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Abstract-Visual Servoing is generally comprised of feature 
tracking and control. According to the literature, no attempt has 
already been made to optimize these two parts together. In kernel 
based visual servoing method, the main objective is to combine 
and optimize the entire control loop. By kernel definition, a 
Lyapanov candidate function is formed and the control input 
is computed so that the Lyapanov stability can be verified. This 
is performed in four degrees of freedom. In the present study, 
previous kernel algorithm from the recorded literature has been 
implemented. We have used the KBVS for our purpose such 
that an object without any marker is tracked. This method is 
chosen because of its robustness, speed and featureless properties. 
Furthermore, in order to show the visual tracking performance, 
all four degrees of freedom have been synthesized. Experimental 
results verifies the effectiveness of this method implemented for 
four degrees of freedom movements. 

I. INTRODUCT ION 

Visual servoing is commonly used for utilizing visual feed­
backs to control a robot [1]. Visual servoing (VS) involves 
moving either a camera or the camera's visual target. The 
main purpose of this is to track an object in an unknown 
environment and to converge the target image to a known 
desired image. In general, visual servoing consists of two 
parts: feature tracking and control; in addition, these two parts 
usually work separately in the close-loop system which uses 
the vision as the underlying parcel of the loop. Therefore, 
VS is done without tracking and control optimization. When 
the robot or object moves, features that are extracted from the 
image are used as the feedback signal, and control sequence is 
generated based on these features. Therefore the problem can 
be divided into two sub-problems. By this separation, tuning 
the whole system together is almost impossible. 
In this paper, Kernel Based Visual Servoing (KEVS) method 
is used to fulfill the VS as a main problem and not divided into 
two sub-problems. The proposed method has some advantages 
over previous methods such as position-based and image-based 
visual servoing [2], [3], 2 112 D visual servoing [4] and other 
advanced methods [5], [6]. 
KEVS is a new method in which all features of image are used 
without shrinking the image into limited extracted features. All 
featureless methods extenuate complex computation because 
extracting feature points usually requires more computational 
factors. In addition, these methods attempt to optimize the 
whole system without separating the tracking and control 
tasks. Spatial kernel-based tracking algorithm [7], [8], [9], [10] 
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is used in this method for sketching the feedback controller. 
Lyapunov theory is used to prove the stability of the c1ose­
loop system. 
The use of kernel method in the VS was introduced in [11], 
[12], [13]. In these references, the authors defined some ker­
nels based on the spatial weighted average of the image, and 
then the tracking was shaped by verging on the optimal kernel 
placement in which the difference in kernel measurement 
is minimal. Indeed, in this procedure kernel plays the most 
important role and weighs the feature space of the image. 
Consequently, it acts as a function that makes samples from 
the image. By these samples, the control loop is formed and 
tracking will be completed. Swensen and Kallem rendered 
different kernels for 2D translation in [12], and also did some 
experiments on the group of rotations. In [13] Kallem and 
Dewan proposed a new kernel in depth and roll motions, a 
Gaussian kernel for depth and a rotationally asymmetric kernel 
for roll and synthesized them in one kernel. In [11] Swensen 
and Kallem also analyzed the domain of attraction for some 
selected kernels through a comparison study. They designated 
the domain of attraction by acquiring larger area in which 
the Lyapunov function measurement is positive and its time 
derivative is negative definite. 
In this paper KEVS implementation in four degrees of freedom 
is presented based on image and Fourier transform traits. 
Previous work on 2D translation is first explained, the method 
for translation along and rotation about the z-axis are then 
elaborated. Furthermore, convergence toward the goal position 
is analyzed by Lyapunov theory. Experimental results verify 
suitable performance of the proposed method implemented on 
four degrees of freedom. 

II. BACKGROUND MATERIAL 

A. Kernel-based Visual Servoing 

In this section, KEVS method is developed. First, tracking 
in 2D translation parallel to the image plane are demonstrated 
(x, y). Then, translation along the optical axis (z) and roll 
about the camera optical axis (B) have been introduced based 
on the Fourier transform. 
KEVS needs some assumptions to be executable. First, we 
have assumed that the camera-robot configurations are eye-in­
hand configuration that commonly requires fast image pro­
cessing. Furthermore, a kinematic motion model has been 
considered for the robot such that joint velocity can be 
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achieved as the control input. Then, it has been assumed 
that the target object is planar and camera optical axis is 
perpendicular to the target plane. Finally, we have assumed 
that the image scene is continuous and infinite, and also the 
illumination of the image scene is constant across the image 
frames. 
Consider a signal S ( w, t) that is the image intensity for each 
pixel during the time growth. It is essential that the image 
at each frame be similar to this signal. Kernel projection 
value is defined as a function of time, called kernel-projected 
measurement (KPM) or kernel measurement [12]. It can be 
expressed as follows: 

�(t) = 1 K(w)S(w, t)dw . (1) 

K ERn x 1 is the kernel function. Indeed, the image signal 
S (w, t) is associated with the 2D translation, scale or rotation 
in the image which are time variants. w E R2 is the spatial 
index parameter for each image captured by the camera. When 
the camera moves, the amount of the kernel measurement is 
changed because S( ., t) varies. Assume that So is the goal 
value for S and �o is the goal value for � . The objective of 
KEVS is to drive the robot to the goal position or to force 
� =} �o .  In this paper, previous work on 2D translation is 
first explained, on the basis of which the proposed method for 
other degrees of motion is then elaborated. 

B. Translation Parallel to the Image P lane 

Assume that the robot moves parallel to a plane, and we 
have only a 2D translation motion. Then, the dynamic model 
for the robot can be expressed as follows: 

q = u. (2) 

Where q = [x, y]T E R2 is the position of the end effector and 
u E R2 is the robot control input for each degree of freedom. 
Note that the control input is the velocity of end effector. As 
mentioned above, the purpose of KEVS is to drive � toward 
�o .  Without loss of generality, let us assume that at �o the 
position of the end effector is x = 0, y = 0 and this point 
is the goal position. Therefore, the fundamental point is to 
acquire a control law which drives [x(t), y(t)] toward [0,0] . 
Due to the fact that the distance between the image plane and 
the target scene is unit and the motion is in a way that they are 
parallel, it is correct to say that S(w,q(t)) = So(w - q(t)) . 
Change the coordinate variables by w = w -q(t) equation(l) 
can be written as 

�(t) = 1 K(w)So(w - q(t))dw (3) 

= 1 K(w + q(t))So(w)dw . 

It has been shown that there is no difference between the 
case where the kernel is immovable and the image moves 
or the case where the image is fixed and the kernel moves 
in the reverse direction. It should be noted that kernel is 
differentiable but the image signal is not differentiable and 

we need differentiability of � to find a suitable control law. 
A Lyapunov function is defined based on KPM error to gener­
ate a control law that drives the robot toward the goal position. 
Hence, a Lyapunov function candidate may be defined as 
follows: 

1 2 V = 2 II � - �o II . (4) 

Using the chain rule, the time derivative of the Lyapunov 
function may be derived by: 

Where: 

V = (�- �of
a� (5) at 

= (�- �of
a�q aq 

= (�- �of(l K'(w)S(w)dw)u .  

K'(w) = aK(w) E Rnx2 ow (6) 

The following control law ensures that the time derivative of 
Lyapunov function becomes negative definite. 

In which, 

u = -(1 \]K(w)S(w, q(t))dw)(� - �o), (7) 

(8) 

And furthermore, the time derivative of Lyapunov function is 
expressed as: 

17=- II (1 \]K(w)S(w, q(t))dw)(� - �o) 112 . (9) 

C. Translation along the optical axis using Fourier Transform 

Fourier transform has been used for separation of translation 
from scale and rotation. Fourier transform is one of the most 
useful tools in image processing algorithms. By this transform, 
any variations in the translation changes to conversions in 
the phase of image Fourier transform. Also, any changes in 
the scale and rotation are transformed into changes in the 
magnitude of image Fourier transform. 
In translation along the optical axis the dynamic model for the 
robot can be expressed as follows: 

i = u .  (10) 

Without loss of generality, let us assume that 10 is the image 
signal at z = O. Based on this assumption the following 
equations may be written: 

l(w, z) = 10(w/ z) 

F(v, z) = z2FO(ZV),v E R2 
(11) 

(12) 

KPM is defined by equation (13), and the Lyapunov function 
candidate can be defined as given in (14). By choosing the 
control input as (15), time derivative of Lyapunov function 
becomes negative definite. 

�(t) = 1 K(v)F(v, z)dv (13) 
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1 2 V = "2 II � - �o II (14) 

u = (1 vT \l K(v)F(v, z)dv)(� - �o) . (15) 

D. Rotation about the optical axis using Fourier Transform 

As mentioned in section (II-C) Fourier transform will distin­
guish translation in x and y direction from scale and rotation. 
For rotation about the optical axis the magnitude of Fourier 
transform is used as the designated signal similar to the scale 
position. In this case the dynamic model for the robot can be 
written as follows: 

(16) 

Assume that fo is the signal image at the goal position (e = 0). 
Therefore f is a rotate version of fo and can be written as: 

f(w, e) = fo(Rew) (17) 

In which, 

R = [ case e 
-sine 

Sine ] case (18) 

Based on (17) the magnitude of Fourier transform for the 
rotated image: 

F(v, e) = Fo(Rev),v E R2 (19) 

The Lyapunov function candidate is defined similar to that 
of translation along the optical axis. By choosing the control 
input as (20), time derivative of Lyapunov function becomes 
negative definite. 

Where: 

u = -(1 vT J \l K(v)F(v, e)dv)(� - �o) . (20) 

J=R(1rj2)= [�1 �] (21) 

In this paper, the proposed method based on Fourier transform 
is implemented and the results are shown in the experimental 
results. 

E. Asymptotic Stability 

Heretofore, we have assumed a Lyapunov function candi­
date that is positive definite and found a control input that 
makes the derivative of Lyapunov function negative semi­
definite. To prove asymptotic stability, it is necessary to show 
that the derivative of Lyapunov function is negative definite. 
Without loss of generality we assume that qo = 0 is the goal 
position. Therefore, our aim is to show that V is positive 
definite and 11 is negative definite. To achieve that, use Taylor 
expansion of �(t) about �o . 

� = �o + �� q(t) + O(q2) (22) 

� - �o = Jq(t) + O(q2) (23) 

In equation (23) J is Jacobian matrix that is defined as follows: 

8� {" J = 
8q = 

Jf \lK(w)S(w, q(t))dw (24) 

Fig. 1: The robot that we used in our experiments, RV2AJ 
model 

In (22) O(q2) is high order derivative terms of q. By assuming 
a small neighborhood around the goal position, high order 
derivatives can be neglected from the Taylor series. 
By using equation (23) Lyapunov function and its derivative 
are written as follows. 1 T V = "2(� - �o) P(� - �o) 

1 = "2q(tf JT PJq(t) + O(q3) 

Q = JTpJ 

11 = _q(t)QQT q(t) + O(q3) 

(25) 

(26) 

(27) 

In equation (26) P is a n x n matrix that is positive definite. 
According to (25) and (27) if Jacobian matrix J E Rnxp (in 
which n is the number of kernels and p is the dimension of 
q(t)) is a full column rank, then Q is of full rank matrix with 
p x p dimension. By this assumption, it can be concluded that 
V is positive definite and 11 is negative definite in a small 
neighborhood around the goal position, and furthermore, they 
are zero at final destination point. Experimental results verifies 
asymptotic stability behavior near the goal position. 

III. EXPERIMENTAL RESULTS 

KBVS implementation requires combination of visual track­
ing in four degrees of freedom. Fourier transform is used 
for decomposition of 2D translation from scale and rotation. 
Consequently the magnitude of Fourier transform is used for 
scale and rotation compensation. Then, 2D motion compen­
sation is performed based on image signal. In this section, 
some experiments have been conducted to validate the KBVS 
according to the control laws described in II-B, II-C and II-D. 
We have done some experiments to show the features of KBVS 
method. For illustration, some tests in four degrees of freedom 
and the combination of them have been designed as follows: 
l. 2D Translation in X and Y directions. 
2. Translation along and rotation about the optical axis by 
computing Fourier transform. 
3. Decomposition of 2D Translation from rotation and scale 
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corrections using the magnitude of Fourier transform. 
4. Combination of 3D translation (x, y, z) plus roll motion 
about the optical axis. 

A. System Setup and Implementation Issues 

The hardware setup is composed of a PC equipped with 
a Pentium IV (1.8 GHz) processor and a 512 MB of Ram. 
Furthermore, the camera is made by Unibrain Company with 
30fps frame rate and a wide lens with 2.1 mm focal length. A 
5DOF robot was used to generate the relative cyclic trajecto­
ries in the experiments. This robot is a Mitsubishi manipulator 
model RV-2AJ. Software was implemented in visual studio 
by using OpenCV library which includes image processing 
algorithms. The robot configuration is shown in Fig. 1. 
All control inputs are velocities at end effector level. By using 
the robot Jacobian matrix at velocity level all control inputs 
are transformed to join velocities. For the industrial robots, 
the control input is not usually executable at the level of joint 
velocity and the control of the robot is only accessible through 
the position loop. Furthermore, the robot velocity shall be zero 
at the start and stop of the each motion. Accordingly, the 
desired velocity that estimated by kernel method, can not be 
directly executed. Consequently, the set of desired velocities 
are transformed to the desired positions by integration at the 
appropriate time interval. The time interval shall be carefully 
selected to have a smooth and continuous motion at the 
outset. Singularity avoidance and joint velocity limitations are 
considered for implementation based on motion planner that 
is formerly presented in [14]. 

B. 2D Translation in X and Y directions 

Kernel functions are usually chosen based on the type of 
experiments [12], [13]. For 2D Translation kernel functions 
are designed as follows: 

1 (_(wl-l'x)2) Kx(v) = ( fCC )e 2o-� (28) 
v 27r0' x 

1 «(w2-l'y)2) Ky(v) = (--)e - 2o-B 
V21fO'y 

(29) 

in which, the parameters are set to /Lx=/Ly=-lOO, O'x=O'y=70, 
while (WI, W2 ) is the image index. In Fig. 2 three random 
initials for 2D translation are tested. Suitable convergence 
toward the goal is shown in this figure, while the mean position 
errors of x and y are mentioned in Table I. 

C. Depth and Roll Motion 

In this case kernel functions for scale and rotation are 
selected, respectively, as follows: 

Kz(v) = e-(1/8)ll vI12 (30) 

Ke(v) = e-(1/8)vf + e-(1/8)v� (31) 

In Fig. 3 five random initials for scale are tested. Suitable 
convergence toward the goal is shown in this figure, while 
the mean position errors of scale test is mentioned in Table I. 
Fig. 4 shows the five random initials to the goal position for 

(a) 

i �JlA1H I I I I I 
o 5 10 15 20 25 30 35 40 

(b) Number of frames 

� ::: IU [ [ [ [ [ [ I o o 5 10 15 20 25 30 35 40 
(e) Number of frames 

�':IHl l lll 
o 5 10 15 20 25 30 35 40 

Number of frames 

Fig. 2: Three experiment results in x-y directions. a) perfor­
mance in x axis. b) performance in y axis, c) convergence of 
KPM for 2d translation 

, , 
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500�--,--_r--_,_---.---,_-__. 
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(b) 

40 50 60 

Fig. 3: Five experiment results in z directions. a) performance 
in z axis. b) Convergence of KPM for z axis using FFT 

rotation test. Suitable convergence toward the goal is shown 
in this figure, while the mean position error of e is mentioned 
in Table I. As it is observed in these figures, the performance 
of kernel based visual servoing system is very suitable for 
different initial conditions. In order to verify similar results a 
compound motion is considered in the next experiments. 
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Fig. 4: Five experiment results in rotation about z axis a) 
performance about e. b) Convergence of KPM for e using 
FFT 

D. Decomposition of 2D Translation from rotation and scale 

corrections 

As mentioned for 2D translation the image intensity is 
used directly but in scale and rotation the magnitude of FFT 
is required. In this section some experiments are designed 
to illustrate the effectiveness of the use of FFT in kernel 
algorithm. Note that in both experiments the magnitude of 
FFT is independent from 2D translation, and therefore in 
these experiments, the 2D translation error will not directly 
compensated. 
Fig. 5 illustrates the first experiment where the robot has 
performed an x - y- z motion. as it is seen in the final 
picture of this experiment by using FFT of the images in the 
kernels, the z motion is compensated, but the x and y remains 
unchanged. Similarly, Fig. 6 illustrates the experiment result 
for a 3D motion in which in addition to x-y motion rotation 
along z axis is considered. The same decoupling in motion is 
clearly observed in the final picture of the target, in which the 
rotation is compensated for, while the x-y translation is not 
compensated. Consequently magnitude of FFT is an effective 
tool to decompose z and e motions from 2D translation. 

E. 3D Translation + Roll Motion 

For the final experiment we have considered a full 4D 

motion, in which the 2D translation in x and y motion is 
performed in addition to a translation along and a rotation 
about z axis. In order to perform a full visual servoing motion 
, first the scale and rotation is compensated by using FFT in 
the kernels, and then the 2D translation is performed. Fig. 7 

illustrates the performance of this experiment, in which the 
disparity between the final and the goal positions are versy 
small and hard to be observed in this figure. This result verifies 
the effectiveness of the decomposition method proposed in 

(a) geel pictu.-e (b) first piau,. 

Fig. 5: Example images in a real environment. (a). Goal im­
age. (b). initial image with 2D translation and scale. (c). Final 
image with scale compensation. 

la) goal pict .... e (b) first pictW'e 

Ie) final pia .... '" 

Fig. 6: Example images in a real environment. (a). Goal im­
age. (b). initial image with 2D translation and rotation. (c). Fi­
nal image with rotation compensation. 

TABLE I: Comparison of kernel base tracking by using Fourier 
transform in scale and rotation 

10 trials with random initial positions position error 

mean position error of x (em) 0.0205 
mean position error of y (em) 0.1202 
mean position error of z (em) 0.5158 
mean position error of () (degrees) 0.2405 

this paper based on FFT image inensity. To verify the result 
quantitatively, Fig. 8 and Fig. 9 are given. Fig. 8 illustrates 
KPM for 2D translation, rotation and scale, while Fig. 9 
demonstrates the position error norms in all four degrees 
of freedom. As it is shown in these figures, the tracking 
errors in all 4 degrees of freedom are relatively small, and 
remain in suitable range. Relative comparison shows similar 
and better performance in translational motion compared to 
that of rotational performance. 

IV. CONCLUSIONS 

Kernel based visual servoing is a method in which tracking 
is performed based on the KPM as the feedback signal which 
is a weighted sum of the image. KBVS is a featureless tracking 
method without the need to separate tracking and control parts. 
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Fig. 7: Example images of a 4DOF trial in a real environment. 

The goal, initial, final and disparity image. 
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Fig. 8: Trial with random initial position, Convergence in X, 
Y, Z and R DOF 

Based on the KPM, a Lyapanov function is given to verify 

asymptotic stability of this method. Consequently the conver­

gence of leading an eye-in-hand robot to the goal position 

without any feature tracking is verified in experiments. In this 

paper it is proposed to use Fourier transform to decompose 

2d translational motion from the motion along, and rotation 

about the z-axis. Experimental results verifies effectiveness of 

the proposed method in such decomposition. This idea enables 

KBVS methods to be concurrently implemented for four 

degrees of freedom. In the experiments, first the translation 

along and the rotation about the z axis is compensated by 

using FFT of image intensity, while at the same time the other 

2 degrees of translation are compensated for with the ordinary 

kernel functions. Final experimental results verifies suitable 

tracking performance for tracking a unmarked, and non ideal 

object in a real environment. In the future works comparison 

between this method and KBVS based on Log-Polar transform 
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Fig. 9: Trial showing control to the goal image shown in 

Figure(7). a). Convergence in KPM for X-Y b). Convergence 

in KPM for Z. c). Convergence in KPM for R. 

would be done to show its sufficiency. 
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