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Abstract—This paper presents an online robust RGB-D SLAM
algorithm which uses an improved switchable constraints robust
pose graph slam alongside with radial variance based hash
function as the loop detector. The switchable constraints robust
back-end is improved by initialization of its weights according
to information matrix of the loops and is validated using real
world datasets. The radial variance based hash function is
combined with an online image to map comparison to improve
accuracy of loop detection. The whole algorithm is implemented
on K. N. Toosi University mobile robot with a Microsoft Kinect
camera as the RGB-D sensor and the whole algorithm is validated
using this robot, while the map of the environment is generated
in an online fashion.

I. INTRODUCTION

During the recent years, RGB-D cameras have been used
vastly for odometry estimation of indoor environments in
SLAM for mobile robots. These cameras provide depth in-
formation of the environment, like stereo cameras, while they
are usually much cheaper than the latter. The main problem
of RGB-D cameras is limited range of depth estimation
which can cause uncertainty in depth information of indoor
environments and can result in a failure of a RGB-D SLAM
algorithm.

RGB-D SLAM algorithm consist of two front-end and back-
end sections. The front-end section receives RGB-D data and
extracts motion estimation as well as detecting the loops, while
the back-end has to deal with front-end output to optimize the
pose estimations and build the map. Detecting and closing
correct loops reduces the motion estimation errors in the map
but a false positive loop can result in failure of the RGB-D
SLAM algorithm. Preventing from detection of false loops can
be accomplished by two approaches. The first approach is to
design a loop detection algorithm in front-end with minimum
false positive detection [1], [2]. The second approach is using a
robust back-end which can detect and remove false loops from
optimization step [3], [4], [5]. Trying to avoid detecting false
loops in front-end section may lead to many undetected true
positive loops in indoor environments. Furthermore, even the
most accurate loop detection methods can not guarantee %100
accuracy. Robust loop closing methods in the back-end section
extend the optimizer with the ability of detecting and removing
or disabling false positive loops detected by the front-end.
These robust back-end methods may be used along side an

accurate front-end loop detector, while it will result in a slow
SLAM performance.

For online implementation of RGB-D SLAM algorithm we
need a fast and robust back-end. The main disadvantage of
RRR robust loop closing algorithm [5], is its slow performance
compared to that of other algorithms. This drawback makes
this method unusable for online implementations. Among
two other popular robust loop closing back-ends introduced
in the literature, the switchable constraints algorithms has
better accuracy and speed compared to that of max-mixture
algorithm [9]. However, this algorithm does not perform well
in some real world datasets. In this paper we use a robust
back-end which is based on switchable constraints algorithm
[3], and extend it by adding useful information of the front-
end loop detector. It is shown in this paper that by using
this information the results of this algorithm is significantly
improved for real world datasets. We use this method alongside
with iSAM2 graph optimizer [8], to have an online framework.
By this means, in the front-end we use fast odometry from
vision (FOVIS) library for motion estimation [6]. For detection
of the loops in the front-end section we use an algorithm based
on radial variance hash function [7], which can suitably detect
the loops in small amount of time compared to that of other
detectors. Finally the proposed RGB-D SLAM algorithm is
implemented on the mobile robot of K. N. Toosi University
and the real time implementation results are discussed in
details.

II. BACKGROUNDS

In front-end section of a SLAM algorithm, a visual odom-
etry algorithm first extracts the odometry constraints and
then the loop detector searches for any loops and finds the
loop constraints. Furthermore, the pose graph will be sent to
back-end for nonlinear optimization of this graph. In online
implementations, this procedure concurrent with every frame
of RGB-D camera capture. Since the accuracy of each section
will specify the total accuracy of the iSLAM algorithm, in
this section we will review the details of these sections that
are being used in the SLAM algorithm.

A. FOVIS

FOVIS is a visual odometry system for odometry estimation
that is used in both RGB-D and stereo cameras. FOVIS
extracts FAST features from RGB images and by matching978-1-4799-6743-8/14/$31.00 c© 2014 IEEE
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Fig. 1. A simple pose graph demonstration

them and finding inlier matches, it uses absolute orientation
method for motion estimation. FOVIS uses depth information
by minimizing the reprojection error and refines the estimated
motion. Because of FAST features, FOVIS can perform very
fast and also provides suitable accuracy.

B. Radial Variance Based Hash Functions

Hash functions may be used for comparing images. Some
hash functions provide a good robustness against image distor-
tions like rotation, resize, etc. The radial variance based hash
function introduced by Lefebvre et al is one of the robust hash
functions which may be used for comparing images in short
time [7]. The radial variance vector is defined as

R[α] =

∑
(x,y)∈Γ[α] I

2(x, y)

#Γ[α]
−

(∑
(x,y)∈Γ[α] I(x, y)

#Γ[α]

)2

(1)

in which, α being an angle changing from 0◦ to 179◦ and
I(x, y) denotes the intensity of (x, y) pixel. Using this function
on an image will result in an array with size of 180 describing
the image. Furthermore, a DCT function is used on the array
to compute the radial variance hash of the above equation and
the first forty coefficient will be considered as radial variance
hash of the image. For comparison of radial variance based
hashes, peak of cross correlation (PCC) is used as a popular
criterion.

C. Pose Graph Slam

A pose graph is a graph which only consists of robot
poses, and therefore, there is no landmark depicted in this
graph. Robust loop closing methods are based on pose graph
SLAM formulation. A simple demonstration of pose graph
slam is shown in Figure 1 in which each circle shows a robot
pose, solid lines denote odometry constraints and dashed line
denotes a loop constraint. Given a set of odometry constraints
ui,i+1 between pose xi and pose xi+1 is we have

xi+1 = f(xi, ui,i+1) + wi,i+1 (2)

in which, wi,i+1 is a zero mean Gaussian error term and f
is a nonlinear function which implements motion model of
the robot. for the loop constraints between pose xi and xj we
have

xj = f(xi, ui,j) + vi,j (3)

in which, vi,j is the zero mean Gaussian error term. For the
whole graph, the conditional probability over all variables may
be written as

P (X|U) ∝ Πi,i+1P (xi+1|xi, ui,i+1) ·Πi,j (xj |xi, ui,j) (4)

in which,X = {xi} and U = {ui,i+1, ui,j}. In SLAM we seek
for maximum of posterior robot poses, X∗. If it is assumed

that the probabilities are Gaussian, then the problem may be
written as a nonlinear least squares optimization:

X∗ =argmax
x

P (X|U) = argmin
x

− logP (X|U)

=argmin
x

∑
i,i+1

||f(xi, ui,i+1)− xi+1||2∑
i,i+1

+
∑
i,j

||f(xi, ui,j)− xj ||2Λi,j

(5)

with ||a− b||2∑ being the Mahalanobis distance. Solving this
nonlinear least squares problem will lead to a maximum
posterior of robot pose.

D. Switchable Constraints Robust Pose Graph SLAM

The main idea of this algorithm is not to keep the topology
of graph fixed, therefore, it can be changed during the opti-
mization. In this method a binary weight wi,j is assigned to
each set of loop constraints. As a binary weight cannot be used
with specific nonlinear optimization algorithms, a continuous
switch variable si,j ∈ R is define for each weight. It is not
necessary to have function that maps the continues space to
discrete values for weights, and therefore, even functions like
sigmoid may be used as functions to map switch variables to
continuous space of (0, 1) by:

wi,j = Ψ(si,j) : R→ (0, 1) (6)

These switch variables need an initial value which is consid-
ered such that the initial weights to be near one. Therefore, it
is assumed that all loops are correct in the beginning of the
optimization. The nonlinear least squares problem with the
presence of these switch variables may be written as

X∗, S∗ = argmin
x

∑
i,i+1

||f(xi, ui,i+1)− xi+1||2∑
i,i+1

+
∑
i,j

||sig(si,jf(xi, ui,j)− xj ||2Λi,j

+
∑
i,j

||λi,j − si,j ||2Ξi,j

(7)

in which, the final term has been added to avoid all switch
variables to move toward amounts that result in near zero
weights, and all the loops disabled. In this term λi,j is initial
value of the switch variable.

III. SWITCHABLE CONSTRAINTS WITH WEIGHT
INITIALIZATION

In switchable constraints algorithm, the initial weights are
always assumed to be one. This assumption can greate3y
affect the convergence of the optimization. As the optimization
problem in switchable constraints algorithm is an augmented
one, the initial weights become more important on the rate
of convergence. In front-end section after detection of a loop
we have to use a motion estimator to extract loop constraints.
Most motion estimation methods are based on a least square
solver, and therefore, they can provide an information matrix
(inverse of covariance matrix) of the estimation error. This
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matrix provides detailed information about the certainty of
estimation, and therefore, it can be used to initialize the weight
values of the switchable constraints algorithm.

The diagonal elements of the information matrix are the
most important elements and in most cases the effect of
cross terms are almost negligible. In this paper it is proposed
to use the diagonal elements for initialization of switchable
constraints weights. The switchable constraints weights are
scalars and between 0 and 1. Hence, we define the initial
values of these weights as

wi,j(0) =
tr(Ri,j)
N

(8)

in which, N is dimension of information matrix which is
3 in 2D environments and is 6 in 3D environments. Ri,j
is information matrix related to the loop detected between
pose i and pose j. According to this equation, each wi,j
will be initialized with average of variances of estimated
constraint elements. This value is a number between 0 and
1 and can describe the certainty of estimated motion between
pose xi and xj . Using this initialization can lead to a more
robust optimization results compared to that on conventional
switchable constraints algorithm. This claim is verified in the
reported experimental results.

IV. RADIAL VARIANCE BASED HASH FUNCTION LOOP
DETECTOR

The next contribution of this paper is the proposal of a loop
detection algorithm based on radial variance hash functions.
This algorithm only uses RGB images of RGB-D cameras
for comparing images and detecting the loops. Using PCC1

criterion for loop detection using these hash function needs a
threshold to be specified for deciding whether two compared
images are indicating a loop or not. In indoor environments,
an unjustified threshold may either result in detection of many
false positive loops or may result in loss of many true positive
loops. As existence of many false positive loop can affect
the accuracy of robust back-end, we have proposed a method
based on the idea of [10] to reduce the impact of threshold
on accuracy. By this means, instead of comparing each image
related to a robot pose to other images of other poses we will
compare each image to the small amount of map that is built
till the current robot pose. By using this procedure we will
have an online implementable algorithm which increases the
accuracy of radial variance based hash loop detector.

Figure 2 shows a graphical demonstration of distance matrix
of the proposed method. In this case we have compared the
current pose of the robot to three past poses. If there exist
a path consisting of 4 comparison with PCC of more than a
specific threshold, the current position will be accepted as a
loop. By using this method false positive loops, that usually
occur as a result of the randomness characteristic of hash
functions, will be rejected and also impact of the threshold
on loop detection will be decreased. In Figure 2 each pixel
shows a comparison between two images of the robot two

1Peak of Cross Correlation

(a) (b)

Fig. 2. Comparing image to map for loop detection: (a) shows an accepted
loop and (b) shows a rejected one.

poses. A black pixel shows a comparison with PCC of 1 and
a white pixel shows a PCC of 0, hence, darker pixels mean
higher PCC. Figure 2.a shows an accepted loop as there is a
path indicating a loop and Figure 2.b shows a rejected loop
as there is no such path. In indoor environments we can not
search for a path within many previous poses because the loop
may only exist in few images. It is later shown by precision-
recall curves that using this method can significantly increase
the performance of loop detection based on radial variance
hash function.

V. EXPERIMENTAL RESULTS

All back-end experiments have been run using iSAM2 [11],
which is an incremental graph optimizer to enable us for online
implementation. The benchmark system is a laptop with a core
i7 cpu with Ubuntu 12.04 LTS operating system.

A. Switchable Constraints With Weight Initialization Results

For this part we have also implemented max-mixture
method in iSAM2 framework for sake of comparison in real-
world datasets. According to results reported in [7], two real-
world 2D datasets Bovisa06 and Bovisa04 reported in [12],
the switchable constraints algorithm does not perform well on
the latter. Furthermore it provides worse results than that of
max-mixture algorithm in g2o [13], framework.

Table I shows the results of the implementation of Switch-
able Constraints (SC), Max-Mixture (MM) and the proposed
initialized SC (iSC) for both mentioned datasets in iSAM2
frame work. For each dataset there is two column in this table.
The first column shows RMSE according to ground truth of the
dataset, while the second column shows the computation time
needed for performing the optimization of the whole dataset
using iSAM2 framework within online implementation. Com-
paring the first and the second rows, it is clearly seen that
MM algorithm has less error for Bovisa06 dataset compared
to SC algorithm while for dataset Bovisa04 the converse is
observed. The time that is needed for optimization of the
whole datasets in iSAM2 framework is slightly more for SC
algorithm compared to MM algorithm, but the difference is
around 10 percent of the whole time, which is tolerable. The
error behavior is the same in what reported in [7] for the g2o
framework, as well.

The third row shows the proposed initialized SC results
and as we can see in both datasets the RMSE has decreased
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TABLE I
MM, SC & ISC RESULTS FOR BOVISA06 & BOVISA04

Bovisa04 Bovisa06
RMSE(m) time(s) RMSE(m) time(s)

MM 32.2081 2939.99 24.0652 2693.12
SC 28.5109 3387.02 31.2925 2832.18
iSC 22.6847 3385.26 23.0868 2832.94

−50 0 50 100 150 200 250
−50

0

50

100

150

200

 

 

GroundTruth
SC
iSC

−50 0 50 100 150 200 250
−50

0

50

100

150

200

x (m)

y 
(m

)

 

 
GroundTruth
iSC
MM

Fig. 3. Bovisa06 : Dotted line is ground truth of dataset, solid line is SC
result and the dashed line is iSC result (top). Dotted line is ground truth of
dataset, solid line is MM result and the dashed line is iSC result (bottom).

compared to that of SC algorithm. For Bovisa06, the RMSE
is even less than MM algorithm and for both datasets, iSC
algorithm provides better RMSE compared to that of other two
algorithms. As it is shown in second column of each dataset,
the time that is needed for optimization did not noticeably
change when we added weight initialization. This is due to
the fact that in iSAM2 framework the optimization is run only
one iteration for each pose added to the graph.

Figure 3 illustrates the results compared to ground truth for
Bovisa06. In the top figure, the dashed line, which denote the
result of iSC algorithm, is closer to ground truth than that of
the solid line, which represents the results of the SC algorithm.
Also in the bottom Figure, the MM algorithm result which is
shown in solid line is far from the ground truth of the left
building but it is closer to the ground truth of the right building
compared to that of iSC. Furthermore, the global numerical
results shown in Table I, verifies that that iSC has better
overall results for this dataset. According to the numerical and
graphical results, adjusting initial weights with respect to the
information matrix, will result in improvement of switchable

TABLE II
LOOP DETECTION RUN TIME COMPARISON

RVB (image
to map)

RVB (image
to image)

FAB-
MAP2.0

Run Time 8.43s 7.36s 54.45s

constraints robust algorithm error.

B. Loop Detection Using Radial Variance Based Hash Func-
tion

Radial variance based hash function can detect loops in a
small amount of time. To see this, we have compared the
run time of this function with FAB-MAP2.0 algorithm [1],
which is considered as a gold standard in loop detection of
SLAM robots. For this comparison we have generated a RGB-
D dataset in K. N. Toosi University using a Microsoft Kinect
camera. This dataset is collected with a mobile robot while the
Kinect camera was mounted on it. Table II shows the run time
of FAB-MAP2.0 and radial variance based hash function loop
detector. For implementation of radial variance based hash
we have use pHash library [14]. This table shows that radial
variance based hash function performs significantly faster than
FAB-MAP2.0, whether we use an image to image or an image
to map comparison.

For accuracy comparison, the precision-recall curves of
the proposed algorithm and the FAB-MAP2.0 are given in
Figure 4. As we can see in the left curve, using image to map
comparison (dashed line) leads to a better accuracy compared
to that of image to image comparison (solid line), for radial
variance based hash function loop detector. Also both results
have better accuracy compared to the right curve which shows
precision-recall of FAB-MAP for K. N. Toosi-Avril RGB-D
dataset. As the right curve shows, the accuracy of FAB-MAP
falls below 50% for recall of below 10% but in the left curve
both lines still keep 100% accuracy for more than 10% of
recall. This is mainly because of the fact that the FAB-MAP2.0
algorithm is very sensitive to any overlap between the images.
In indoor environments the method that FAB-MAP2.0 has
implemented to avoid overlapping the images is not working
well for Microsoft Kinect images and thus its accuracy reduces
very fast. However, our proposed algorithm is not sensitive to
overlaps and in presence of overlaps it will not loose true
positive loops.

C. Implementation On K. N. Toosi-Avril Robot

By using FOVIS for visual odometry and radial variance
based hash function for loop detection we have a complete
front-end. We have attached this front-end to proposed back-
end and made an online robust RGB-D SLAM system. We
implemented this system on K. N. Toosi-Avril mobile robot
which is a four wheel robot and we’ve used the overhead
camera of a small size league to locate real position of the
robot and make a 2D ground truth. We have implemented the
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Fig. 4. Precision-Recall curve for radial variance based hash function
algorithm (RVB) with both image to image (i2i) and image to map (i2p)
comparison in left curve and FAB-MAP2.0 algorithm in the right curve for
K. N. Toosi-Avril RGB-D dataset.

whole system in the following five steps and computed the
error of robot pose (RMSE) at each step:

1) Using only FOVIS for visual odometry
2) Using FOVIS and RVB hash function loop detector with

simple threshold of 0.85 and iSAM2 as the back-end
3) Using FOVIS and RVB hash function loop detector with

image to map comparison and iSAM2 as the back-end
4) Using FOVIS and RVB hash function loop detector with

image to map comparison and SC robust back-end
5) Using FOVIS and RVB hash function loop detector with

image to map comparison and iSC robust back-end
The results of each step is shown in Table III. In the second

step where we use the proposed loop detection algorithm with
only a simple threshold, we see that the RMSE goes up and
gets near twice as that of a pure visual odometry. This shows
that existence of false positive loops can result in failure of the
iSAM2 which is the back-end used in here. In the next step
by using image to map comparison idea, the error decreases
significantly and the computational time slightly increases,
which shows the importance of rejecting false positive loops.
In the fourth step we use the SC robust back-end, which is
implemented in iSAM2. The results shows that there still exist
some false positive loops, which are successfully reduced their
effects. Also as size of the dataset is not very large, the amount
of time that is increased is very limited. In the last step,
the whole proposed SLAM system is implemented and the
results shows that the final RMSE is the minimum among all
others while the runtime is well suited for an online SLAM
implementation. The whole dataset consists of 3300 RGB-
D frames with total time of 200 seconds, which means that
we can have an average frame rate of around 16 frames per
second.

Figure 5 shows graphical results of the 5 implemented steps.
In this figure only the X-Y view of the robot trajectory is
shown since the robot moves on a flat surface. In the sub figure
(a) the first step is shown, as we see FOVIS can not provide a
good estimation of real robot trajectory (dashed line) alone. In
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Fig. 5. Graphical results of the whole proposed SLAM algorithm from step
1 (a) to step 5 (e).
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TABLE III
RESULTS OF IMPLEMENTATION ON K. N. TOOSI AVRIL ROBOT

Steps
1 2 3 4 5

RMSE (m) 0.353 0.716 0.324 0.121 0.115
Time (s) 112.06 191.16 199.26 199.83 200.07

Fig. 6. Graphical results of the whole proposed SLAM algorithm from step
1 (a) to step 5 (e).

the next step (b), the result of proposed loop detection method
with simple threshold is illustrated, in which the structure of
the robot trajectory is completely destroyed and the algorithm
has failed. In the next step (c), the comparison of image to
map has resulted in a better estimation but the estimation is
still affected by some false positive loops. After using an SC
robust back-end in step (d), the whole estimated trajectory gets
very close to the ground truth and in the final step there is a
little improvement in some areas where the trajectory of robot
starts.

At the end we make a point cloud representation map of the
environment that the robot has seen. For this implementation
PCL [15], the library for working with point clouds is used. By
having the exact pose of the robot we only need to put points
cloud of each pose together to have the map of environment.
This map is show in Figure 6, which is generated without any
point registration with frame selection rate of 100. As it is
seen in this figure, the structure of the room and it contents is
correctly placed in the map. The other wall of the room was
very far and not in range of Kinect camera, therefore, it is not
mapped.

VI. CONCLUSIONS

This paper proposed an online robust RGB-D SLAM algo-
rithm which has been evaluated from many different aspects.
It is shown that using a loop detector that barely detects any
false positive loop may result in loss of true positive loops
and consequently produces an unacceptable map. Since robust
back-end methods may be used to minimize the effects of false
positive loops it is not necessary to ensure zero false positive
loop detection in front-end section. Furthermore, it is shown

that using front-end information to initialize the robust back-
end optimizer will improve the result of optimization. This
improvement is evaluated for switchable constraints robust
pose graph SLAM algorithm in real world datasets. Further-
more, state-of the-art algorithms such as the one that use a
radial variance based hash function as loop detector may be
extended to image to map comparison, to perform suitably well
in terms of loop detection with low computational complexity.
The proposed algorithm is implemented on K. N. Toosi mobile
robot in a step by step implementation hierarchy, by which the
importance of adding each step to the algorithm is elaborated.
Graphical and numerical results are reported for each step
of the extended algorithm, by which it is verified that the
proposed algorithm works suitably well with RGB-D data
from Kinect camera. Furthermore, it is shown that the required
execution time needed for each step is such that the algorithm
is promising for implementation in real time with current
graphical processing unit capabilities.
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