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FULL PAPER

An intelligent UFastSLAM with MCMC move step

Ramazan Havangi*, Mohammad Ali Nekoui, Hamid D. Taghirad and Mohammad Teshnehlab

Faculty of Electrical and Computer Engineering, Department of Systems and Control, K.N. Toosi University of Technology, Tehran, Iran

(Received 29 February 2012; accepted 24 July 2012)

FastSLAM is a framework for simultaneous localization and mapping (SLAM). However, FastSLAM algorithm has two
serious drawbacks, namely the linear approximation of nonlinear functions and the derivation of the Jacobian matrices.
For solving these problems, UFastSLAM has been recently proposed. However, UFastSLAM is inconsistent over time
due to the loss of particle diversity that is caused mainly by the particle depletion in the resampling step and incorrect a
priori knowledge of process and measurement noises. To improve consistency, intelligent UFastSLAM with Markov
chain Monte Carlo (MCMC) move step is proposed. In the proposed method, the adaptive neuro-fuzzy inference system
supervises the performance of UFastSLAM. Furthermore, the particle impoverishment caused by resampling is restrained
after the resample step with MCMC move step. Simulations and experiments are presented to evaluate the performance
of algorithm in comparison with UFastSLAM. The results show the effectiveness of the proposed method.

Keywords: UFastSLAM; Markov chain Monte Carlo; adaptive neuro-fuzzy inference system (ANFIS)

1. Introduction

The simultaneous localization and mapping (SLAM) is a
fundamental problem of mobile robots to perform auton-
omous tasks such as exploration in an unknown environ-
ment. It represents an important role in the autonomy of
a mobile robot. The two key computational solutions to
the SLAM problem are EKF (extended Kalman filter)-
SLAM and FastSLAM.[1] The EKF-SLAM approach is
the most popular one to solve the SLAM problem. How-
ever, EKF-SLAM suffers from two major problems: the
computational complexity and data association.[1]

Recently, the FastSLAM algorithm has been intro-
duced as an approach to solve the SLAM problem.[1–3]
The two versions of FastSLAM can be found in litera-
tures, namely FastSLAM1.0 and FastSLAM2.0.[1,3] In
the FastSLAM algorithm, particle filter (PF) is used to
estimate the robot pose, and EKF is used to estimate the
location of the landmarks.[1] The key feature of
FastSLAM is that the data association decisions can be
determined on a per-particle basis, and hence different
particles can be associated with different landmarks.
Each particle in FastSLAM may even have a different
number of landmarks in its respective map.[1–3] This
characteristic gives FastSLAM the possibility of dealing
with the multi-hypothesis association problem. The
ability to pursue multiple data associations makes
FastSLAM significantly more robust than EKF-SLAM.
[1] The other advantage of FastSLAM over EKF-SLAM

is that PFs can cope with nonlinear and non-Gaussian
robot motion models, whereas EKF approaches
approximate such models via linear functions.

There have been many researches on FastSLAM.[4–9]
However, FastSLAM has some drawbacks which are the
derivation of the Jacobian matrices and the linear approxi-
mations of the nonlinear functions.[9–13] To overcome
these problems, a number of authors have proposed
UFastSLAM.[9–13] UFastSLAM overcomes the draw-
backs caused by linearizations in the FastSLAM frame-
work. In UFastSLAM, the linearization process with
Jacobian calculations is removed by applying the
unscented transformation.[14,15] This approach can
achieve more consistency for longer time periods with
respect to FastSLAM.[8,9] However, the resampling pro-
cess decreases the diversity of particles by throwing away
some particles and duplicating others multiple times. The
resampling step causes the particles to share a common
history, and new observations cannot affect the locations
of observed features.[4–6] Thus, keeping the diversity of
particles is important for reliable loop closing and consis-
tent map building in UFastSLAM. When particles lose
their diversity, they tend to underestimate their own
uncertainty, and this will cause the inconsistency of
UFastSLAM. Therefore, we require a procedure to intro-
duce sample variety after the resampling step without
affecting the validity of the posterior estimation. More-
over, unscented Kalman filter (UKF) and consequently
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UFastSLAM can only achieve suitable consistency under
the assumption that some information has to be known as
a priori of the process and measurement noise covari-
ances. In real-life application, these matrices are unknown
and on the other hand, it is well known that the poor esti-
mations of noise statistics may seriously degrade the UKF
performance.[16–20]

To overcome the drawbacks of UFastSLAM, this
paper proposes a new probabilistic framework called
intelligent UFastSLAM with Markov chain Monte Carlo
(MCMC) move step. In this approach, adaptive
neuro-fuzzy inference system (ANFIS) supervises the
performance of UFastSLAM and MCMC move step is
used to increase the diversity of the particles after the
resampling step.

The rest of the paper is as follows: Section 2 intro-
duces the SLAM problem and reviews UFastSLAM.
Section 3 presents the proposed algorithm. The effective-
ness of the proposed algorithm is demonstrated using
simulation and experimental results in Section 4.

2. Background: UFastSLAM

To describe SLAM, let us denote the robot pose at time
t by st and the map by �. The map consists of a collec-
tion of features, each of which will be denoted by hn
and the total number of stationary features will be
denoted by N. The SLAM problem can be formulized in
a Bayesian probabilistic framework as [1]:

p(st;�jzt; ut; nt) (1)

where st ¼ fs1; . . . ; stg is the robot path, zt ¼
fz1; . . . ; ztg is the observation, ut ¼ fu1; . . . ; utg is the
control input, and nt ¼ fn1; . . . ; ntg is the data associa-
tion. FastSLAM is an efficient algorithm for the SLAM
problem that is based on a straightforward factorization
as [1–3]:

p(st;�jzt; ut; nt) ¼ p(stjzt; ut; nt)
YN
n¼1

p(hnjst; zt; ut; nt) (2)

The FastSLAM algorithm implements the robot path
posterior p(stjzt; ut; nt) using a PF, and N the landmark
posteriors p(hnjst; zt; ut; nt) are realized by a parametric
filter (i.e. EKF or UKF). Each particle in FastSLAM-is
composed of a robot path and a set of feature locations
with their covariance as:

S½m�
t ¼ st;½m�; l½m�

1;t ;R
½m�
1;t ; . . . ; l

½m�
N ;t;R

½m�
N ;t

h i
(3)

where ½m� Z is the index of the particles, st;½m� is the mth

particle’s path estimate, l½m�N ;t and R½m�
N ;t are the mean and

the covariance of the Gaussian distribution representing

the Nth feature location, attached to the mth particle. In
UFastSLAM, a new probabilistic framework is presented
to overcome the drawbacks caused by linearization in
FastSLAM.[9] UFastSLAM computes the proposal distri-
bution by measurement updates of the UKF in the sam-
pling step and updates each feature state by UKF
without calculating the Jacobian matrix of an observation
model.[9] The algorithm of UFastSLAM consists of the
robot pose estimation, feature estimation, feature initiali-
zation, and calculation of the importance weights. The
details of UFastSLAM are summarized in the following
subsections.

2.1. Robot pose estimation

In UFastSLAM, the robot pose st is sampled as:

st � q(stjst�1;½m�; zt; ut; nt) (4)

where q is the proposal distribution. To generate the
proposal distribution, an augmented state and augmented
covariance matrix is formed by appending the mean and
covariance of process noise vector. Assuming the mean
of process noise is zero, the augmented state and
covariance matrix is as follows:

sa½m�t�1jt�1 ¼ s½m�t�1jt�1

0

� �
Pa½m�
t�1jt�1 ¼ P½m�

t�1jt�1 0
0 Qt

� �
(5)

where sa½m�t�1jt�1 is the augmented state, Pa½m�
t�1jt�1 is the

augmented covariance matrix, Qt is the control noise

covariance, s½m�t�1jt�1 is the mean and P½m�
t�1jt�1 is the

covariance of the robot pose at time t � 1. A symmetric
set of 2nþ 1 sigma points is sampled from the
augmented state as:

da½0�½m�t�1jt�1 ¼ sa½m�t�1jt�1

da½i�½m�t�1jt�1 ¼ sa½m�t�1jt�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)Pa½m�

t�1jt�1

q� �
i

i ¼ 1; . . . ; n

da½i�½m�t�1jt�1 ¼ sa½m�t�1jt�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)Pa½m�

t�1jt�1

q� �
i

i ¼ nþ 1; . . . ; 2n

(6)

where the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)Pa½m�

t�1jt�1

q� �
i

represents ith

column of the matrix
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)Pa½m�

t�1jt�1

q
, n is the dimen-

sion of augmented state and k is a scaling parameter.

Each sigma point da½i�½m�t�1jt�1 contains the robot pose and a

control noise, which can be represented as follows:

da½i�½m�t�1jt�1 ¼ d½i�½m�t�1jt�1 du½i�½m�t�1

h iT
(7)

The set of sigma points da½i�½m�t�1jt�1 is transformed by the
motion model as:

2 R. Havangi et al.
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�s½i�½m�tjt�1 ¼ f d½i�½m�t�1jt�1; ut þ du½i�½m�t�1

� �
(8)

where f is the nonlinear motion function and �s½i�½m�tjt�1 is its
transformed sigma point. The transformed points are

used to compute the predictive mean s½m�tjt�1 and

covariance P½m�
tjt�1 of the robot pose as follows:

s½m�tjt�1 ¼
X2n
i¼0

x½i�
g �s

½i�½m�
tjt�1 (9)

P½m�
tjt�1 ¼

X2n
i¼0

x½i�
c �s½i�½m�tjt�1 � s½m�tjt�1

� �
�s½i�½m�tjt�1 � s½m�tjt�1

� �T
(10)

where the weights x½i�
g and x½i�

c are as:

x½0�
g ¼ k

(nþk)x
½0�
c ¼ k

(nþk) þ (1� a2 þ b)

x½i�
g ¼ x½i�

c ¼ k
2(nþk) (i ¼ 1; . . . ; 2n)

(11)

The constant a is usually set to a small positive value
(e.g. 10�4 � a � 1) and the parameter b is used to incor-
porate the knowledge of the posterior distribution. When
some features were observed, the predicted measurement

�z½m�t and Kalman gain K ½m�
t are calculated as:

f½i�½m�t ¼ h �s½i�½m�tjt�1; l
½m�
k;t�1

� �
�z½m�t ¼P2n

i¼0
w½i�

g f
½i�½m�
t

(12)

P½m�
tt ¼P2n

i¼0
w½i�

c f½i�½m�t � �z½m�t

� �
f½i�½m�t � �z½m�t

� �T
þRt

P½m�
dt ¼P2n

i¼0
x½i�

c �s½i�½m�tjt�1 � s½m�tjt�1

� �
f½i�½m�t � �z½m�t

� �T
K ½m�

t ¼ P½m�
dt P½m�

tt

� ��1

(13)

where h(:) is the observation model. The measurement is

employed to update the predicted pose mean s½m�tjt�1 and

the covariance P½m�
tjt�1 as follows:

s½m�tjt ¼ s½m�tjt�1 þ K ½m�
t zt � �z½m�t

� �
P½m�
tjt ¼ P½m�

tjt�1 � KtP½m�
tt K ½m�

t

� �T (14)

where zt is the true measurement. From the Gaussian dis-
tribution generated by the estimated mean and covariance
of the vehicle, the state of each particle is sampled as:

st � N st;s
½m�
tjt ;P

½m�
tjt

� �
(15)

when there is no observation, the robot pose is predicted
without the measurement update using (9) and (10). If
many features are observed at the same time, (14) is
repeated for each observed landmark and the mean and

the covariance of the robot pose are updated based on
the previously updated one.

2.2. Feature update

The feature update step uses the observations to update
the location of the landmark nt that already registered in
the map. A set of sigma points are sampled from the
observed feature as:

v½0�½m� ¼ l½m�
nt ;t�1

v½i�½m� ¼ l½m�
nt ;t�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)R½m�

nt ;t�1

q	 

i

(i ¼ 1; . . . ; n)

v½i�½m� ¼ l½m�
nt ;t�1 � (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)R½m�

nt ;t�1

q
)i (i ¼ nþ 1; . . . ; 2n)

(16)

where l½m�nt ;t�1 and R½m�
nt ;t�1 are the mean and covariance

matrix of the nth feature that is registered in feature

initialization step. The predicted measurement ẑ½m�t and

Kalman gain �K ½m�
t are calculated as:

�Z ½i�½m�
t ¼ h v½i�½m�; s½m�tjt

� �
(i ¼ 0; . . . ; 2n)

ẑ½m�t ¼P2n
i¼0

x½i�
g
�Z ½i�½m�
t

(17)

�S½m�
t ¼P2n

i¼0
x½i�

c
�Z ½i�½m�
t � ẑ½m�t

� �
�Z ½i�½m�
t � ẑ½m�t

� �T
þ Rt

�R½m�
t ¼P2n

i¼0
x½i�

c v½i�½m� � l½m�
nt ;t�1

� �
�Z ½i�½m�
t � ẑ½m�t

� �T
�K ½m�
t ¼ �R½m�

t
�S½m�
t

� ��1

(18)

Finally, the mean l½m�nt ;t and the covariance R½m�
nt ;t of the

ntth feature are updated as follows:

l½m�
nt ;t ¼ l½m�

nt ;t�1 þ �K ½m�
t zt � ẑ½m�t

� �
R½m�

nt ;t
¼ R½m�

nt ;t�1 � �K ½m�
t
�S½m�
t

�K ½m�
t

� �T (19)

2.3. Feature initialization

When a new feature is observed for first time, it should
be initialized. The feature mean l½m�n;t and the feature

covariance R½m�
n;t are initialized as a function of the robot

pose s½m�t and measurement zt as follows [8,9]:

w ¼ zt zt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)Rt

p
zt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)Rt

p� �
�M ½i�½m�
t ¼ h�1 w½i�½m�; s½m�t

� �
(i ¼ 0; . . . ; 2l)

l½m�
nt ;t ¼

P2l
i¼0

x½i�
g
�M ½i�½m�
t

R½m�
nt ;t

¼P2l
i¼0

x½i�
c

�M ½i�½m�
t � l½m�

nt ;t

� �
�M ½i�½m�
t � l½m�

nt ;t

� �T
(20)
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2.4. Calculation of the importance weight

The importance weight for each particle is computed by:

w½m�
t ¼ w½m�

t�1

p ztjs½m�t

� �
p s½m�t js½m�t�1; ut
� �

N st;s
½m�
t ;P½m�

t

� � (21)

Since the variance of the importance weights increase
over time,[21,22] particles are resampled according to
their weights. In the resampling process, particles with
low weights are eliminated and particles with high
weights are multiplied.

3. Intelligent UFastSLAM with MCMC move step

In this section, to increase of consistency, the intelligent
UFastSLAM with MCMC move step is presented. A
filter is called consistent if its state estimation errors
satisfy the following equations [23]:

E½st � ŝtjt�,E½et� ¼ 0 (22)

E(½st � ŝtjt�½st � ŝtjt�T ) ¼ E½eteTt � ¼ P̂tjt (23)

where fŝtjt; P̂tjtg are the estimated mean and covariance
of states at time t, respectively. In above equations, con-
dition (25) is the unbiasedness requirement for estimates,
while (26) is covariance matching requirement. Ideally,
in order to measure the consistency of a filter, one would
compare its estimate with the probability density function
(PDF) obtained from an ideal Bayesian filter. This is not
practical when PDF is not available. However, if the true
state st is known, we can use the normalized estimation
error squared (NEES) to carry out the consistency test as
[4]:

et ¼ (st � ŝtjt)
TP�1

tjt (st � ŝtjt) (24)

where st is the ground truth. The consistency is evalu-
ated by performing multiple Monte Carlo runs and com-
puting the average NEES. Given NR runs, the average
NEES is computed as:

�et ¼ 1

NR

XNR

i¼1

eit (25)

Considering a consistent linear-Gaussian filter, NR�et has
a v2 density with NR dim (st) degrees of freedom. Details
about measuring consistency of a filter via the average
NEES can be found in [23]. In UFastSLAM, UKF is
used to design the proposal distribution and the estima-
tion of features. On the other hand, the consistency of
UKF relies on the system model. This model consists of

the state equation, the measurement estimation and a
priori knowledge of the process and measurement noise
statistics (i.e. Qt and Rt, respectively). This is because
the conditional PDF of the state st at time t is as:

p(stjz0:t) ¼ N (st; ŝtjt; P̂tjt) (26)

If this model is completely accurate, Equation (29) holds
exactly. Since all models contain some approximations in
practice and as, a priori knowledge of the process and
measurement noise statistics is unknown in real-life appli-
cations, there is a mismatch between estimated PDF with
actual PDF. This problem affects the consistency of filter.

In addition, since the variance of the importance
weights can increase over time, it is impossible to avoid
the degeneracy phenomenon. In this situation, resampling
is in need. Although the resampling step reduces the
effects of the degeneracy problem, it causes other practi-
cal problems. Whenever resampling is performed, an
entire pose history and map hypothesis is lost forever.
This leads to a loss of diversity among the particles rep-
resenting past poses and consequently erodes the statis-
tics of the landmark estimates conditioned on these past
poses. As time goes on, the number of distinct particles
and consequently the covariance of them will decrease,
which would lead to inconsistency of the filter. To solve
these problems, statistics is tuned using ANFIS and the
particle impoverishment induced by resampling is
averted with MCMC move step.

3.1. Tuning of statistics using ANFIS

As mentioned, a limitation in applying UFastSLAM to
practical application is that a priori knowledge of the
process and measurement noise covariance matrices are
assumed to be available, which is difficult in real-world
problems due to the fact that the noise statistics may
change with time. An incorrect a priori knowledge of Qt

and Rt may lead to the performance degradation.[16–20]
One of the efficient ways to overcome this weakness is
to use an adaptive algorithm. The benefit of the adaptive
algorithm is that it keeps the covariance consistent with
the real performance. Since features are static, the pro-
cess noise covariance Qt is assumed completely known.
Hence, the adaptive algorithms to adjust the measure-
ment noise covariance Rt can be derived. In general, the
two major approaches to adapt Kalman filter are innova-
tion adaptive estimation (IAE) and multiple model adap-
tive estimation.[16–20] In this paper, the IAE approach
is used to adjust Rt. This technique is known as covari-
ance matching. The basis of this technique is to make
the actual value of the covariance of the innovations
sequence to be consistent with its theoretical value. From
the incoming measurement zt and the predicted
measurement ẑt, the innovation sequence rt is defined as:

4 R. Havangi et al.
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rt ¼ (zt � ẑt) (27)

where ẑt is:

ẑt ¼
X2n
i¼0

x½i�
g
�Z ½i�
t (28)

The innovation sequence denotes the discrepancy between
the predicted and the actual measurement. It represents the
additional information available to the filter as a conse-
quence of the new observation zt. The weighted innova-

tion acts as a correction to the predicted estimate l½m�nt;t�1 to

form the estimation of l½m�nt;t . The theoretical covariance of
innovation sequence St is as follows:

St ¼
X2n
i¼0

x½i�
c

�Z ½i�
t � ẑ½m�t

� �
�Z ½i�
t � ẑt

� �TþRt (29)

where �Z ½i�
t is:

�Z ½i�
t ¼ h(v½i�; st) (30)

The actual covariance of innovation sequence Ĉk is
approximated by the sample covariance through averag-
ing a moving estimation window of size Nw as follows:

Ĉt ¼ 1

N

Xt

i¼i0

(rTi ri) (31)

where io ¼ t � Nw þ 1 represents the first sample of the
estimation window. The window size Nw is chosen
empirically to give some statistical smoothing. To mini-
mize the discrepancy between the actual covariance of
the innovation sequence and the theoretical value, the
covariance Rt is tuned to correct it. For this purpose, a
new variable DOMt called a degree of matching (DOM)
is defined as:

DOMt ¼ St � Ĉt (32)

The variable DOMt indicates the extent of discrepancy
between the actual value and the theoretical one. The
logic of the adaptation algorithm using covariance
matching technique can be described as follows: if the

actual covariance value Ĉt is observed, whose value is
within the range predicted by theory St, and the differ-
ence is very near to zero, this indicates that both covari-
ance matrices match almost perfectly and only a small
change is needed to be made on the value of Rt. If the
actual covariance is less than that of theoretical value,
the value of Rt should be decreased. On the contrary, if

Ĉt is greater than that of theoretical value; the value of
Rt should be increased. Thus, Rt can be used to vary St

in accordance with the value of DOMt in order to reduce

the discrepancies between St and Ĉt. The adaptation of
the (i; i)th element of Rt is made in accordance with the
(i; i)th element of DOMt. This adjustment mechanism
lends itself very well to being dealt with using a
fuzzy-logic approach.

In this paper, ANFIS is proposed to adjust Rt. Since
the size of DOMt and Rt are both 2zf � 2zf , where zf is
the number of reobserved features, the overall ANFIS
employs a bank of subsystems where each subsystem is
a two-input-single-output ANFIS. These ANFISs are
employed to tune each diagonal of the element of Rt.
The ANFIS is a five layers network as shown in Figure 1.
The inputs of ANFIS are DOMt and rDOMt in which
rDOMt is defined as:

rDOMt ¼ DOMt � DOMt�1 (33)

The covariance matrix Rt is tuned by ANFIS as:

Rt ¼ Rt þrRt (34)

where rRt is ANFIS output variable. For a clear
understanding of the structure of ANFIS, let us denote
the input and output of the ith node in the ‘th layer by

u(‘)i and f (‘)i , respectively. The functions of nodes from
layer one to layer five of ANFIS are as follows:

...

...

... ΠΠ ΠΠΠΠ ΠΠ

ΠΠ ΠΠΠΠ ΠΠ

Σ

Σ

/

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Input2Input1

W25

Outputt

W 1

/

Figure 1. The ANFIS structure for tuning Rt.
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Layer 1: The nodes in this layer only transmit input
values to the next layer as:

f (1)i ¼ u(1)i (35)

Layer 2: The nodes in this layer represent Gaussian mem-
bership functions with the mean m and the standard devia-
tion r. The output of the ith membership function is as:

f (2)ij ¼ exp �1

2

u(2)ij � mij

rij

 !2" #
(36)

where subscript ij indicates the jth term of the ith input.

Layer 3: The nodes in this layer are rule nodes and
constitute the antecedents of fuzzy rule base. Each node
is equivalent to a cluster in the input space. A rule node
performs a fuzzy AND operation (or product inference)
for calculating the firing strength. Thus, the input and
output functions of the ‘th rule node are:

f (3)‘ ¼
Y
i

u(3)i (37)

Layer 4: The node in this layer performs the normaliza-
tion of firing strengths from layer three as:

f (4)‘ ¼ u(4)‘P25
‘¼1 u

(4)
‘

(38)

Layer 5: This layer is the output layer. The link weights
in this layer represent the singleton constituents w‘ of
the output variable. The output node integrates all the
normalization firing strengths from layer four with the
corresponding singleton constituents and acts as a
defuzzfier:

rRt ¼
X25
‘¼1

f (4)‘ w‘ (39)

The fuzzy rules to tune Rt are represented in Table 1.
Also, the membership functions for inputs and output of
these rules are shown in Figures 2 and 3. The training
algorithm is to adjust the network weights through the
minimization of the following cast function:

E ¼ 1

2
e2t (40)

where

et ¼ St � Ĉt (41)

The back-propagation learning algorithm is employed to
tune the weighting vector of ANFIS as follows:

Wtþ1 ¼ Wt � g
@E

@Wt
(42)

where g is the learning rate and W ¼ ½m;r;w�T is the
weighting vector of ANFIS, respectively. The gradient of
E with respect to W is as:

@E

@Wt
¼ �et

@rRt

@Wt
(43)

Table 1. Rule table.

Input2

Input1 L LM Z HM H
L H H MH ZH Z
LM H MH ZH Z ZL
Z MH ZH Z ZL ML
HM ZH Z ZL ML L
H Z ZL ML L L

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L ML Z MH H 

Figure 2. Inputs membership functions.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

0.9

1
L ML ZL Z ZH MH H 

Figure 3. Output membership function.
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As a result, the weighting vector of ANFIS is tuned as:

Wtþ1 ¼ Wt þ get
@rRt

@Wt
(44)

3.2. MCMC move step

In general, a common problem in the particle filtering
and consequently UFastSLAM is that the variance of
importance weights increases over time. Hence, a large
computational effort is wasted on updating the particles
with negligible weights. To solve this problem, resam-
pling is performed, whereby samples are chosen with
replacement from the original sample set, to generate an
equal-weight sample set. However, resampling step leads
to a loss of diversity among the particles and conse-
quently filter inconsistency. The loss of diversity is due
to the fact that in resampling step, samples are drawn
from a discrete distribution rather than a continuous one.
To overcome this problem, it is important to determine
when and how the resampling step must be performed.
Liu introduced effective number of particles Neff to
estimate how well the current particle set represents the
true posterior and it is calculated by Stachniss [24]:

Neff ¼ 1PM
i¼1 (w

½i�
t )

2
(45)

where w½i�
t refers to the normalized weight of particle i and

M is the number of particles. The resampling process is
operated whenever Neff is below a predefined threshold
Ntf . In this paper, the above criterion is used for resam-
pling. In the field of PFs, many algorithms have been
researched for performing resampling. The most represen-
tative resampling algorithms are multinomial resampling
and stratified resampling.[25] In UFastSLAM, the com-
mon algorithm is residual stratified resampling (RSR),
which uses weight strata to decide how many copies of
each particle should be made. Although the RSR tech-
nique has nice performance, it causes the loss of particle
diversity. In order to restrain losing diversity, we require a
procedure to introduce sample variety after the resampling
step without affecting the validity of the approximation.
In this paper, the MCMC method is used to increase the
diversity of particles and to improve the performance of
filtering. The MCMC methods construct a Markov chain
for each sample after the resampling step without affect-
ing the posterior estimation. To describe MCMC method,
assume that particles are distributed according to a poster-
ior p(~x0:tjz1:t) and then applying a Markov chain transition
kernel j(x0:tj~x0:t) with invariant distribution p(x0:tjy1:t)
such that: Z

j(x0:tj~x0:t)p(~x0:tjy0:t) ¼ p(x0:tjy0:t) (46)

We still have a set of particles distributed according to
the posterior of interest p(~x0:tjz1:t). However, the new
particles might have been moved to areas of high likeli-
hood, and the total variance of current distribution with
respect to the invariant distribution can only decrease.
The Metropolis-Hastings (MH) algorithm [26] is one of
the most common MCMC methods. The MH algorithm
employs a conditional density, also known as the pro-
posal distribution, to generate Markov chain with an
invariant distribution. The standard MH algorithm is
summarized as follows [27]:

1. sample u � U½0;1�, U½0;1� is uniformly distribution in the
interval ½0; 1�

2. sample the proposal candidate x�½i�t � p(xtjx½i�t�1)

3. if u � min 1; p(yt jx�½i�t )

p(yt j~x½i�t )


 �
accept move:

x(i)0:t ¼ (~x(i)0:t�1; x
�(i)
t )

else
reject move:

x(i)0:t ¼ ~x(i)0:t
end if

In the proposed method, the MH algorithm is used on
each particle after resampling ~st½m� using a Markov transi-
tion kernel with invariant distribution given by
p st;½m�jzt; ut; nt� �

to obtain st;½m�;Pt;½m�� �
as follows:

1. Sample u from a uniform distribution: u � U½0;1�
2. Predict particles with UKF

a. Calculation of sigma points for time update
The augmented state and augmented covariance matrix
by appending the mean and covariance of process noise
vector as follows:

~sa½m�t�1jt�1 ¼ ~s½m�t�1jt�1

0

� �
~Pa
t�1 ¼

~Pt�1jt�1 0
0 Qt

� �

where ~sat�1jt�1 and ~Pa
t�1 are the augmented state and

covariance matrix, respectively. To predict over a time
step t � 1 to t, the sigma points is defined as:

~da½0�½m�t�1jt�1 ¼ ~sa½0�½m�t�1jt�1

~da½i�½m�t�1jt�1 ¼ ~sa½i�½m�t�1jt�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)~Pa½m�

t�1jt�1

q� �
i

i ¼ 1; . . . ; n

~da½i�½m�t�1jt�1 ¼ ~sa½i�½m�t�1jt�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ k)~Pa½m�

t�1jt�1

q� �
i

i ¼ nþ 1; . . . ; 2n

~da½i�t�1jt�1 ¼ ~d½i�½m�t�1jt�1 du½i�½m�t

h iT

b. Time update
The mean and covariance of particles is predicted

using motion model as follows:
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d�½i�½m�tjt�1 ¼ f (~d½i�½m�t�1jt�1; ut þ du½i�½m�t )

s�½m�tjt�1 ¼
P2n
i¼0

x½i�
g d

�½i�½m�
tjt�1

P�½m�
tjt�1 ¼

P2n
i¼0

x½i�
c (s

�½m�
tjt�1 � d�½i�½m�tjt�1 )(s

�½m�
tjt�1 � d�½i�½m�tjt�1 )

T

3. Update particles with UKF
By incorporating new observation, the mean of the

particles is updated as follows:

f½i�½m�t ¼ h(d�½i�½m�tjt�1 ; l
½m�
k;t�1)

z�½m�t ¼P2n
i¼0

w½i�
g f

½i�½m�
t

S�½m�
t ¼P2n

i¼0
w½i�

c (f
½i�½m�
t � z�½m�t )(f½i�½m�t � z�½m�t )T þ Rt

P�½m�
dt ¼P2n

i¼0
x½i�

c (s
�½m�
tjt�1 � d�½i�½m�tjt�1 )(f

½i�½m�
t � z�½m�t )T

s�½m�tjt ¼ s�½m�tjt�1 þ K�½m�
t (zt � z�½m�t )

where gain K�½m�
t is as:

K�½m�
t ¼ P�½m�

dt (S�½m�
t )�1

The covariance of the particles is updated as follows:

P�½m�
tjt ¼ P½m�

tjt�1 � K�½m�
t S�½m�

t (K�½m�
t )T

4. Sample from the proposal candidate

s�½m�t � q(stj~st�1;½m�; zt; ut; nt) ¼ N (s�t ; s
�½m�
tjt ; P̂�½m�

tjt )

5. Calculate acceptance probability
When the proposal distribution is chosen as

q(stj~st�1;½m�; zt; ut; nt), the acceptance probability is:

c ¼ min 1;
p(ztjs�t;½m�; zt�1; ut; nt)p(s�½m�t j~s½m�t�1; ut)q(~s

½m�
t j~st�1;½m�; zt; ut; nt)

p(ztj~st;½m�; zt�1; ut; nt)p(~s½m�t j~s½m�t�1; ut)q(s
�½m�
t j~st�1;½m�; zt; ut; nt)

( )

6. Accept or reject
If u 6 c

Accept move with probability c as:

st;½m� ¼ (~st�1;½m�; s�;½m�t )

Pt;½m� ¼ (~Pt�1;½m�;P�;½m�
t )

else
Reject move with probability 1� c as:

st;½m� ¼ ~st;½m�

Pt;½m� ¼ ~Pt;½m�

end if

With this algorithm, we see that MCMC move step
accepts a move with probability c. Therefore, the accep-
tance probability increases as the probability of the new
particle increases, and the old particle is changed to a
new one, if the old one has a lower PDF.

4. Results

4.1. Simulation results

To verify the effectiveness of the proposed approach in
comparison with UFastSLAM, simulation experiments
have been carried out. The proposed algorithm for the
SLAM problem has been tested for the benchmark envi-
ronment, with varied number and position of the fea-
tures, available in [28]. The simulation environment for
testing is shown in Figure 4, where the star points (⁄)
indicate landmarks, and the curve shows the path of the
mobile robot.

The number of landmarks is 35, and they are
unknown for the mobile robot. The initial position of the
robot is assumed to be s0 ¼ (0; 0; 0), and the robot moves
at a speed 3m/s and with a maximum steering angle of
30°. The robot has 4m wheel base and is equipped with
a range-bearing sensor with a maximum range of 30m
and 180° frontal field-of-view. The control noise is
rv ¼ 0:3m/s, rc ¼ 3�, and the measurement noise is
0.1m in range and 0.1° in bearing. A control frequency
is 40Hz and observation scans are obtained at 5Hz.

At first, we compare the performance of the two algo-
rithms while the measurement noise is rr ¼ 0:1 m,
rh ¼ 1� and the control noise is rr ¼ 0:3m/s, rh ¼ 3�.
Figures 5 and 6 show results for this case. Since the
MCMC move step increases the diversity of particles, the
proposed method achieves better precision than UFast-
SLAM. To verify the consistency of both algorithms,
average NEES is used as a measure factor. For the

-150 -100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

X[m]

Y
[m

]

Figure 4. The experiment environment: true robot path and
true landmarks (⁄).
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2-dimensional vehicle position, with twenty Monte Carlo
simulations, the two-sided 95% probability concentration
region for �ek is bounded by interval [1.3, 2.79]. Figure 7
shows that the proposed method stays consistent, whereas
the NEES of UFastSLAM soars after 30 s.

An estimate of the rate of loss of particle diversity is
obtained by recording the number of distinct particles in
the set representing a landmark. Figure 8 shows that the
number of distinct particles in the proposed method is
more than that of UFastSLAM. Therefore, the consis-
tency of the proposed method is more than that of
UFastSLAM.

Next, the performance of algorithms is compared
with various numbers of particles in Figure 9. It is
observed that the proposed method needs a lower
number of particles to obtain the same estimation
accuracy as that of UFastSLAM.
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-80
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(a) (b)

Figure 5. Estimated robot path and the estimated landmark with true robot path and true landmarks. The ‘…’ is the estimated path,
the ‘o’ are the estimated landmark positions: (a) UFastSLAM (b) proposed method.
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Figure 6. Root mean square error (RMSE) of the robot
position.

0 50 100 150 200 250

0

10

20

30

40

50

60

70

80

90

100

Time[sec]

Av
er

ag
e 

N
ee

s 
on

 2
0 

M
on

te
 C

ar
lo

 R
un

s

0 50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time[sec]

Av
er

ag
e 

N
ee

s 
on

 2
0 

M
on

te
 C

ar
lo

 R
un

s

(a) (b)

Figure 7. Consistency: (a) UFastSLAM and (b) proposed method.
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Finally, we compare the performance of the two
algorithms while varying the level of measurement noise
wrongly as rr ¼ 2m, rh ¼ 0:5� and fixing the control
noise as rv ¼ 0:3m=s, rc ¼ 3�. The performance of the
proposed method is compared with UFastSLAM where
its measurement covariance matrix Rt is kept static
throughout the experiment. The proposed algorithm starts
with a wrongly known statistics and then adapts the Rt

through ANFIS and attempts to minimize the mismatch
between the theoretical and actual values of the innova-
tion sequence. The free parameters of ANFIS are auto-
matically learned by gradient descent method during
training. Figures 10 and 11 show the comparison
between the proposed algorithm and UFastSLAM. It can
be clearly seen that the results of the proposed algorithm
are better than that of UFastSLAM. In the proposed
algorithm, the estimated vehicle path and estimated
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Figure 8. Number of distinct particles (a) UFastSLAM (b) proposed method.

25 30 35 40 45 50 55 60 65 70 75
1

2

3

4

5

6

7

8

9

R
M

SE
 P

os
iti

on
 e

rro
r [

m
]

Particles [Num.]

Proposed Method
UFastSLAM

Figure 9. Performance of the proposed method and
UFastSLAM with different numbers of particles.
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Figure 10. Estimated robot path and the estimated landmark with true robot path and true landmarks. The ‘…’ is the estimated path,
the ‘o’ are the estimated landmark positions: (a) UFastSLAM and (b) proposed method.
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landmark coincide as closely as possible with the actual
trajectory and the actual positions features. This is
because the proposed method adaptively tuned the mea-

surement covariance matrix Rt. In fact, the matrix Rt

converges to its actual value while in UFastSLAM
matrix Rt is kept fixed over time as shown in Figure 12.
Also, as shown in Figure 13, the consistency of the pro-
posed method is more than that of UFastSLAM in this
situation.

4.2. Experimental results

We have evaluated the proposed algorithm on the car
park data set and the Sydney Victoria Park data set, two
popular data sets in the SLAM community.[29]

The first experimental is done on the car park data
set. The vehicle is driven around the park. The velocity
and the steering angle are measured with encoders, but
uneven terrain induced additional nonsystematic errors
because of wheel slippage and vehicle attitude. Conse-
quently, the odometry information from the encoder is
poor as shown in Figure 14. In this experiment, artificial
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Figure 11. RMSE of the robot position.
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Figure 12. (a) UFastSLAM (b) proposed method.

0 20 40 60 80 100 120 140 160 180 200 220

0

10

20

30

40

50

60

70

80

90

100

Time[sec]

Av
er

ag
e 

N
ee

s 
on

 2
0 

M
on

te
 C

ar
lo

 R
un

s

20 40 60 80 100 120 140 160 180 200 220

2

3

4

5

6

7

8

Time[sec]

Av
er

ag
e 

N
ee

s 
on

 2
0 

M
on

te
 C

ar
lo

 R
un

s

(a) (b)

Figure 13. Consistency: (a) UFastSLAM and (b) proposed method.
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features are used. Since the true position of the features
is obtained with a global positioning system (GPS), a
true navigation map is available. Moreover, a GPS recei-
ver is used to provide ground truth for the robot position.
The performance of the proposed algorithm is compared
with UFastSLAM in situation that the correspondences
between the observation and the features are assumed to
be unknown and 20 particles are used for two algo-
rithms. Each algorithm was run many times to confirm
the variance of the estimate error. For the unknown data
association, the individual compatibility nearest neighbor
test with 2r acceptance region is used. The proposed
algorithm starts with a wrongly known Rt and then
adapts the Rt through ANFIS and attempts to minimize
the mismatch between the theoretical and actual values
of the innovation sequence. Figures 15 and 16 show the
comparison between the proposed algorithm and UFast-
SLAM. Since the proposed algorithm tunes adaptively
Rt, the performance of the proposed algorithm is better
than that of UFastSLAM. This also improves data asso-
ciation and consistency.

The second experimental is done on Victoria data set
that is a larger area with mild uneven terrain and differ-
ent types of surfaces. Figure 17 shows Victoria Park with
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Figure 14. Odometry of the vehicle.
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Figure 15. (a) UFastSLAM and (b) proposed method.
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Figure 16. RMSE of the robot position.

Figure 17. Victoria Park with the GPS path [29]. The yellow
path is the GPS path of the robot.
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the GPS path. The trajectories for each algorithm are
presented in Figure 18. Since the estimated trajectory of
the proposed method coincides very well with the GPS
path, the performance of the proposed method is better
than that of UFastSLAM.

5. Conclusion

The FastSLAM algorithm has two drawbacks, namely the
linear approximation of nonlinear functions and the calcu-
lation of the Jacobian matrices. UFastSLAM has been
recently proposed for solving these problems. However,
UFastSLAM is inconsistent because of losing particle
diversity and incorrect a priori knowledge of process and
measurement noise. In this paper, to enhance consistency
an intelligent UFastSLAM with MCMC move step is pro-
posed. In the proposed algorithm, the performance of
UFastSLAM is supervised by using ANFIS, and the
diversity of particles is increased using MCMC move
step. The performance of the proposed algorithm is com-
pared with UFastSLAM for benchmark environment. The
results show the effectiveness of the proposed method.
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