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A SLAM based on auxiliary marginalised particle filter and differential evolution
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FastSLAM is a framework for simultaneous localisation and mapping (SLAM) using a Rao-Blackwellised particle filter. In
FastSLAM, particle filter is used for the robot pose (position and orientation) estimation, and parametric filter (i.e. EKF and
UKF) is used for the feature location’s estimation. However, in the long term, FastSLAM is an inconsistent algorithm. In
this paper, a new approach to SLAM based on hybrid auxiliary marginalised particle filter and differential evolution (DE)
is proposed. In the proposed algorithm, the robot pose is estimated based on auxiliary marginal particle filter that operates
directly on the marginal distribution, and hence avoids performing importance sampling on a space of growing dimension.
In addition, static map is considered as a set of parameters that are learned using DE. Compared to other algorithms, the
proposed algorithm can improve consistency for longer time periods and also, improve the estimation accuracy. Simulations
and experimental results indicate that the proposed algorithm is effective.
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1. Introduction

The simultaneous localisation and mapping (SLAM) is
a key issue to achieve intelligent navigation for mobile
robots. The two key computational solutions to SLAM
are the extended Kalman filter (EKF-SLAM) and the
Rao-Blackwellised particle filter (FastSLAM). The EKF-
SLAM is the most popular approach to solve the SLAM
problem. However, EKF-SLAM suffers from problems
such as the computational complexity and data association
(Dissanayake, Newman, Clark, and Durrant-Whyte 2001;
Huang and Dissanayake 2007; Hua and Shi-Yin 2011).
To solve the problems of EKF-SLAM, the FastSLAM
algorithm is proposed (Montemerlo, Thrun, Koller, and
Wegbreit 2003; Thrun et al. 2004). FastSLAM is an in-
stance of Rao-Blackwellised particle filter, which partitions
the SLAM posterior into a localisation problem with an
independent landmark position estimation problem (Mon-
temerlo et al. 2003; Thrun et al. 2004). However, it has
been recently reported that FastSLAM is inconsistent (Bai-
ley, Nieto, and Nebot 2006; Kim, Sakthivel, and Chung
2007; Kwak, Kim, and Lee 2007a; Kwak, Kim, Lee, and
Lee 2007b; Kim, Sakthivel, and Chung 2008; Kim, Kwak,
Lee, and Lee 2009). It is shown that FastSLAM degen-
erates with time, regardless of the density of landmarks
and the number of particles within an environment, and
will always produce optimistic estimates of uncertainty
in the long term. Therefore, FastSLAM is unable to ad-
equately explore state space to be a reasonable Bayesian
estimator.

∗Corresponding author. Email: havangi@kntu.ac.ir

Many approaches have been experienced to improve
FastSLAM. In Kim et al. (2009), improved particle fil-
ter using geometric relation between particles is proposed
to restrain particle depletion and to reduce estimation er-
rors and error variances. In this approach, KD tree (k-
dimensional tree) is used in the resampling process to re-
strain particles to go awry from the real pose of the robot.
In Kwak et al. (2007a), various resampling algorithms have
been analysed using the computer simulations. Moreover,
a new compensation technique has been proposed instead
of resampling to resolve the particle depletion problem. A
few attempts use evolutionary algorithms to improve Fast-
SLAM. In Lee, Park, Choi, and Lee (2009), an improved
FastSLAM framework using particle swarm optimisation
(PSO), named PSO-FastSLAM, is presented. In this work,
the concept of particle cooperation in swarm intelligence
is used to improve the performance of FastSLAM. In Kim
et al. (2008), UFastSLAM is presented. In this approach,
as the vehicle and the feature states are estimated with-
out accumulating linearisation errors, the accuracy of the
state estimation has been improved over the previous ap-
proaches. In Rodriguez-Losada, San Segundo, Matia, and
Pedraza (2009), a dual version of FastSLAM is presented.
This approach decouples SLAM into a map estimation and
a localisation problem, using a particle filter to estimate
over maps and a Kalman filter attached to each particle
to estimate the robot pose conditioned to the given map.
In all these algorithms, the presence of a static parame-
ter (i.e. static map) in the state space prevents the particle

C© 2013 Taylor & Francis
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2 R. Havangi et al.

Table 1. Comparison of algorithms.

Feature
Algorithm Robot pose position

FastSLAM2.0
The robot path is estimated by

extended particle filter
EKF

UFastSLAM The robot path is estimated by
unscented particle filter

UKF

Proposed
method

The robot pose is estimated by
auxiliary marginalised particle
filter

DE

approximation to be converged uniformly in time (Crisan
and Doucet 2002). To overcome this problem, marginal
SLAM is introduced in Martinez-Cantin, de Freitas, and
Castellanos (2007). However, this technique suffers from
sample impoverishment and high computational cost. The
sample impoverishment occurs when prior distribution is
either much broader than the likelihood or most measure-
ments appear in the tail of the proposal distribution. In this
case, the weights of most participles are insignificant. Fur-
thermore, the computational complexity of marginal SLAM
is O(M2), where M is the number of particles used to rep-
resent the probability density function.

In this paper, SLAM based on auxiliary marginalised
particle filter and DE is proposed. In summary, Table 1
shows comparison between the proposed method with Fast-
SLAM2.0 and UFastSLAM. In this approach, the robot pose
is estimated using auxiliary marginal particle filter that op-
erates directly on the marginal distribution. This technique
avoids performing importance sampling on a space of grow-
ing dimension. In addition, static map is considered as pa-
rameters that are estimated by evolutionary computation.
For this purpose, the map estimation is considered as an
optimisation problem. In general, this optimisation prob-
lem has no explicit analytical solution. By employing the
conventional methods, a local solution is usually obtained.
To solve this problem, in this study, an evolutionary compu-
tation procedure is used. Although there are many different
types of evolutionary algorithms, DE is used to solve the
problem. This is because DE is easily implementable and
has few parameters to be adjusted. Furthermore, in DE,
particles cooperate with each other.

The rest of the paper is organised as follows. In Sec-
tion 2, the SLAM problem and required background are
reviewed. The proposed algorithm is presented in Section
3. In Section 4, the simulation and experimental results are
shown.

2. Background

2.1. FastSLAM

To describe SLAM, let us denote the map by � and the robot
pose at time t by st . The map � consists of a collection of

features, each of which will be denoted by θn and the total
number of stationary features will be denoted by N . In
this situation, the SLAM problem can be formulised in a
Bayesian probabilistic framework as

p(st ,�|zt , ut , nt ), (1)

where st = {s1, . . . , st } is the robot path, zt = {z1, . . . , zt }
is a sequence of measurements, ut = {u1, . . . , ut } is a se-
quence of control inputs and nt = {n1, . . . , nt } is the data
association, in which each nt specifies the identity of the
landmark observed at time t . FastSLAM is an efficient al-
gorithm for the SLAM problem that is based on a straight-
forward factorisation as follows (Kim et al. 2007; Kwak
et al. 2007a, 2007b; Kim et al. 2009):

p(st ,�|zt , ut , nt ) = p(st |zt , ut , nt )
N∏

n=1

p(θn|st , zt , ut , nt ).

(2)

This factorisation states that the SLAM problem can be
decomposed into estimating the product of a posterior over
the robot path and N landmark posteriors given the knowl-
edge of the robot path. The FastSLAM algorithm imple-
ments the robot path posterior p(st |zt , ut , nt ) using a parti-
cle filter, and the landmark posteriors p(θn|st , zt , ut , nt ) are
realised using parametric filter. Each particle in FastSLAM
is denoted as

S
[m]
t =< st,[m], μ

[m]
1,t , �

[m]
1,t , . . . , μ

[m]
N,t , �

[m]
N,t >, (3)

where [m] indicates the index of the particle, st,[m] is the mth
particle’s path estimate, and μ

[m]
N,t , �

[m]
N,t are the mean and

the covariance of the Gaussian distribution representing the
N th feature location conditioned on the path st,[m]. Since
it is usually impossible to sample from the true posterior,
the samples are generated from a proposal distribution as
(Kwak et al. 2007a):

st ∼ q(st,[m]|zt , ut , nt−1). (4)

The importance weights can be updated in time as

w
[m]
t = p(st,[m]|zt , ut , nt )

q(st,[m]|zt , ut , nt−1)
. (5)

One of the main reasons for losing consistency is related to
the structure of FastSLAM. As the joint posterior density
of the state is approximated using sequential importance
sampling, the dimension of the target density p(st |zt , ut , nt )
grows with each time step. This causes the algorithm to
be degenerated quickly and therefore use of resampling
strategies becomes necessary in order to ensure a reasonable
approximation of the target density.
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In a formal manner, the resampling step should be done
along the full path (st,[m], ωt,[m]) that increases the number
of particles as time t goes on to maintain the desired level
of accuracy. In implementation of FastSLAM, all authors
carry out resampling over the marginal space (s[m]

t , ω
[m]
t ).

This would be good enough if the system exhibits ‘exponen-
tial forgetting’ of its past errors (Crisan and Doucet 2002).
However, static map estimate depends on the whole state
trajectory and does not necessarily exhibit an exponential
forgetting behaviour. The resampling of trajectories in the
joint path space is guaranteed to deplete the past in finite
time. However, as the number of particles increases ex-
ponentially, the system becomes intractable. Moreover, the
resampling step in marginal space provides an inconsistent
estimation with a finite number of particles as the system
does not exhibit ‘exponential forgetting’ of its past errors.

2.2. Differential evolution

Differential evolution (DE) is a stochastic, population-
based search strategy (Engelbrecht 2007). While DE shares
similarities with other evolutionary algorithms, it differs
mainly in the sense that distance and direction information
from the current population is used to guide the search
process. The DE algorithm utilises Np parameter vec-
tors {xk

i , i = 1, . . . ,Np} as a population at iteration step k.
The parameter vector is denoted by xi = [xi1, xi2, . . . , xind

]
with components xij . The index i = 1, 2, . . . , Np repre-
sents the individual’s index in the population and j =
1, 2, . . . , nd is the position in D-dimensional individual,
where nd is the problem dimension. During the initialisa-
tion of the population, Np vectors are generated randomly
in the D-dimensional search space. After initialisation, mu-
tation and crossover operators are employed to generate
new candidate vectors, and a selection scheme is applied to
determine whether the offspring or the parent survives to
the next generation. The above process is repeated until a
final criterion is reached.

2.2.1. Mutation operator

The DE mutation operator produces a trial vector for each
individual of the current population by mutating a target
vector with a weighted differential term. For each parent
xi(t), the trial vector ui(t) is created as (Engelbrecht 2007)

ui(t) = xi1 (t) + β(xi2 (t) − xi3 (t)), i �= i1 �= i2 �= i3

(6)
with randomly chosen indices, i1, i2, i3 ∈ {1, 2, . . . , NP }.
Parameter β is the scaling factor and its value is within the
range (0,∞). It controls the speed and robustness of the
search.

2.2.2. Crossover operator

The DE crossover operator implements a discrete recombi-
nation of the trial vector ui(t) and the parent vector xi(t) to
produce offspring x ′

i(t). The crossover is implemented as
follows (Chang, Lu, and Wang 2004):

x ′
ij (t) =

{
uij (t) if j ∈ J

xij (t) otherwise
, (7)

where J is the set of crossover points. For binomial
crossover, crossover points are randomly selected from the
set of possible crossover points, {1, 2, . . . , nd}.

2.2.3. Selection operator

This operation selects a better individual candidate between
the parent vector and the trial vector according to their cost
value calculated by means of the objective function.

3. SLAM based on auxiliary marginalised particle
filter and differential evolution

This section presents a novel SLAM framework based on
marginal particle filter and DE. To demonstrate this ap-
proach, we reformulate the SLAM problem as a robot lo-
calisation problem with unknown observation model pa-
rameters. For this purpose, the robot pose st is modelled
with a Markov process, which is characterised by an ini-
tial distribution of initial distribution p(st ) and transition
prior p(st |st−1, ut ), which represents the motion model.
The observations zt are assumed to be conditionally in-
dependent given the process st and marginal distribution
pθt

(zt |st ), where θnt
is a vector describing the elements of

the map (or parameters) in time t . Hence, the model consists
of the following two distributions (Martinez-Cantin et al.
2007):

p(st |st−1, ut ) (8)

pθnt
(zt |st ). (9)

From this viewpoint, the SLAM problem is to compute
sequentially in time the filtering distribution pθnt

(st |z1:t )
and point estimates of the map θnt

. The estimation of both
the dynamic state and static parameters is usually known
as the dual estimation in literatures. Many researchers have
tried to solve this problem in the field of filtering for sim-
ple case that the number of parameter is fixed. The appli-
cation of particle filter for recursive state and parameter
estimation of a simulated batch polymerisation reactor is
presented in Chen, Morris, and Martin (2005). In Doucet
and Tadic (2003) and Poyiadjis, Doucet, and Singh (2005),
gradient-based maximum likelihood estimation technique
is presented, where a particle filter is used to numerically
approximate the likelihood function derivatives. In Kantas,
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4 R. Havangi et al.

Doucet, Singh, and Maciejowski (2009), a comprehensive
review of the state of the art on joint state and parameter
estimation techniques based on particle filter is introduced.
Several authors have proposed the technique of expectation
maximisation algorithm combined with the particle filter
for combined state and parameter estimation of nonlinear
systems (Wills, Schon, and Ninness 2008).

In this paper, a dual estimation algorithm is proposed for
SLAM problem where the number of parameters increases
over time. This algorithm combines DE with marginal par-
ticle filtering that operates directly on the marginal distri-
bution. This is because that marginal particle filtering is
superior over the particle filter in terms of the importance
weight variance (Klaas, de Freitas, and Doucet 2005). In
the proposed method, provided that the robot pose st could
be estimated using marginal particle filtering then we can
access the set of pairs {s1, z1} , . . . , {st , zt } and compute
the parameters using DE of those pairs. The proposed al-
gorithm consists of the vehicle state estimation and map
learning that will be illustrated in the following subsec-
tions.

3.1. Vehicle state estimation

In the proposed approach, marginal particle method is used
to numerically approximate the filtering distribution. The
predictive density is obtained by marginalising as

pθnt
(st |z1:t−1) =

∫
p(st |st−1)pθnt

(st−1|z1:t−1)dst−1. (10)

Hence, the filtering update becomes

pθnt
(st |z1:t ) = pθnt

(zt |st )pθnt
(st |z1:t−1)

= pθnt
(zt |st )

∫
p(st |st−1)pθnt

(st−1|z1:t−1)dst−1.

(11)

The integral in Equation (11) is generally not solvable an-
alytically, but since we have a particle approximation of
pθnt

(st−1|z1:t−1)(namely,{x[i]
t−1, w

[i]
t−1}); Equation (10) can be

approximated as follows:

pθnt
(st |z1:t−1) =

N∑
i=1

ω
[i]
t−1p(st |s[i]

t−1). (12)

.To draw samples from pθnt
(st |z1:t ), a proposal distribution

is chosen. The choice of the proposal distributions is one
of the most critical issues in the design of SLAM based on
particle filter. The most common strategy is to sample from
the transition motion (or prior distribution). This strategy
is effective when the observation accuracy is low. However,
this strategy can fail when prior distribution is much broader
than the likelihood. In this case, sample impoverishment

occurs. The optimal choice of the proposal distribution is
the posterior distribution:

qθnt
(st |z1:t ) = pθnt

(st |z1:t ) = pθnt
(zt |st )

N∑
i=1

ω
[i]
t−1p

(
st

∣∣s[i]
t−1

)
.

(13)

However, it is often hard to obtain samples from this pro-
posal distribution. By using the auxiliary marginal particle
filter in Klaas et al. (2005), it is possible to obtain samples
from a proposal distribution that is close to the posterior
distribution. The posterior distribution can equivalently be
written as

pθnt
(st |z1:t ) = pθnt

(zt |st )
N∑

i=1

ω
[i]
t−1p(st |s[i]

t−1)

=
N∑

i=1

ω
[i]
t−1pθnt

(zt |s[i]
t−1)p(st |s[i]

t−1, zt )

=
N∑

i=1

p(i|z1:k)p
(
st

∣∣s[i]
t−1, zt

)
, (14)

where p(i|z1:k) is as

p(i|z1:k) ∝ ω
[i]
t−1pθnt

(
zt

∣∣s[i]
t−1

)
= ω

[i]
t−1

∫
pθnt

(zt |st )p
(
st

∣∣s[i]
t−1

)
dst . (15)

Using Equation (14), we can sample from the proposal dis-
tribution p(i|z1:k) at the first by sampling i, which is known
as the auxiliary variable from p̂(i|z1:k), and then sampling
st from p(st |s[i]

t−1, zt ). Since Equation (15) cannot usually
be evaluated as analytically, we approximate p̂(i|z1:k) as

p̂(i|z1:k) ∝ ω
[i]
t−1pθnt

(
zt

∣∣μ[i]
t

)
, (16)

where

μ
[i]
t = E

(
st

∣∣s[i]
t−1

)
. (17)

Since sampling from p(st |s[i]
t−1, zt ) is not always possible,

we sample from p(st |s[i]
t−1) instead. Hence, the proposal

distribution of auxiliary marginal particle filter is as

qθnt
(st |z1:t ) ∝

N∑
i=1

p̂(i|z1:k)p
(
st

∣∣s[i]
t−1

)
. (18)

In summary, the pseudo-code description of the robot pose
estimation using auxiliary marginal particle filter is as
follows:
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International Journal of Systems Science 5

(1) For i = 1, . . . , N , choose simulation μ
[i]
t and cal-

culate mixture weights:

μ
[i]
t = E

(
st

∣∣s[i]
t−1

)
λ̂

[i]
t−1 = ω

[i]
t−1pθnt

(
zt |μ[i]

t

)

λ
[i]
t−1 = λ̂

[i]
t−1∑N

i=1 λ̂
[i]
t−1

.

(2) For i = 1, . . . , N , sample from the proposal distri-
bution:

qθnt
(st |z1:t ) ∼

N∑
i=1

λ
[i]
t−1p

(
st |s[i]

t−1

)
.

(3) For i = 1, . . . , N , evaluate the importance weights:

w̃
[i]
t = pθnt

(
zt

∣∣s[i]
t

) ∑N
j=1 w

[j ]
t−1p

(
s

[i]
t

∣∣s[j ]
t−1

)
∑N

j=1 λ
[j ]
t−1p

(
s

[i]
t

∣∣s[j ]
t−1

) .

(4) Normalise the importance weights,

w
[i]
t = w̃

[i]
t∑n

j=1 w̃
[j ]
t

.

3.3. Learning map

Since static map has been considered as a set of param-
eters, the aim of mapping is to identify these parame-
ters based on an observation sequence z1:t in an online
fashion using maximum likelihood. When feature is not
observed, the position feature remains unchanged. The
observed feature is learned using maximum likelihood.
The maximum likelihood would lead to find the maxi-
mum of likelihood function pθnt

(z0:t ) with respect to θnt
as

follows:

pθnt
(z0:t ) = pθnt

(zt |z0:t−1)pθnt
(z0:t−1) =

t∏
k=0

pθnt
(zk|z0:k−1).

(19)

As a result, the problem of learning map can be easily
stated as an optimisation problem. This optimisation prob-
lem can be reformulated in an equivalent and convenient
form by taking logarithms as follows:

lθnt
(z0:t ) = log(pθnt

(z0:t )) =
t∑

k=0

log pθnt
(zk|z1:k−1). (20)

The maximum likelihood estimation can be defined as

θnt
= arg max

θnt

lθnt
(z0:t ) = arg max

θnt

t∑
k=0

log pθnt
(zk|z1:k−1).

(21)

To implement this optimisation, a recursive formulation
is required. If we consider the objective function as fo(st ),
it can be expressed recursively as follows:

fo(t) =
t∑

k=0

log pθnt
(zk|z1:k−1) = log pθnt

(zt |z1:t−1)

+
t−1∑
k=0

log pθnt
(zk|z1:k−1). (22)

On the other hand,

fo(t − 1) =
t−1∑
k=0

log pθnt
(zk|z1:k−1). (23)

Therefore,

fo(t) = log pθnt
(zt |z1:t−1) + fo(t − 1). (24)

Using Bellman’s principle of optimality, the optimisation
problem can be reformulated as

f (θ ) = log pθnt
(zt |z1:t−1), (25)

where

pθnt
(zt |z0:t−1) =

∫
pθnt

(zt |st−1)pθnt
(st−1|z0:t−1)dst−1.

(26)

Given the particle approximation of pθnt
(st−1|z1:t−1),

Equation (26) is calculated as

pθnt
(zt |z0:t−1) =

N∑
i=1

ω
[i]
t−1p

(
zt |s̃[i]

t

)
. (27)

On the other hand, the probability pθnt
(zt |s̃[i]

t ) can be ex-
pressed as

pθnt
(zt |s̃[i]

t ) = 1

2π |R|1/2 e− 1
2 (zt−ẑ

[i]
t )R−1(zt−ẑ

[i]
t )T . (28)

By replacing the expressions of pθnt
(zt |s̃[i]

t ) in Equation
(28), the optimisation problem can be reformulated as

arg min
θnt

N∑
j=1

(
zt − ẑ

[j ]
t

)
R−1

(
zt − ẑ

[j ]
t

)T
. (29)
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6 R. Havangi et al.

Hence, the learning map is reformulated as an optimisation
problem. To solve this problem, the DE algorithm is used.
DE uses a vector θk

nt ,i
to represent each candidate solution

i to the optimisation problem at iteration k for a given time
step t . DE will generate a new set of trail vector u as

ut = θk
nt ,i

+ β(θk
nt ,i2

− θk
nt ,i3

), (30)

where θk
nt ,i

is the target vector to be perturbed at iteration k,
θk
nt ,i2

and θk
nt ,i3

are randomly selected two individuals from
population so that i2 and i3 are different from running index
i. To increase the diversity of the new generation of vectors,
a crossover mechanism is introduced as follows:

θ ′
nt ,ij

=
{

ut,ij if j ∈ J
θnt ,ij otherwise

. (31)

To decide whether or not vector θ ′
nt

should become a mem-
ber of generation t + 1, the new vector is compared to θnt

. If
vector θ ′

nt
yields a better value for the fitness function than

θnt
, θnt

is replaced by θ ′
nt

for the new generation; otherwise,
the old value θnt

is retained for the new generation. Be-
cause DE is an iteration algorithm in search space, it will
cost much time. However, DE in our algorithm does not
need iterate so many times. This is because searching space
is a small area around the position at time step t − 1 and
initialised particles are also around the true position. When
the best fitness value reaches a certain threshold, the itera-
tion is stopped. In summary, the DE algorithm for learning
each observed feature θnt

consists of the following steps:

Step 1: Population initialisation of C

Generate N chromosomes randomly from a feasible
range.

Step 2: Evolution phase

(a) Take measurements to the landmarks and
perform data association.

(b) Create the trial vector, ut by applying the
mutation operator.

(c) For each θ ′
nt

, the expected observations are
calculated and the fitness function is evalu-
ated. If f (θ ′

nt
) is better than f (θnt

), then add
θ ′
nt

to C(t + 1), otherwise the original θnt
adds

to C(t + 1).
(d) The chromosome of lower value of the fit-

ness function is selected as the best landmark
estimate. Go to step 2(b) and begin a new it-
eration.

Step 3: Updating
The best chromosome of the population is used as
the updated landmark estimate.

In summary, the pseudocode of the proposed method is as
follows:

For all particles

Predict mean and covariance of the vehicle
For all observations
n̂ = DataAssociation()

For n̂ = known feature

Sample a new robot pose

s
[i]
t ∼

N∑
i=1

λ
[i]
t−1p

(
st

∣∣s[i]
t−1

)

Calculate important weight

w̃
[i]
t = pθnt

(
zt |s[i]

t

) ∑N
j=1 w

[j ]
t−1p

(
s

[i]
t |s[j ]

t−1

)
∑N

j=1 λ
[j ]
t−1p

(
st |s[j ]

t−1

)

End for

Normalise the importance weights

w
[i]
t = w̃

[i]
t∑n

j=1 w̃
[j ]
t

Calculate feature mean

If n̂ = known feature

Feature estimation by DE

else

Calculate new feature mean

End if
For unobserved features

θnt
= θnt−1

End for
End for

3.4. Computational complexity

The computational complexity of the proposed algorithm
is related to the sampling strategy, the learning map and
the calculation of the importance weight. Hence the num-
ber of particles, M , the number of features, N , and the
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Table 2. Comparison of complexity computational.

Complexity

Operation
Proposed
method

UFastSLAM
and FastSLAM

Sampling O(M) O(M)
Feature estimation O(M) O(M)
Importance weight O(M) O(M)

number of iterations in DE, k, determine the complexity
of it. The complexity of computing the proposal distribu-
tion and calculating the importance weights is O(M2). This
computational complexity can be reduced to O(M) using
improved fast Gaussian transform (IFGT) (see Appendix
for more details). In addition, the learning map has a com-
plexity of O(KM) that is approximated to O (M). This is
because DE does not need to iterate so many times, as
mentioned previously. Table 2 depicts the complexity of
the individual operations in algorithms. As can be seen, the
proposed approach has a complexity, which is almost the
same as that of FastSLAM and UFastSLAM.

4. Results

Since the proposed algorithm incorporates the current ob-
servation into the proposal distribution, the performance
of it is superior to marginal SLAM algorithm in nearly all
aspects. Hence, the performance of the proposed method
is compared with methods that measurements incorporate
in the proposal distribution (i.e. FastSLAM2.0 and UFast-
SLAM). The performance of algorithms is evaluated on
simulated data and real world data sets. The simulated data
allow comparison with ground truth, while the real world
data prove the applicability of algorithms to practical prob-
lems.

4.1. Simulation results

Simulation has been carried out to evaluate the perfor-
mance of the proposed approach in comparison with
other algorithms for the benchmark environment, available
in http://www.personal.acfr.usyd.edu.au/tbailey/software/
index.html. Figure 1 shows the robot trajectory and land-
mark location. The star points (∗) depict the location of the
landmarks that are known and stationary in the environ-
ment.

The robot has 4 m wheelbase and is equipped with a
range-bearing sensor with a maximum range of 30 m and a
180◦ frontal field of view. The robot moves at a speed 3 m/s
and with a maximum steering angle of 30◦. The control
noise is (σv = 0.2 m/s,σγ = 2o) and the measurement noise

Figure 1. The experiment environment.

is (σr = 0.1 m, σγ = 0.1o). Control frequency is 40 Hz and
observation scans are obtained at 5 Hz.

4.1.1. Performance comparison of algorithms

Figure 2 shows the comparison between the proposed algo-
rithm and other algorithms. The results are obtained over
20 Monte Carlo runs. It can be clearly seen that the results
of the proposed algorithm are better than that of UFast-
SLAM and FastSLAM2.0. In other words, the estimated
robot path and landmark positions with their actual value
coincide as closely as possible. The root mean square er-
ror (RMSE) of the algorithms is shown in Figure 3. The
mean and variance of RMSE are calculated over 20 inde-
pendent runs with 30 particles for each algorithm. Each bar
in this figure represents the mean and variance of RMSE
of the robot position. As shown, the mean and variance
of RMSE of the proposed method is smaller than that of
UFastSLAM and FastSLAM2.0 and, as expected, the ac-
curacy of UFastSLAM is much better than that of Fast-
SLAM2.0. The performance of algorithms is compared
with various numbers of particles. Figure 4 shows results
for this case. It is observed that the performance of the pro-
posed algorithm does not depend heavily on the number of
particles.

4.1.2. Consistency of algorithms

To verify the consistency of algorithms, average
normalised estimation error squared (NEES) is used. For
an available ground truth xk and an estimated mean and co-
variance {x̂, P̂ }, we can use NEES to characterise the filter
performance (Bar-Shalom, Li, and Kirubarajan 2001):

εk = (xx − x̂k)T P −1
k (xx − x̂k). (32)

D
ow

nl
oa

de
d 

by
 [

ra
m

az
an

 h
av

an
gi

] 
at

 0
3:

00
 3

0 
Ja

nu
ar

y 
20

13
 



8 R. Havangi et al.

Figure 2. Estimated and true vehicle paths with estimated and true landmarks: (a) Proposed method, (b) UFastSLAM and (c) Fast-
SLAM2.0. The red line and red stars denote the true path and landmark positions, respectively. The blue line is the mean estimate of
vehicle position and the blue circles are estimated landmarks.

Figure 3. RMSE of the robot position.

Consistency is evaluated by performing multiple Monte
Carlo runs and computing the average NEES. Given N

runs, the average NEES is computed as (Bar-Shalom et al.
2001)

ε̄k = 1

N

N∑
i=1

εik. (33)

Assuming a consistent linear-Gaussian filter, NRε̄t has
a χ2 density with NR dim(st ) degrees of freedom. Thus, for
the two-dimensional robot position, using 20 Monte Carlo
simulations, the two-sided 95% probability concentration
region for ε̄k is bounded by interval [1.3, 2.79]. Figure 5
shows the consistency of the proposed method in compari-
son with UFastSLAM and FastSLAM2.0. Since FastSLAM
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Figure 4. RMSE of algorithms with different numbers of parti-
cles.

2.0 and UFastSLAM are inconsistent after 80 s and 35 s, re-
spectively, we zoom in only on this part of graphs as shown
in Figure 5(b) and (c). The result shows that consistency of
the proposed method is more than that of UFastSLAM and
FastSLAM2.0. This occurs because the diversity of parti-
cles is more than that of other algorithms. The diversity
of particles is analysed through the percentage of particles
that do not share an ancestor in time. Every time a particle
survives a resampling step with one or more copies of it,
the original particle is considered the ancestor of all those
copies.

Figure 6 shows that the number of distinct parti-
cles in the proposed method is more than that of other
algorithms. Moreover, as all algorithms use the same re-
sampling strategy, the particle diversity of UFastSLAM is
mostly the same as FastSLAM2.0. As a result, the consis-
tency of the proposed method is more than that of other
algorithms.

Figure 5. (a) Proposed method, (b) UFastSLAM (zoomed figure) and (c) FastSLAM2.0 (zoomed figure).

D
ow

nl
oa

de
d 

by
 [

ra
m

az
an

 h
av

an
gi

] 
at

 0
3:

00
 3

0 
Ja

nu
ar

y 
20

13
 



10 R. Havangi et al.

Figure 6. Number of distinct particles.

Table 3. Computational cost of algorithms.

Processing time

Number of
Particles

Fast
SLAM2.0 UFastSLAM

Proposed
Method

30 43.4 78.8 66.5
20 34.1 55.6 49.9
10 25.3 36.7 31.4

4.1.3. Computational cost

The computational cost of the algorithms is analysed us-
ing the Matlab simulations on an Intel Core2Duo@3Ghz
laptop. As seen in Table 3, the required computation time
of the proposed method is lesser than that of UFastSLAM.
The processing time of FastSLAM2.0 is lower than that
of UFastSLAM and the proposed approach due to its

Figure 7. (a) Proposed method, (b) UFastSLAM and (c) FastSLAM2.0. The ‘. . .’ is the path estimated, the ‘ + ’ are the estimated beacon
positions, the ‘__’ is the GPS path reference and the ‘o’ are the beacon positions given by the GPS.
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simplicity, but this fact is insignificant if its poor perfor-
mance is taken into account.

4.2. Experimental results

The performance of the proposed method is evaluated on
the Car Park data set and Victoria data set, two popular
data sets in the SLAM community. These two data sets are
available in Nebot. The experimental platform is a four-
wheeled vehicle equipped with wheel encoders, GPS and a
laser sensor. The vehicle had a 2.83 m wheelbase and was
equipped with the SICK laser range finder with 180◦ frontal
field of view.

In Car Park test, the vehicle was driven around the
park. The artificial landmarks were used that consisted of
60 mm steel poles covered with reflective tape. With this
approach, the feature extraction becomes trivial and the
landmark observation model will be very accurate. Since
the true position of the landmarks was also obtained with
GPS, a true navigation map was available for comparison
purposes. Furthermore, a GPS receiver is used to provide
ground truth for the robot position. The performance of al-
gorithms is compared in situation that the correspondence
between the observation and the landmarks is assumed to
be unknown and 20 particles are used for all algorithms.
Each algorithm is run many times to confirm the variance
of the estimate error. For the unknown data association,
the individual compatibility in nearest neighbour test with
2σ acceptance region is used. Figure 7 shows the trajec-
tory and landmark estimates produced by algorithms, while
Figure 8 shows RMSE of the robot position with 20 par-
ticles and Figure 9 shows the performance of algorithms
with various numbers of particles. The results show that the
performance of the proposed algorithm is better than that
of other algorithms.

The second experimental run is done in Victoria data set
that is a larger area with mild uneven terrain and different

Figure 8. RMSE of the robot position.

Figure 9. RMSE of algorithms with different numbers of parti-
cles.

types of surfaces. The vehicle was driven in the park around
for about 30 min and was moved over 4 km, with a sensor
to measure the velocity and the steering angle. Figure 10
shows Victoria Park with the GPS path. The GPS data were
collected to provide ground truth data. Although the vehi-
cle was equipped with the GPS, due to occlusion by foliage
and buildings, ground truth data were not available over the
whole experiment. However, the ground true position of the
vehicle from the GPS was good enough to validate the esti-
mated vehicle state. Figure 11 presents the trajectories and
map for each algorithm. The results show that the perfor-
mance of the proposed method is better than that of other
algorithms. This is because the estimated trajectory of the
proposed method coincides very well with the GPS paths.

Figure 10. Victoria Park with the GPS path.
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12 R. Havangi et al.

Figure 11. Comparison of algorithms.

5. Conclusion

FastSLAM is a framework for SLAM using a Rao-
Blackwellised particle filter. However, this approach is in-
consistent in long term. The structure of FastSLAM is one
of the main reasons for inconsistency. In implementation of
FastSLAM, resampling carried out over the marginal space.
However, as the SLAM problem does not exhibit ‘expo-
nential forgetting’ of its past errors, the resampling step
provides an inconsistent estimation. To solve this problem,
SLAM based on hybrid auxiliary marginalised particle fil-
ter and DE is proposed in this study. In this approach, sam-
ples are derived directly in the marginal space that avoids
performing importance sampling on a space of growing
dimension. The static map is also considered as a set of pa-
rameters that are learned using DE. In addition, the use of
the IFGT to reduce the computational complexity of the pro-
posed method has been considered. The performance of the
proposed method is compared with UFastSLAM and Fast-
SLAM2.0 for benchmark environment. The results show
the effectiveness of the proposed method. The main advan-
tage of the proposed approach is that the consistency and
accuracy of the state estimation is improved in comparison
with the other algorithms.
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Appendix. Reducing the computational complexity
For computing the proposal distribution and importance weight,
each particle interacts with a density represented by N particles
as follows:

q
[i]
1 =

N∑
j=1

w
[j ]
t−1p

(
s

[i]
t |s[j ]

t−1

)
. (A1)

In general, this equation can be reformulated as the weighted fast
kernel density estimation (KDE) problem as follows:

q [i] =
N∑

j=1

ω[j ]K(s [j ] , t [i]), (A2)

where

K(s[j ], t [i]) = p
(
s

[i]
t = t [i]|s[j ]

t−1 = s[j ]
)
. (A3)

Also s[j ]
R

D is the source points with associated weights w[j ],
t [i]

R
D is the target points and K(s[j ], t [i]) is the kernel function.

There have been several approaches suggested in the literature
to reduce this computational complexity while compromising on
the accuracy. Different methods for fast evaluation of KDE rely
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on the division approach where either the source space or the
joint source and target space are first partitioned into different
regions. In our problem, the kernel K is Gaussian as

K = 1√
(2π )n |Pt |

e− 1
2 (s[i]

t −m
[j ]
t )T P−1

t (s[i]
t −m

[j ]
t ). (A4)

In which, m
[j ]
t and Pt are mean and covariance of probability

Gaussian (kernel), respectively. By Cholesky factorisation,
positive-definite matrix Pt may be decomposed into the product
of an upper triangular matrix and its transpose as

Pt = RT
t Rt . (A5)

Using this factorisation, the kernel K can rewrite as follows:

K = 1√
(2π )n |Pt |

e
− 1

2

∥∥∥τ
[i]
t −δ

[j ]
t

∥∥∥2

, (A6)

where τ
[i]
t = (RT

t )−1s
[i]
t and δ

[j ]
t = (RT

t )−1m
[j ]
t . Therefore, the ker-

nel K can be formulated as the weighted KDE problem as follows:

⎧⎪⎪⎨
⎪⎪⎩

q [i] =
N∑

j=1
�

[j ]
t exp

(
−

∥∥∥τ
[i]
t − δ

[j ]
t

∥∥∥2
/

σ 2
)

�
[j ]
t = ωj√

(2π )n |Pt |
σ =

√
2

, (A7)

where Equation (A7) is adapted to the standard form of KDE with
Gaussian kernel. Therefore, the fast Gaussian transform (FGT)
(Greengard and Strain 1991; Elgammal, Duraiswami, and Davis
2003) and IFGT (Yang, Duraiswami, Gumerov, and Davis 2003)
can be used to reduce the computational complexity of KDE in
O(N ). In this paper, the use of IFGT to reduce the computa-
tional complexity of KDE has been considered. This is because
computational constant of IFGT grows more moderately with the
dimension compared to FGT, which the computational constant
grows exponentially with the dimension. Details about IFGT can
be found in Elgammal et al. (2003) and Yang et al. (2003).
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