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Abstract-The problem of unsupervised classification of 3D 
objects from depth information is investigated in this paper. The 
range images are represented efficiently as sensor observations. 
Considering the high-dimensionality of 3D object classification, 
little attention has been paid to the curse of dimensionality 
in the existing state-of-the-art algorithms. In order to remedy 
this problem, a low-dimensional representation is defined here. 
The sparse model of every range image is constructed from a 
parametric dictionary. Employing the algorithmic information 
theory, a universal normalized metric is used for comparison of 
Kolmogorov complexity based representations of sparse models. 
Finally, most similar objects are grouped together. Experimental 
results show efficiency and accuracy of the proposed method in 
comparison to a recently proposed method. 

I. INTRODUCTION 

The problem of object detection has received a great amount 
of attention from computer vision and pattern recognition 
communities. The visual object detection is performed us­
ing feature-based representation of object images. Distinctive 
properties of objects extracted from images, such as shape, 
color and textures are employed in visual object detection. 
As the world is 3D in nature, the depth information should 
be used in the object detection algorithms. The 3D scans are 
made available as the observation of sensors such as stereo 
camera, Lidar or Microsoft Kinect. 

Various descriptors are presented for representation of color, 
shape and depth information in the context of 3D object 
recognition. A shape descriptor is presented in [1], where 
an ensemble of angle, area and distance shape functions are 
employed in construction of an object descriptor. The depth 
information is used in [2] in order to construct a depth kernel 
descriptor where models the size, 3D shape and depth edges 
in a single framework. Another shape descriptor is expressed 
in [1] for classification of 3D objects observed by a Kinect 
camera using a database of 3D models. 

Expressing 3D objects by means of descriptors, results in 
a high-dimensional representation which suffers from the so 
called curse of dimensionality problem [3]. In order to remedy 
this problems, in this paper, a proper 3D object classification 
method is presented. The proposed approach is developed 
such that it works in a low-dimensional space, based on 
range image data without training or derivation of distinctive 
characteristics from 3D scans. The paper is organized as 
follows. The next section briefly reviews some related works. 
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Some preliminaries about sparse modeling of images based on 
a parametric dictionary and algorithmic information theory, are 
provided in section II . Section III is devoted to the description 
of the proposed approach. Finally, section IV is dedicated to 
the experimental results, which is followed by the concluding 
remarks. 

II. PRELIMINARIES 

In order to efficiently classify 3D objects, a similarity 
measure from low-dimensional representation of rage image 
observations is necessary. Two theories are employed in the 
process of definition of this similarity measure in a low 
dimensional space. The first is the sparse representation of 
data based on a dictionary. The sparse modeling of 2D images, 
generates a parametric representation of a natural 2D image, 
which is unique in an over-complete dictionary [4]. This 
approach achieves a very compact and efficient representation 
of salient features of a natural image. Here we apply this 
method to achieve a sparse representation for each range image 
as a linear combination of parametric functions called atoms. 

In order to accomplish the object classification task, a proper 
similarity measure is required. A normalized distance measure 
is developed in algorithmic information theory [5], which 
compares general objects based on the complexity of their 
representations. In the following sections, the sparse modeling 
of images and normalized distance measure are presented in 
more detail. Based on these theories, the proposed object 
classification method, is elaborated in section III. 

A. Sparse Modeling 

The representation of 2D images as a sparse model based 
on a parametric dictionary has received great amount of 
attention from image processing community [4]. Sparse and 
compact representation of an image using few atoms of an 
over-complete dictionary and also the flexibility of dictionary 
design, are some benefits of sparse modeling of images. A 
parametric mother function is employed for generation of 
dictionary atoms with a combination of 2D transformations 
such as translation, rotation and non-uniform scaling applied. 
Finally an iterative matching pursuit algorithm, [6] represents 
the input image approximately. The decomposition of image is 
expressed by a linear combination of most correlating atoms. 
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A dictionary V is a set of unit norm parametric functions 
(atoms), constructed from a generating function denoted by 
g(x, y). This function is defined in Hilbert space H with 2D 
transformations applied. The transformations include transla­
tion, rotation and anisotropic scaling such that the dictionary 
V spans the Hilbert space H. 

In this paper a Gaussian generating function is chosen for 
the construction of dictionary atoms. Representing the image 
pixel coordinates by x and y, the Gaussian mother function is 
expressed as 

1 ( 2 2 ) 
g(x, y) = ke- x +y (1) 

where k is a normalization factor such that every atom has unit 
norm. This Gaussian mother function is employed practically 
for approximate representation of natural images [4]. 

In order to efficiently capture 2D features of natural images, 
a finite set of M transformations is applied to the generating 
function g( x, y) to construct a parametric dictionary. Transla­
tion ai, non-uniform scaling Si along image x and y axis, and 
rotation Ri are the transformations used for the construction 
of the parametric dictionary. These transformations can be 
expressed in homogeneous coordinates system as 

[� 0 

8;�l ai = 1 6iy 
0 1 

(2) 

['f 0 

�l Si= Siy 
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(3) 
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�l Rei = Si�ei cosei 
0 

(4) 

The transformation parameters of each atom are represented 
by a 5-tuple "ti = (Six, Siy, ei, 6ix, 6iY) denoting anisotropic 
scaling, rotation and translation along x and y axis, respec­
tively. The corresponding affine transformation of "ti can be 
expressed as 

(5) 

Representing the set of M affine transformations T a bi) as 

r a, we have 

Finally, the parametric dictionary, consisting of M atoms 
is constructed by transforming the generating function g (x, y) 
according to "ti, resulting in the ith atom which is expressed 
byg'Y;(x,y). 

1 
g'Yi(X,y) = 'kTabi)g(x,y) (7) 

where k is a a normalization factor. 

(a) (b) 

(c) (d) 

Fig. 1. Gaussian atoms with various 2D translation, rotation and scaling 
applied: (a) tx = 0, ty = 0, e = 0, Sx = 1, Sy = 1. (b) tx = 0, ty = 2, e = 

i ,sx = 0.25,sy = 3. (c) tx = O,ty = o,e = -6"'sx = 1,sy = 2. (d) 
tx = 1, ty = 0, e = -4'" Sx = 2, Sy = 0.5 

The over-complete parametric dictionary g'Yi can be ex­
pressed as 

V = {g'Y,ig'Y; = Tabi)g, Tabi) Era} 
, Ilg'Y'!1 = 1, i = O . . .  M - 1 (8) 

Therefore, the only limitation to design such dictionary is 
spanning of whole Hilbert space of input images, while the 
generating function should be able to capture input image 
structure and salient features [4]. Some dictionary atoms are 
depicted in Fig. 1 indicating a generating function, that has 
taken corresponding 2D transformations. In practice, the con­
tinuous 2D transformation space is quantized and the number 
of dictionary atoms l'I/I is chosen such that the spanning 
constraint is satisfied. 

Even though the sparse approximation of images from an 
over-complete dictionary is an NP-hard problem [7], greedy 
algorithms find sub-optimal but yet efficient solutions, itera­
tively. One of the widely used greedy algorithms is the match­
ing pursuit [6], in which, at every iteration the best matching 
atom is found by full dictionary searching. The matching 
pursuit converges exponentially, however, it can not find the 
sparsest solution [4]. Therefore, the Orthogonal Matching 
Pursuit (OMP) algorithm [7] is used in this paper which solves 
the problem of finding optimal sparse solution [8], [9]. 

The OMP algorithm, initially assigns the input image Is to 
the residual RD. 

(9) 

Then iteratively at the ith step, OMP seeks the best match­
ing atom g'Yi by finding the atom which possess maximum 
correlation with the residual Ri- 1. 

(10) 
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In this relation the defined inner product in Hilbert space 1-l 
is denoted by the operator ( ., .). 

The contribution of the selected atom is removed from the 
residual by orthogonal projection of Ri-1 on to the span of 
selected atoms {g"lJ, where 

(11) 

represents the orthogonal projection of span{g"li} by Pi. 
After N iterations, the input image Is is expressed by a linear 
combination of the selected atoms. 

N-l 

Is = L (Ri, g"l,)g"li + RN (12) 
i=O 

It is observed that the approximation error decays exponen­
tially and the algorithm is terminated after N steps to represent 
the input image as a sparse model or until the norm of the 
residual becomes lower than a specified threshold. 

After N iterations, the OMP algorithm represents the input 
image approximately as a linear combination of most correlat­
ing atoms. The approximate linear expansion of input image 

Is expressed by 

N-l N-l 

Is ;::::: L (Ri, g"l,)g"li = L (ig"li (13) 

i=O i=O 
is an efficient unique image representation in a low di­
mensional space which has application in image and video 
coding [10], and image transformation estimation [11]. The 
approximate spare model captures the salient geometrical fea­
tures of input image with few atoms of a parametric dictionary. 

The extracted sparse models of range images shall be 
compared for finding similar objects which is the main purpose 
of this paper. The next section is dedicated to the Kol­
mogorov complexity and Normalized Compression Distance. 
These theories are used in development of complexity based 
representation of range images and are discussed in section III. 

B. Algorithmic Information Theory 

The algorithmic version of information theory, estimates the 
information by lossless data compression which is successfully 
employed for content-based image retrieval [12] and feature 
extraction [13]. 

In contrast to the Shannon approach that assumes the 
objects are made by a known random source and represent 
entropy as average information, the algorithmic information 
theory represents objects as a symbol strings and defines the 
complexity in analogy to entropy. In algorithmic information 
theory, a string sequence X is expressed as the required input 
to a universal computer U which prints X on its output and 
stops. Also the complexity K(X) is defined as the minimal 
length of any input for fixed U which prints X to the output. 
It has been shown that the dependency of K(X) to U is weak 
and can be ignored when K(X) is sufficiently large [14]. The 
conditional Kolmogorov complexity is shown by K(XIY) and 

defined as the length of a shortest program to generate X given 
Y as its input. 

The Kolmogorov complexity is not computable but may 
be approximated by a good lossless compression algorithm. 
Therefore, in practice the Kolmogorov complexity K(X) is 
expressed as C(X) which is the length of compressed file 
of X description and C is a compression algorithm. In fact, 
the compression algorithm estimates an upper bound for the 
Kolmogorov complexity. The comparison of two objects can 
be performed by measuring their common information. The 
amount of common information between two object descrip­
tions is accomplished by the normalized compression distance 
metric [15]. The NCD is mathematically expressed as 

NCD(X Y) = 

C(XY) - min{C(X), C(Y)} , max{C(X),C(Y)} (14) 

where C(XY) is the length of compressed file contain­
ing the concatenation of X and Y. The NCD is a metric 
with NCD(X, X) = 0 for similar string sequences and 
NCD(X, Y) :s; 1 for all pairs (X, Y). When X and Y 
are similar and share a great amount of information, their 
concatenation is compressed much more than the situation 
of comparing two dissimilar string sequences. Therefore, the 
NCD value gets close to zero. In contrast, the concatenation 
of two different string sequences can be compressed so much, 
resulting in a NCD value near to one. In order to compute 
NCD, any compression algorithm such as gzip, bzip2 or PPM 

can be used. But the block-based compression algorithms 
such as bzip2 fulfil the symmetry requirement of Kolmogorov 
complexity. The next section presents the proposed method 
which is constructed from complexity based representation 
of range images. The object classification is accomplished by 
comparing these representations using NCD. 

III. PROPOSED SYSTEM 

In this section a similarity measurement approach is devel­
oped for 3D object classification from range images. As it 
is shown in the flowchart given in Fig. 2, range images are 
acquired sequentially as sensor observations. Then, a sparse 
model for each range image is constructed iteratively, from 
a parametric dictionary using orthogonal matching pursuit 
algorithm. The parametric dictionary is generated offline, 
containing parametric Gaussian functions known as atoms. 
The result of this step is the sparse model of range image, 
composed of a linear combination of atoms. 

In order to use the NCD as a normalized similarity measure, 
a representation is constructed from the range image sparse 
model, involving its structure complexity. The Kolmogorov 
complexity of this representation is proportional to the number 
of atoms used in sparse model and their geometrical structure. 

In what follows, different parts of the proposed method is 
explained in more details. 

A. Complexity Based Representation of Sparse Models 

The normalized compression distance (NCD) is a universal 
metric for comparison of general object descriptions such as 
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Fig. 2. The overall processing units of the proposed object classification approach. 

music and genome data [16]. Unfortunately, the application of 
NCD in image similarity measurement is not satisfactory [17], 
where it has been shown experimentally that NCD can not 
be universally applied to the images. In order to remedy this 
problem, we propose to use a mapping between numbers and 
string patterns with proportional complexity. This is done by 
denoting a real value by means of a proper pseudo-random 
binary sequences (PRES) [18]. Therefore the Kolmogorov 
complexity of the equivalent PRBS becomes proportional to 
the real value. 

A numerical example is provided here to show why direct 
usage of real values for representing complexity of an object 
is inappropriate and how the Kolmogorov complexity of a 
PRBS string behaves in proportion to its length. Here a positive 
integer variable x is considered. In conventional methods, a 
string representation of x is constructed by storing its digits 
in a file one by one. Then the Kolmogorov complexity of x 
expressed by K(x) is approximated by computing the length 
of the compressed file. The PRBS based representation of x 
is achieved by using it as initial value and generating a PRBS 
sequence with a length equal to x, denoted by Xprbs. In Fig. 3, 
the Kolmogorov complexity of a sequence of numbers and 
their corresponding pseudo-random binary sequence (PRBS) 
are depicted. The Kolmogorov complexity is approximated 
by bzip2 as compression algorithm. The complexity of Xprbs 
is approximately a linear function of the number itself, as 
it is shown in Fig. 3(a). A PRBS can not be compressed 
that much, due to its inherent random nature. However, a 
numeric representation has a low Kolmogorov complexity so 
it is compressed, as shown in Fig. 3(b). 

Therefore, PRBS strings are employed to construct a com­
plexity based representation from sparse model of range 
images. In order to construct this representation, a range 
image sparse model with N atoms is considered. This sparse 
model can be uniquely expressed by describing its atoms 
with their corresponding gain values. In the complexity based 
representation, each atom is described by a proper PRBS 
string which indicates the atom gain and its transformation 
parameters. Since a large value is mapped to a corresponding 
large Kolmogorov complexity value, the structure complexity 
of range image sparse model is encoded in this representation. 

Here, mapping of real values to a PRES string is accom-
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Fig. 3. Kolmogorov complexity of numbers and their corresponding PRBS: 
(a) The Kolmogorov complexity of a PRBS is proportional to real value 
denoted by Xprbs. (b) The Kolmogorov complexity of numbers is not 
proportional to the number of sequence x. 

plished by generating a PRBS string with a length defined 
as 

l(x) = [ex] (15) 

where the operator [.] represents the nearest integer value and 
e is a constant. 

Therefore, the string representation of range image sparse 
model is converted to the Kolmogorov complexity based 
representation by substitution of every real value by its corre­
sponding PRBS string. 

Each PRBS is constructed by using the real value T E R, 
which can be an atom gain or a transformation parameter, as 
initial value and generating a sequence of l (T ) binary bits with 
the help of linear feedback shift register (LFSR) method [18]. 
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This representation encodes all information required for con­
struction of range image from its sparse model into patterns 
with proportional complexity. 

Here we present an example that better illustrates the main 
idea of the proposed method. The progressive reconstruction 
of a range image is depicted in Fig. 4. The input range image 
is shown in Fig. 4(a), where its related color image can be 
seen in Fig. 4(b). The OMP algorithm iteratively finds the 
best matching atom from dictionary and construct an approx­
imation of the input image. An approximate representation 
of input range image with 20 atoms is shown in Fig. 4(c). 
This representation can be expressed by a set of parameters 
Ai where i = 1, ... ) 20. Replacing each parameter value with 
its corresponding PRBS, the complexity based representation 
is achieved and stored in a file. The Kolmogorov complexity 
of this PRBS-based representation is practically computed by 
measuring the size of the compressed file. Here the bzip2 
compressor is used and the Kolmogorov complexity of the 
PRBS-based representation is computed as k(Is) = 812, 
where the file size is expressed in bytes. The same process 
is repeated in Fig. 4(d) up to Fig. 4(g). It can be seen 
that with increasing the number of atoms, more detailed 
reconstruction of range image is achieved. Also, increasing the 
number of atoms, results in a more complicated representation 
and therefore, the Kolmogorov complexity of representation 
increases. Here representation of the input range image by 80, 
140, 200 and 280 atoms, results in Kolmogorov complexity of 
2663, 3925, 5213 and 6551, respectively. 

Therefore, the sparse model of each range image can be 
expressed by a PRBS based representation with appropriate 
Kolmogorov complexity. Finally, the NCD can be efficiently 
applied on the constructed complexity based representations in 
order to perform classification task. The next section presents 
the experimental results of 3D object classification using the 
proposed approach. 

IV. EXPERIMENTAL RESULTS 

In this section the result of an experiments is presented 
to verify the applicability and performance of the proposed 
method. Also, the experimental results are compared to that 
of a feature-based 3D object classification [19]. 

In this experiment a dataset of 300 objects from 51 different 
categories in used [20]. We randomly selected 48 objects 
from the same lO categories used in [19]. In order to make 
a fair comparison, no training is accomplished and objects 
are classified based on minimum distance. The parameters of 
the proposed system are shown in Table I. The range images 
of each object is resized to 100 x 100 and its complexity 
based representation is generated. Table II contains the system 
parameters of the feature-based classification approach. Where 
each object is subsampled with the grid size of 1cm. The 
SHOTCOLOR [21] descriptor for each 3D point is computed 
and the mean and standard deviation of them is achieved. 
The result of this experiment is shown in Table III. As it can 
be seen, the proposed method has a competing performance 

TABLE I 
PROPOSED SYSTEM PARAMETERS 

Parameter Value 
Number of scales 3 
Number of rotations 5 
Maximum residual norm 0.1 
Range image resolution 100 x 100 
PRBS length magnification constant I 

TABLE II 
FEATURE-BASED ALGORITHM PARAMETERS 

Parameter Value 
Feature type SHOTCOLOR 
Sampling method Sub-sampling 1 cm 

with the feature-based method, in spite of using just depth 
information. 

V. CONCLUSIONS 

In this paper a new approach is presented for 3D object 
classification from range images, based on the sparse modeling 
of images and algorithmic information theory. While the state­
of-the-art algorithms use high-dimensional feature-based rep­
resentations, here we perform the object classification in low­
dimensional space. A sparse representation for every captured 
range image is constructed using a parametric dictionary. 
Then a complexity based representation is generated from 
the range image sparse model by means of pseudo-random 
binary sequences. From this representation the sparse model of 
range image can be constructed without any information loss. 
Then from the information theory a normalized compression 
distance metric is employed for similarity measurement. A 
normalized difference matrix is generated by pairwise com­
parison of complexity based representations. The objects with 
minimum complexity based distance are classified in the same 
group. Experimental results show efficiency and accuracy of 
the proposed method in comparison to one recently proposed 
method. 
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