
    
Abstract—The performance of SLAM based on unscented 

kalman filter (UKF-SLAM) and thus the quality of the estimation 
depends on the correct a priori knowledge of process and 
measurement noise. Imprecise knowledge of these statistics can 
cause significant degradation in performance. In this paper, the 
adaptive Neuro-Fuzzy has been implemented to adapt the matrix 
covariance process of UKF-SLAM in order to improve its 
performance. 

I. INTRODUCTION 
The simultaneous localization and mapping (SLAM) is a 
fundamental problem of navigation of a mobile platform in 
an environment where both the map of the environment and 
the localization of the mobile are unknown. There are many 
solutions to the SLAM problem [1]. The extended kalman 
filter is the oldest and the most popular approach to solve 
the SLAM (EKF-SLAM). In this approach, the extended 
kalman filter (EKF) is employed to estimate the state of 
vehicle and feature map [2]. The effectiveness of this 
approach lies on the fact that it holds a fully correlated 
posterior over robot poses feature map. However, the 
serious drawbacks of this approach are the linear 
approximations of non-linear functions and the derivation of 
Jacobians. As proved in [1-2], the EKF-SALM is 
inconsistent due to errors introduced during linearization. 
This introduces inaccurate maps with filter divergence. For 
the nonlinearity problem, a number of authors have applied 
the straight unscented kalman filter to SLAM problem [3-6]. 
The UKF-SLAM avoids linearization by parameterizing the 
mean and the covariance with a set of sigma points to which 
the nonlinear transformation is applied. As result, this 
approach improves the consistency over the EKF-SLAM [7-
10]. However, the performance of UKF-SLAM depends 
largely on the accuracy of knowledge of process covariance 
matrix and measurement noise covariance matrix [11-16]. In 
most application of UKF-SLAM these matrixes are 
unknown. On the other hand it is well known how poor 
estimates of noise statistics may seriously degrade the 
Kalman filter performance [11-15]. In this paper, adaptive 
Neuro-Fuzzy inference system supervise the performance of 
the UKF-SLAM with adjusts the process covariance matrix. 
The results show the performance of the proposed method 
outperforms UKF-SALM. The rest of this paper is organized 
as follows. In next section we briefly review the required 
background. The UKF-SLAM is described in section III. 
The main contribution of this paper is introduced in section 
IV, which presents the SLAM based on intelligent unscented 
kalman filter is proposed. The effectiveness of the proposed 
algorithm is demonstrated using simulation results in 
sections V.  

 
 

II. BACKGROUND 

A. The SLAM Problem 
The goal of SLAM is to simultaneously localize a robot and 
determine an accurate map of the environment. To describe 
SLAM, let us denote the map by Θ  and the pose of the robot 
at time t by ts . The map consists of a collection of features, 
each of which will be denoted by nθ and the total number of 
stationary features will be denoted by N . In this situation, 
the SLAM problem can be formulized in a Bayesian 
probabilistic framework by representing each of the robot’s 
position and map location as a probabilistic density function 
as [17]: 

( , | , , )t t t
tp s z u nΘ                                                              (1) 

      In essence, it is necessary to estimate the posterior 
density of maps Θ , and poses ts , given that we know the 

observation 1{ ,..., }t
tz z z= , the control input 

1{ ,..., }t
tu u u= and the data association tn . Here, data 

association represents the mapping between map points in Θ and observations in tz . The SLAM problem is then 
achieved by applying Bayes filtering as follows [17]: 
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Where 1( | , )t t tp s s u−  is the dynamics motion model and 

( | , , )t
t tp z s nΘ is the measurement model. The Extended 

Kalman Filter is a popular choice to approximate of the 
general Bayes filter. However, as mentioned previous, this 
approach has two serious drawbacks, namely the linear 
approximation of nonlinear functions and the calculation of 
Jacobin matrixes.  

B. The Unscented Kalman Filter 
Consider the general discrete nonlinear system: 
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+ = += +                                                                (4)                      

Where kx and ky  denote the state vector variable and 
observations at time k, f and h  are known possibly 
nonlinear functions. The kw and kv are the Gaussian white 
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process noise and measurement noise, respectively, with 
covariance: 

(0, )                             (0, )k k k kQ Rω υΝ Ν∼ ∼               (5) 
The unscented transformation (UT) forms the core of the 
UKF algorithm. In UKF, the state distribution is represented 
by the deterministically chosen sigma points which can 
capture specific mean and covariance of the distribution [18-
19]. The nonlinear function is applied to each of these points 
to yield a transformed sigma point, and then the predicted 
mean and covariance are calculated form the transformed 
sigma point. The UKF estimation can be described briefly as 
follows [18-19]: 
1) Initialization 

0 0

0 0 0 0 0

[ ]

[( )( ) ]T

x E x

P E x x x x

== − −                                              (6) 

2) Computing Sigma Points 
A set of 2 1n + weighted samples are chosen as follows: 

1 1 1 1[ , ( ( ) ) ]    1...2k k k k ix x N P i nχ λ− − − −= ± + =           (7) 
3) Time Update 
These sigma points pass through the process model and  
transformed sigma points is calculated as follow:  
 | 1 1( )k k kfχ χ∗ − −=                                                                 (8) 
Then, the first two moments of the density function of 

kx are computed by a weighted linear regression of the 
transformed sigma points: 
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where  
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And the weights are given by: 
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The parameterα determines the speed of the sigma points 
around x and usually set to1 4 1e α− ≤ ≤ . The constant β is 
used to incorporate part of the prior knowledge of the 
distribution of x and for Gaussian distribution 2β = is 
optimal. 
4) Measurement Update 
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                                                                                          (14)                      
The kalman gain matrix and state covariance update derived 
in the fashion familiar form EKF as follows 
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III. THE UKF-SLAM 
In the SLAM problem, the state vector aX  is composed of 
the vehicle states vX and the landmark’s states mX . 
Therefore, the estimates of total the total state vector aX , 

maintained in the form of its mean vector ˆ
aX  and the 

corresponding total error covariance matrix âP  is given as 
follows: 

ˆ ˆ ˆ[  ]T T T
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Where ˆ
vX  is mean estimation of the robot states (robot 

pose), v̂P  is error covariance matrix associated with ˆ
vX , 

ˆ
mX is mean estimate of the feature positions and m̂P is error 

covariance matrix associated with ˆ
mX . The map is defined 

in terms of the position estimates of these statistic features 
and v̂mP in (17) is cross correlation between vehicle and 
map. The vehicle pose is initialized assuming that there is no 
observed feature for now and there is not uncertainty in the 
starting pose of the vehicle i.e. 

a v
ˆ ˆ ˆ ˆ0                   P =P 0a vX X= = =                                 (18) 

When vehicle moving, ˆ
vX and v̂P become non-zero values. 

In subsequent iterations, when the first observation is carried 
out, new features are expected to be initialized and ˆ

mX and 

m̂P  appear for the first time. Therefore, the size of ˆ
aX and 

aP̂  increases and this process is continued iteratively. For 
implementation UKF-SLAM, the first step is prediction. To 
predict over a time step k to 1k + , the zeroth sigma 
point, [0]

1
a
kχ − , is defined equal to the current state and a father 

2n sigma points are determined by adding and subtracting 
in the turn the transpose of the ith  row of the square root of 

1
ˆa
kP − to current mean. Therefore, a symmetric set of 



  

2 1n + sigma points [ ]
1

a i
kχ −  for augmented state as follows [8-

9]: 
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Each sigma point [ ]
1

a i
kχ −  contains the state and control noise 

components given by: 
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The set of sigma points [ ]
, 1
i

v kχ −  is transformed by the motion 

model using the current control ku with the added model 

control noise component  [ ]
1

u i
kχ −  of each sigma point 
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Also, we have for features equation as following: 
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The first two moments of the predicted state are computed 
by a linear weighted regression of the transformed sigma 
points [ ]

1
a i
kχ − as following: 
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Here, the parameterα determines the speed of the sigma 
points and usually set to 1 4 1e α− ≤ ≤ . Also, the parameter β  is used to incorporate the knowledge of the higher order 
moments of the posterior distribution. For a Gaussian prior, 
the optimal choice is 2β = . Data association provides the 
observation kz statistically compatible and related to the 
augmented state vector by a non-linear function kh as 
follows: 
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k k k kz h X −=                                                              (26)                                                                
 Hence, the updated state estimate and its corresponding 
covariance matrix can be computed by following equations: 
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IV. SLAM BASED ON INTELLIGENT UNSCENTED KALMAN 
FILTER  
The UKF-SLAM, assumes complete a priori knowledge of 
the process and measurement noise statistics (matrices 

kQ and kR respectively). However, in a real-life UKF-
SLAM, these matrixes are unknown. An incorrect a prior 
knowledge of kQ and kR may lead to performance 
degradation and it can even lead to practical divergence [11-
15]. One of the efficient ways to overcome the above 
weakness is to use an adaptive algorithm. We assume that 
the noise covariance kR is completely known. Hence, the 
algorithm to estimate the process noise covariance kQ can 
be derived. The adaptation is adaptively adjusting the 
process noise covariance matrix kQ by using adaptive 
neuro-fuzzy inference System (ANFIS). In this case, an 
innovation based adaptive estimation (IAE) algorithm to 
adapt the process noise covariance matrix kQ  is derived. 
The technique known as covariance-matching is used [15], 
[16]. The basic idea behind this technique is to make the 
actual value of the covariance of the residual to be consistent 
with its theoretical value [15-16]. The innovation sequence 

ˆ( )k k kr z z= − has a theoretical covariance that is obtained 
from the UKF algorithm: 
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The actual residual covariance ˆ
kC can be approximated 

through averaging inside a moving window of size mN as 
following: 
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If the actual value of covariance ˆ
kC  has discrepancies with 

its theoretical value, then the diagonal elements of kQ based 
on the size of this discrepancy can be adjusted. The size of 
discrepancy is given by a variable called the degree of 
mismatch ( kDOM ), defined as: 

ˆ
k k k

DOM S C= −                                                                  (35) 
It may be deduced from equation (33) that a variation in 

kQ will affect the value of kS Thus, if a mismatch between 

kS and ˆ
kC is observed then a correction can be made 

through augmenting or diminishing the value of kQ .The 
tree general adaptation rules are defined as following: 
1. If (1,1)kDOM  is Low and (2, 2)kDOM  is Low then kQ is 
High 



  

2. If (1,1)kDOM  is Zero and (2, 2)kDOM is Zero then kQ  is 
Zero 
3. If (1,1)kDOM is High and (2, 2)kDOM  is High then 

kQ is Low 
Then kQ is adapted in this way  

k k kQQ Q= ∆                                                                       (36) 
Where kQ∆ is the ANFIS output and (1,1)kDOM  and 

(2, 2)kDOM are ANFIS input. The ANFIS model has been 
considered as a two-input-single-output system as Fig.1. The 
parameters of conclusion part of ANFIS are trained using 
the steepest gradient descent. Fig.2 shows the robot 
trajectory and landmark location. The star points (*) depict 
the location of the landmarks that are 
known and stationary in the environment. The kinematics 
equations for the mobile robot are as follows: 
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Where ( ,x y ) is the Cartesian coordinates, φ  is the 
orientation respective to the global environment, B is the 

base line of the vehicle and [ ]Tu V γ= is the control input 
at time t consist of a velocity input  V and a steer inputγ . 

The process noise 
T

vv v v γ =   is assumed to be Gaussian. 

The vehicle is assumed to be equipped with a range-bearing 
sensor that provides a measurement of range ir and bearing 

iθ  to an observed feature iρ relative to the vehicle. The 
observation z of feature iρ in the map can be expressed as: 
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Where ( , )i ix y  is the landmark position in map and [ ]TrW θω ω= relates to observation noise. The robot 
moves at a speed 3m/s and with a maximum steering angle 
30 deg. Also, the robot has 4 meters wheel base and is 
equipped with a range-bearing sensor with a maximum 
range of 20 meters and a 180 degrees frontal field-of-view. 
The control noise is 0.3 m/svσ =  and 3oγσ = . A control 
frequency is 40 HZ  and observation scans are obtained 
at 5 HZ . The measurement noise is 0.1 m in range and 1o in 
bearing. For evaluate proposed method the performance of it 
is compared with UKF-SLAM, we consider the situation 
where process noise is wrongly considered. The 
performance of the proposed method is compared with 
classical UKF-SLAM where its process covariance matrix 

kQ  is kept static throughout the experiment in two 
environments: sparse environment with 35 landmarks and 
dense environment with 75 landmarks.  

 

 
Fig. 1.The adaptive Neuro-fuzzy for tuning kQ  

V. SIMULATION RESULTS 
Simulation experiments have been carried out to evaluate 
the performance of the proposed approach in comparison 
with EKF-SLAM. The proposed method has been tested for 
the benchmark environment, with varied number and 
position of the landmarks, available in [20].  
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Fig. 2.The experiment environment: The landmark positions and path of 
robot. 
 
Fig.3 and Fig.4 show the performance of the two algorithms. 
As observed, SLAM based on Adaptive Neuro-Fuzzy UKF 
is more accurate than EKF-SLAM. This is because proposed 
method adaptively tuned the process covariance matrix kQ  
and converges to the actual covariance matrix kQ  while 
covariance matrix measurement kQ  in UKF-SLAM is kept 
fixed over time. 

ΠΠΠΠΠΠΠΠ Π Π 

Π Π Π Π 

Π Π 

ΣΣ / 
(1,1)kDOM

1w  

25w  Layer 1 Layer 2 Layer 3 Layer 4 Layer 5(2,2)kDOM

kQ∆



  

 
(a) 

-150 -100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

X(m)

Y(
m

)

True
Proposed Method
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Fig. 3. Estimated robot path and estimated landmark with true robot path 
and true landmarks (with 35 landmarks):(a) UKF-SLAM (b) proposed 
method 
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(b) 

Fig. 4. Estimated robot path and estimated landmark with true robot path 
and true landmarks (with 75 landmarks):(a) UKF-SLAM (b) proposed 
method 

VI. CONCLUSION 
The preset paper has proposed SLAM based on intelligent 
unscented kalman filter. The simulation results are shown 
that while the UKF-SLAM showed unreliable performance, 
in proposed method, proposed method can provide robust 
and accurate performance in each sample situation in each 
case study.  

REFERENCES 
[1]  M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-

Whyte and M. Csorba, A solution to the simultaneous localization 
and map building (SLAM) Problem, IEEE Trans. Robot. 
Automat.vol.17, no.3, pp.229-241, Jun. 2001 

[2]  S. J. Julier and J. K. Uhlmann, A counter example to the theory of 
simultaneous localization and map building, in IEEE Int. Conf. 
Robot. Automat.و Seoul, May 2001, pp. 4238–4243. 

[3]  R. Martinez-Cantin and J. A. Castellanos, Unscented SLAM for 
large scale outdoor environments, In IEEE Int. Conf. on Intelligent 
Robots and Systems, pages 3427-3432, Aug. 2005.  

[4]  G.P. Huang, A. I. Mourikis and S.I. Roumeliotis, On the Complexity 
and Consistency of UKF-based SLAM, in IEEE Int. Conf. on 
Robotics and Automation (ICRA'09), Kobe, Japan, May 12-17 2009, 
pp. 4401-4408  

[5]  L.Zhang, X.Meng and Y.Chen, Unscented Transform for SLAM 
Using Gaussian Mixture Model with Particle Filter, in Int. Conf. on 
Electronic Computer Technology, 2009. 

[6]  J.Zhu, N.Zheng, Z.Yuan, Q.Zhang and X.Zhang, Unscented SLAM 
with Conditional Iterations, Intelligent Vehicles Symposium, 2009 
IEEE, 134 - 139. 

[7]  S.Holmes, G.Klein and D.Murray, A Square Root Unscented 
Kalman Filter for visual monoSLAM, IEEE Int. Conf. on Robotics 
and Automation Pasadena, CA, USA, May 19-23, 2008 

[8]  S.Holmes, G.Klein and D.Murray, An O(N2) Square Root Unscented 
Kalman Filter for Visual Simultaneous Localization and Mapping, 
IEEE Trans. ON Pattern Analysis and Machine Intelligence,2008. 

[9]  K.Shojaie, A.Shahri, Iterated Unscented SLAM Algorithm for 
Navigation of an Autonomous Mobile Robot, IEEE/RSJ Int. Conf. 



  

on Intelligent Robots and Systems Acropolis Convention Center 
Nice, 2008. 

[10]  J.Andrade-Cetto, T.Vidal-Calleja, and A.Sanfeliu,” Unscented 
Transformation of Vehicle States in SLAM”, in the IEEE Int. Conf. 
on Robotics and Automation Barcelona, Spain, April 2005. 

[11]  Y.Shi, C.Han and Y.Liang, Adaptive UKF for Target Tracking with 
Unknown Process Noise Statistics, in 12th Int. Conf. on Information 
Fusion Seattle, WA, USA, July 6-9, 2009. 

[12]  Z.Jiang, Q. Song, Y.He and J.Han,” A Novel Adaptive Unscented 
Kalman Filter for Nonlinear Estimation”, in the 46th IEEE Conf. on 
Decision and Control New Orleans, LA, USA, Dec. 12-14, 2007. 

[13]  Q.Song , J.Qi and J.Han, An Adaptive UKF Algorithm and Its 
Application in Mobile Robot Control, in IEEE Int. Conf. on 
Robotics and Biomimetics, December 17 - 20, Kunming, China, 
2006. 

[14]  A.Sage and G W. Husa, Adaptive Filtering with Unknown Prior 
Statistics, in Joint Automatic Control Conf, pp. 760-769, 1969. 

[15]  R. K. Mehra, On the identification of variances and adaptive Kalman 
filtering, IEEE Trans. Autom. Control, vol. AC-15, no. 2, pp.175–
184, Apr. 1970. 

[16]  R. J. Fitzgerald, Divergence of the Kalman filter, IEEE Trans. 
Autom. Control, vol. AC-16, no. 6, pp. 736–747, Dec. 1971. 

[17]  S. Thrun, M. Montemerlo, D. Koller, B.Wegbreit, J.Nieto, E. Nebot, 

“FastSLAM: An efficient solution to the simultaneous Localization 

and mapping problem with unknown data association”, Journal of 

Machine Learning Research, 2004. 

[18]  R. Van der Merwe and E.Wan, The square-root Unscented Kalman 
filter for state and parameter estimation,  In IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, 2001, 
volume 6, pages 3461 – 3464, 2001. 

[19]  E.Wan, R.Van Der Merwe, The Unscented Kalman filter for 
nonlinear estimation, in Adaptive Systems for Signal Processing, 
Communications, and Control Symposium, Lake Louise, Alta, 
Canada,October 01-04, 2000, pp.153-158,doi: 
0.1109/ASSPCC.2000.882463. 

[20]  Available:http://www.personal.acfr.usyd.edu.au/tbailey/software/ind
ex.html. 

 
 
 
 


