals:

X =(X1,...,Xn) (2)
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In interval analysis all variables are independently investigated [15]. Thus the output
range of interval function could be wider than the function span, but certainly the
answer region lies within the output range. Therefore applying interval analysis has
its own difficulties, but on the other hand the answer it gives is guaranteed, meaning
that negligible errors that result from mathematical operations such as rounding and
estimation, are not present. In this paper, interval analysis is not introduced in detail,
since it is beyond the scope of this study and reader are referred to [11, 15] for a more
comprehensive detail. It should be noted that all the interval algorithms proposed in
this paper are implemented in Matlab which uses the INTLAB package supporting
interval calculations.

2.2 Kinematic Sensitivity Indices

Kinematic sensitivity is defined as the maximum error that occurs in the Cartesian
workspace as a result of bounded errors in the joint space (||p|| < 1). In order to
obtain consistent unit indices, two indices have been defined in [2]:

Gus= max 0l and  opy= max [l ®
L ple= Pl =2 T

in which, p € R” represents small actuator displacements and x = [p, ¢] stands for
the pose of the end-effector. Moreover, ¢ = {2,o0} and f = {2,00} are respectively
the types of norm for which the constraint and the objective are expressed. From
the results obtained from [20], it can be inferred that two situations may correctly
represent the kinematic sensitivity, which will be used for the purposes of this paper:
(1) The constraint and objective functions are both expressed using eo-norms (¢ =
f =) and (2) The constraint and objective functions are expressed respectively
with co and 2-norms (¢ = oo, f = 2).

3 Investigation of Kinematic Sensitivity of Non-redundant
Planar Parallel Mechanisms

This section is devoted entirely to an overview on the computation of the kinematic
sensitivity of non-redundant planar PMs based on the results reported in [21, 22, 20]
and, as a case study, the so-called 3-RPR is considered'. As pointed out previously,
the two different situations explained above, i.e., (c = f = o0 and ¢ = and [ = 2),
are considered for computing the kinematic sensitivity. Although the concepts pre-
sented in this section is to the majority of intents and purposes the same as the one
presented in [20], it provides for the first time, the framework to compute the kine-

! Here and throughout this paper, R and P stands respectively for a revolute and prismatic joint
where the underlined joint is actuated.
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Fig. 1 A 3-RPR parallel
manipulator. Taken from [20].

matic sensitivity by using interval analysis. More specifically, the main objective of
this section is to lay down the essential for the rest of the paper by introducing an
interval-based algorithm which leads to obtain a region within the workspace of the
mechanism, referred to as feasible kinematic sensitivity workspace, where the kine-
matic sensitivity is less than a given value, oy. It is worth noting that the computation
of the constant-orientation workspace, reachable area of the moving platform for a
given orientation of the moving platform and given stroke of actuator, is integrated
in the proposed algorithm. As a geometrical point of view, the constant-orientation
workspace of a 3-RPR PM can be made equivalent to the intersection of six circles,
arisen from the minimum and maximum stroke of the prismatic actuators. This can
be readily obtained using interval analysis and due to its simplicity, the details of
such calculations are skipped in this paper. Furthermore, here and throughout this
paper, for the sake of simplicity, the constant-orientation workspace is referred to as
workspace.

Figure 1 represents schematically a 3-RPR parallel manipulator performing 3-
DOF where the pose of the end-effector is denoted by (x,y, ¢). Both fixed and mov-
ing platforms are considered as equilateral triangles that are encompassed by circles
with radius 1 and 5, respectively, where the center of each triangle is coincidence
on the circumambient circles centers. As it will be discussed latter on, from the re-
sults presented in [10] having equilateral triangles for the fixed base and moving
platform results in a circle for the singularity curve which considerably optimizes
the singularity-free workspace and is a definite asset in the practice. The Jacobian
matrix, K, with respect to the pose of the mechanism, (x,y, ¢), may be written in an
interval form, [K], as:

nix Ny (b] X n1) -k
K] =K(.DLIO). K= |no nay (b xm) -k 4
N3y N3y (b3 X 113) -k

In the above, b;, i = 1,2,3, denotes the position vector of point B; in the fixed
frame, and the unit vector along the i prismatic joint direction is denoted by
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Table 1 Pseudo-code for the calculation of the interval vertices of the polyhedron in a non-
redundant parallel manipulator.

Function: Compute-Vertex-Nonredundant([K])

t=1
forij=1:2
for i,=1:2

for i, 1=1:2
[templ=[1, (=1), (—1),..., (—1)m1]"
[Vertices(t)]=verifylss([K],[temp])
t=t+1

end

end
end

n, = [n,-x,n,-y,O]T. For a more comprehensive information regarding the kinematic
properties of these kind of PMs, readers are referred to [22, 20].

3.1 Kinematic Sensitivity with co-norms on Constraint and
Objective Function

In this case, since dealing with ¢ = oo for the constraint, the constraint inequal-
ity ||p]l < 1 can be replaced by ||Kx|| < 1, from the Jacobian relation. Inequal-
ity || Kx|| < 1 stands for a polyhedron with 2" vertices in R” where n represents
the DOF of the PMs under study. The first step toward calculating the kinematic
sensitivity for both co— or 2—norm consists of obtaining the vertices of the latter
polyhedron, which can be done by solving the inequality [K — K’] < 1. By us-
ing interval formulation of the Jacobian matrix, the intervals in which each vertices
of the polyhedron is bounded, can be computed. Therefore the combination of all
the interval vertices leads to interval formulation of the polyhedron. From the fact
that the polyhedrons are symmetric with respect to the origin, calculation of half of
them is sufficient. The pseudo-codes given in Table 1, provides the logic in chang-
ing the intervals of these vertices. Note that, the function verifylss([A],[B]) in the
pseudo-codes given in Table 1 is a function of intlab toolbox that solves the system
of equations [A].[X] = [B], in which [A] and [B] are interval matrices and [X] is a
interval vector.

In the case of a 3-RPR PM, the number of vertices of the hexahedron is 23 = 8
and because of being symmetric the calculation of four vertices is sufficient. As a
geometric stand point, in this case, using interval analysis to calculate the kinematic
sensitivity can be made equivalent to the map of the vertices to a cube that their
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Table 2 The proposed pseudo-code for the calculations of minimum and maximum kinematic
sensitivity in the workspace.

Input:([le [yl]7 ¢78~, Gd)
Output: (Lin 3 Lout 5 Lneg)

L ([x],v])
while L # 0
[K]=Compute-Jacobian-Matrix([X], Y], ¢)
[V]=Compute-Vertex-non-redundant([K])
if Feasible ([V],0,) then
Liy  (IX],[Y])
else if Out([V], o,) then
Low < ([X],[¥])
else if size([X],[Y]) > € then
L <+ Bisect ([X],[Y])
else
Lo  (1X],[¥))
end if
end while

dimensions in all the Cartesian directions are equal to the width of the calculated
interval of the corresponding vertex. Re-formulating the relations obtained in [20]
for the point-displacement and rotational kinematic sensitivities, when ¢ = f = oo,
for a given position in the specified interval in the direction of the pose of the mech-
anism, leads to the following for the maximum point-displacement and rotational
kinematic sensitivities:

max,... = max (mag([X]), mag((¥})) )

5

max oy, = max (mag((9i)) ©)

where mag(-) for its interval argument computes the distance of the farthest point
in the interval from the coordinates origin. Furthermore, X;,Y;, ¢; constitute the ele-
ments of the vectors [Vertices(t)] obtained from the pseudo-code presented in Table
1. Similarly, the minimum kinematic sensitivity of the inner points of the interval is
also calculated by:

minc,,, ., = max (mig([X;]), mig([¥])) 7

min Gy, = max (mig([¢)) ®)
where mig(+) for its interval argument stands for the distance of the nearest point in
the interval from the coordinates origin.

Table 2 provides the pseudo-code describing the interval formulation to obtain
the maximum and minimum kinematic sensitivity, Eqs. (5-8), where [x;] and [y]
stands for the workspace of the mechanism, L;, and L, represent the desired and
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Fig. 2 Point-displacement 2.5

FKS, the inside (green) re- 9
gion, of a 3-RPR PM with

¢=f=ocoand 6y =035 L5
for ¢ = 45. The dashed lines 1

represent the boundary of the 0.5
workspace. =0
-0.5
1

-1.5
-2

-2.
i52.5 2 -15-1 050,051 152 25

Fig. 3 Rotational FKS, the 2.5
inside (green) region, of a 2
3-RPR PM withc = f =

and 6, = 0.35 for ¢ = 45. L5
The dashed lines represent the 1
boundary of the workspace. 0.5

=0
-0.5
-1
-1.5
-2

-2.5
-25-2 -15-1 -05 0,051 152 25

undesired intervals of the workspace regarding to the criteria fixed for the kinematic
sensitivity, 0, respectively. Moreover, Ly involves the bound intervals, calculated
according to the € value. If the maximum value of kinematic sensitivity in the related
interval is less than the desired value, oy, the interval is certainly inside the desired
region and the function feasible ([V],0,) will return a value as one. Moreover, if
the minimum value of kinematic sensitivity in the related interval is certainly more
than the desired value, the interval is out of the desired region and the function
out ([V],04) will be activated. In the case that the workspace of the end-effector
is not sufficiently small for the kinematic sensitivity of the points to have a similar
behavior, the region should be split up into two intervals, in order that in the new
intervals one of the functions feasible([V], 0,) or out([V], 0,) becomes active. The
interval bisecting sequence pursues to the points that the remained intervals becomes
small enough with respect to €.

Figures 2 and 3 represent respectively the point-displacement and rotational kine-
matic sensitivity upon applying Eq. (5-8) and the pseudo-code presented in Table 2
for a given orientation of the moving platform, ¢ = Z. In the latter figures, the in-
side (green) region indicates a region that the 3-RPR robot of Fig. 1 has a kinematic
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Fig. 4 Point displacement 2.5

FKS, the inside (green) re- 9
gion, of a 3-RPR PM with

¢=oo, f=2and 65 = 0.35 L5
for ¢ = 45. The dashed lines 1

represent the boundary of the 0.5
workspace. = 0

-0.5
-1
-1.5
-2

-2.
—52.5 2 -15-1 050,051 152 25

sensitivity less than 0.35 and the outside (red) region, corresponds to the region cor-
responding to more than 0.35. As it can be observed outside (red) region is separated
by the dark (blue) boxes from the inside (green) one which means that interval anal-
ysis was not able to reach to a conclusion for these boxes. These boxes represent the
boundary of the FKS and it could be small as possible upon increasing the iteration.
From the results obtained in [10], since the fixed and moving frame are equilateral,
it can be also confirmed that the singularity curve is a circle centers at (0,0) with
a radius of 4.3507 for the 3-RPR PM under study. As it can deduced form Fig. 3,
the green region is inside the singularity circle and consequently is singularity-free.
This leads to have a conservative but safer constant-orientation workspace which is
singularity-free.

3.2 Kinematic Sensitivity with co-norm for the Constraint and
2-norm for the Objective Function

As aforementioned, for the calculation of the maximum and minimum of the kine-
matic sensitivity for this case, i.e., c =2 and f = oo, one should find the vertices of
the polyhedron which was fully described in the previous section. From the results
presented in [20], the kinematic sensitivity for ¢ = 2 and f = o in the interval form
can be formulated as follows:

max o, , = max (mag(\/X;?+¥?)) ©)

[EXEE)

mino,,,, = max4(mig( X2 +Y?2)) (10)

In this specific PM where the mechanisms performs only one rotational DOF then
the rotational kinematic sensitivity with infinity- and two-norm are identical. Figure
4 illustrates the point-displacement FKS, where o is less than 0.35.
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Fig. 5 A 4-RPR planar

CDRPM. A

A;

4 Investigation of Kinematic Sensitivity of Redundant Robots

From the study conducted in [20], it reveals that when computing the kinematic
sensitivity for redundant PM with respect to the co-norm constraint, the number of
hyperplanes increases and further confines polyhedral of constraint which is sought
at the outset. In fact appending redundant rows to the Jacobian matrix of the mech-
anism, will result into omission of farther vertices of constraint polyhedron and the
mechanism kinematic sensitivity reduces significantly. The latter implies avoiding
singular configurations within the workspace which can be regarded as a must for
the design of a PMs. Using the pseudo-code of Table 3, one can determine the in-
terval vertices of the hyperplanes in a redundant state. Once the interval vertices
are generated with respect to the latter pseudo-code, the calculation of kinematic
sensitivity is accomplished in the same way as the non-redundant PM explained in
Section 3. The output of this function (interval vertices) are valid when the product
of the rest of the Jacobian matrix rows and the computed vertices vector, is a subset
of interval [—1, 1]. For the reason of dependency in interval analysis this production
may result in an interval which could be wider than actual interval. Thus instead of
multiplying the intervals, it is recommended to multiply the midpoints of the inter-
vals in order to validate the computed vertices. In the pseudo-code of Table 3, n and
m represent respectively number of active joints and number of DOFs in workspace
of robot.

Figures 6, 7 and 8 represent respectively point-displacement and rotational FKS
of a redundant PM, in which the fixed and moving attachment points lies on squares
encompassed by circles 1 and 5 meters. The inside green region has a kinematic
sensitivity less than 0.3, o; = 0.3. It should be noted that, considering c; = 0.35,
as the previous section leads to cover the whole workspace. From the latter, it can
be concluded that in order to benefit from the whole workspace the kinematic sen-
sitivity of the mechanisms under study should be equal to 6; = 0.35. The foregoing
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Fig. 6 Point-displacement
FKS, the inside (green) re-
gion, of a 4-RPR PM with

¢ = f =o and o; = 0.35
for ¢ = Z. The dashed lines
represent the boundary of the
workspace.

Fig. 7 Rotational FKS, the
inside (green) region, of a
4-RPR PM with ¢ = f =
and o; = 0.35 for ¢ = Z.
The dashed lines represent the
boundary of the workspace.

Fig. 8 Point-displacement
FKS, the inside(green) region,
of a 4-RPR with ¢ = e and
f =2 and oy = 0.3 with

¢ = £. The dashed lines
represent the boundary of the
workspace.
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statement relates the workspace and design parameters to the kinematic sensitivity,
a performance index, which open some avenues toward the optimum design of PM.
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Table 3 The Pseudo-code for the calculations of interval vertices of polyhedron of constraint in a
redundant robot.

Function: Vertices=Compute- Vertex-Redundant([K])

t=1
forji=1:n—(m—1)
for jo=ji1+1:n—(m—2)

for ju=jm-1+1:n

(K=K, ], (K)o ). - [KGi, 1]

[Kyw] = [K] without column [K,,]

[KnVertices|=Compute-Vertex-Nonredundant([K,])

for 1:number of vertices of KnVertices

[vertex]=each of vertices of KnVertices
if —1 < mid([K,]) x mid([vertex]) < 1
vertices(t)=vertex
t=t+1
end
end
end

end
end

5 Feasible Kinematic Sensitivity in CDRPMs

The unidirectional constraint imposed by cables causes the workspace analysis of
CDRPMs to be always a crucial step in the design. As aforementioned, among sev-
eral types of workspace introduced in the literature for CDRPMs, the controllable
workspace is considered in this paper [26]. For controllable workspace analysis, the
analytic method proposed in [29] is used. In this method a set of external wrenches
is introduced and called fundamental wrenches in order to provide a physical inter-
pretation of controllable workspace. Moreover, an analytical method is developed to
determine the controllable workspace of redundant CDRPMs based on fundamental
wrenches. The proposed method is generally applicable to any cable manipulators
with any redundant cables as long as its Jacobian matrix is of full rank. The set of
fundamental wrench for cable manipulator with one degree of redundancy refers to
aset of n+ 1 vectors; each of them is equal to an opposite direction of column vector
of Jacobian transpose as [29]:

A= T = [A1As | |Ap ] () W= —Api= 1 n 1 (1)

In which A and J denote the structural and Jacobian matrix, respectively, and wy
is the fundamental wrench vector. According to the proposed theorem in [29], the
controllable workspace can be obtained when all the determinant of the following
matrix are positive.



Feasible Kinematic Sensitivity in CDPMs Based on Interval Analysis 245

Fig. 9 Controllable
workspace, the green region,
of a planar CDRPM with 4
cables.

'5_5_‘4_3_2_1312345

Fig. 10 FKS, the green re-
gion, of a 4-RPR CDRPM
with ¢ = and f =2 and
oy =03 with ¢ = Z.

4 -3 -2 -1 0 1 2 3 4 5
X

Ajj :det[Al...Aj,1 —W; Aj+1...A,',1A,'+1...An+1],i= L.,n+1i£j (12)

In the pseudo-code given in Table 5, the combination method to obtain the FKS
controllable workspace is shown. The approach is similar to interval formulation of
kinematic sensitivity in redundant manipulator, however, the constraint of control-
lable workspace is added at each iteration.

In Fig. 9, the inside (green) region illustrates the controllable workspace, while
in Fig. 10, the inside (green) region represents the FKS workspace. In fact, this
region is produced from blending controllable workspace and the area that has de-
sired kinematic sensitivity, i.e. oy = 0.3. As it can be clearly seen from this figures,
the interval analysis approach is capable to effectively combine two required kine-
matics characteristics in order to determine a suitable workspace for the robot. The
volume of feasible kinematic sensitivity may be used as a suitable measure for op-
timal design of such manipulators. In order to compare the computational cost of



246 S. A. Khalilpour, A. Zarif Loloei, H. D. Taghirad, and M. Tale Masouleh

Table 4 The proposed pseudo-code for the calculations of FKS controllable workspace of
CDRPMs.

Input:([le [YrL ‘pysv 04)
Output: (Lin, Lout Lneg)

L ([, [yi])
while L #£ 0
[K]=Compute-Jacobian-Matrix([X], Y], 9)
[V]=Compute-Vertex- redundant([K])
[A]=Compute-all Delta’s ([X],[Y],¢)
if Feasible ([V'],04) and all A are positive then
Lin < ([X],[¥])
else if Out([V],0,) or one A is negative then
Lout«+ ([X],[Y])
else if size([X],[Y]) > € then
L + Bisect ([XL[Y]
else
Lyeg < (IX1.IYD)
end if
end while

different methods, Table 4 summarizes the required time to calculate all the cases
explained in the paper which are performed on a laptop computer with Core i7 CPU
and 1.6GHz clock time. As it is seen in this table, the most time consuming method
is to determine FKS workspace. Although the computations time is suitable for one
time analysis of a given structure, if this method is to be used in an iterative opti-
mization routine, the computational cost will be the major limitation, and should be
significantly reduced. Current research is conducted to develop a suitable index for
such optimization routine, and to reduce the computational cost.

Table 5 Computation time for the calculation of various kinematic sensitivity indices, for all cases

c=2.

Robot type  Kinematic sensitivity norm of f £ Search Computation
area time (sec)

3-RPR Point-displacement oo 0.05 6.25 764

3-RPR Rotational oo 0.05 6.25 418

3-RPR Point-displacement 2 0.05 6.25 1348

4-RPR Point-displacement oo 0.05 6.25 815

4-RPR Rotational oo 0.05 6.25 513

4-RPR Point-displacement 2 0.05 6.25 1128

CDRPM Feasible kinematic sensitivity oo 0.1 25.0 1783
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6 Conclusions

This paper proposed a framework for the computation of feasible kinematic sensi-
tivity, a more practical constant-orientation workspace in which the kinematic sensi-
tivity is less than a given value, by means of interval analysis. The feasible kinematic
sensitivity for both point-displacement and rotation motion was explored. From the
previous studies conducted on kinematic sensitivity, a judicious combination of the
norms were used to express accurately the function and constraint expressions of
the optimization problem corresponding to the kinematic sensitivity analysis. For
the workspace of planar PMs the constant-orientation workspace was used, while in
the case of CDPMs, the controllable workspace was considered. As it is discussed in
the paper, for a given design, a minimum feasible kinematic sensitivity value can be
associated for which it can cover the whole workspace. Thus, ongoing works of this
study includes to use of the minimum feasible kinematic sensitivity, set by the de-
signer, as an optimization criteria to the end of optimum synthesis of the mechanism
for which the minimum feasible kinematic sensitivity is known.
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