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Abstract— There is an issue called maximum likelihood
estimation in SLAM that corresponds to a nonlinear least-square
problem. It is expected to earn an accurate solution for large-
scale environments with high speed of convergence. Although all
the applied optimization methods might be accepted in terms
of accuracy and speed of convergence for small datasets, their
solutions for large-scale datasets are often far from the ground
truth. In this paper, a double Dogleg trust region method is
proposed and adjusted with iSAM2 to level up performance and
accuracy of the algorithm especially in large-scale datasets. Since
the trust region methods are sensitive to their own parameters,
Gould parameters are chosen to obtain better performance.
Simulations are done on some large-scale datasets and the results
indicate that the proposed method is more efficient compared to
the conventional iSAM2 algorithm.

I. INTRODUCTION

Optimization-based simultaneous localization and mapping
(SLAM) and its demonstration with the aid of graphical models
have been studied extensively in past decades. SLAM is uti-
lized greatly in large-scale environments. Hence, the direction
of research in recent years is to find an executable real-time
solution for large-scale problems. The use of smoothing helps
us approach to this objective [1]. In smoothing methods we are
dealing with a maximum likelihood estimation corresponding
to a nonlinear least-square problem assuming that measure-
ments are Gaussian functions. Because of high complexity of
the solution with standard methods, using graphical models in
representation of SLAM problem has been noticed in depth.
The iSAM2 [2] is a state-of-the-art smoothing method in which
the solution is incrementally updated by new observations. It
uses graphical models and sparse linear algebra for solving the
problem.

We have a limited set of optimization methods that can
be adapted to the SLAM. The reason of this limitation is
the special structure of existing optimization problem. Further-
more, it is expected to earn an accurate solution for large-scale
environments with high convergence speed. Some optimization
methods like Gauss-Newton and Levenberg-Marquardt have
been used frequently hitherto. Besides, some changes have
been made in sparse linear algebra methods for improving the
results. In addition, Powell’s Dogleg method has been recently
offered that is faster than Levenberg-Marquardt and can be
readily adapted to incremental smoothing methods like iSAM
[3] and iSAM2 [4]. Although all the employed optimization
methods might be accepted in terms of accuracy and speed of
convergence for small datasets, their solution for large-scale
datasets are often far away from the ground truth.

In this paper, we propose and adjust double Dogleg method
[5] with Gould parameters for iSAM2 to increase the per-
formance and accuracy of the algorithm especially in large-

scale datasets. Double Dogleg method with Gould parameters
guarantees global convergence and has more accuracy and
speed compared to the previous methods. Double Dogleg
method performs in a way that the search point is closer
to Gauss-Newton point. Therefore, speed of convergence will
increase. On the other hand, since Dogleg and double Dogleg
methods are sensitive to trust region parameters, we propose
to use Gould parameters [6] instead of Powell parameters
[7]. Simulations are done on some large-scale datasets and
the results verify that our proposed method is more efficient
compared to that of the conventional iSAM2 algorithm in terms
of accuracy and speed.

II. REVIEW OF ISAM2

A. Graphical Model

The estimation problem in SLAM can be represented by
graphical models such as factor graph. Each factor graph can
be expressed as a function which is a product of factors of
graph: f(Θ) =

∏
i fi(Θi). The aim of estimation problem is

to obtain the variable assignment Θ∗ such that:

Θ∗ = arg max
Θ

f(Θ). (1)

In SLAM, measurements are considered to be Gaussian func-
tions:

fi(Θi) ∝ exp

(
−1

2
‖hi(Θi)− zi‖2Σi

)
. (2)

By substituting Gaussian factors (2) into objective function
f(Θ) and taking the negative logarithm, the maximization
problem (1) converts to a minimization problem:

Θ∗ = arg min
Θ

(− log f(Θ)) = arg min
Θ

1

2

∑
i

‖hi(Θi)−zi‖2Σi
.

(3)
Equation (3) corresponds to the nonlinear least-square prob-
lem, which may be solved with a nonlinear optimization
method. Linearization is done at each iteration of nonlinear
optimizer with the use of current estimate. As a result, a linear
least-square problem is obtained as follows.

arg min
η

(− log f(η)) = arg min
η
‖Aη − b‖2 (4)

Where, A ∈ Rm×n is measurement Jacobian matrix, m is
the number of factors and n is the number of variables. By
computing η at each iteration and adding it to current estimate,
the new estimate is obtained [2].

B. Updating Procedure

The iSAM2 is one of the state-of-the-art incremental
smoothing methods to solve SLAM problem. It utilizes the
features of graphical models and sparse linear algebra con-
currently. In iSAM, reordering and relinearization is done
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periodically in batch steps. This issue will usually increase the
execution time and reduce the burden of online implementation
of the algorithm. In iSAM2, reordering and relinearization
is performed at each step and provides an incremental and
efficient solution for sparse nonlinear optimization problem.
The summarized updating steps of iSAM2 algorithm may be
seen in Algorithm 1 [2].

Algorithm 1: Updating procedure of iSAM2

Step 1 Append all new factors.
Step 2 Initialize new variables and append them to vari-

ables vector Θ.
Step 3 Fluid relinearization.
Step 4 Update top of the Bayes tree.

• Remove top of the Bayes tree and con-
vert it to factor graph.

• Linearize new factors and relinearize all
factors that are marked in previous step
in current linearization point Θ.

• Append new factors to new factor graph.
• Reorder variables and eliminate factor

graph to Bayes net and convert Bayes
net to Bayes tree.

• Append saved unchanged subtrees to
bottom of new Bayes tree.

Step 5 Update η.
Step 6 Obtain new estimate by Θ⊕ η.

Note that, η (in step 6 of Algorithm 1) may be updated
by an optimization method such as a line search method like
Gauss-Newton or a trust region method like Dogleg.

III. OPTIMIZATION METHODS USED IN ISAM2

The goal of unconstrained optimization problems is to
minimize an objective function. Least-square problems are
particular type of optimization problems in which the objective
function is defined as follows.

f(x) =
1

2

m∑
j=1

r2
j (x) =

1

2
‖r(x)‖22 (5)

r : Rn → Rm is called residual vector which is collection of
rj residuals and rj ∈ Rn×1.

Jacobian J(x) is defined as an m×n matrix that includes
the gradient of residuals:

J(x) =

[
∂rj
∂xi

]
j=1,2,...,m
i=1,2,...,n

=

∇r1(x)T

∇r2(x)T
.
.
.

∇rm(x)T

 . (6)

Therefore, gradient and Hessian of f are obtained as [8]:

∇f(x) =

m∑
rj(x)∇rj(x) = J(x)T r(x) (7)

and

∇2f(x) =
m∑
j=1

∇rj(x)∇rj(x)T +
m∑
j=1

rj(x)∇2rj(x)

= J(x)TJ(x) +

m∑
j=1

rj(x)∇2rj(x). (8)

A. Gauss-Newton

In this method, the search direction hgnk in k’th iteration is
earned by solving the following equation:

JTk Jkhk = −JTk rk, (9)

in which, Hessian of f is approximated with ∇2fk ≈ JTk Jk
that is close to the Hessian (8) in cases with small residuals.
In this occasions, Gauss-Newton method provides high local
speed of convergence like Newton method. On the other hand,
hgnk can be expressed as the solution of following linear least-
square problem:

min
h∈Rn

mk(h) =
1

2
‖Jkhk + rk‖2. (10)

Equation (10) may be considered as the solution of lineariza-
tion of vector function r(xk+hk) ≈ rk+Jkhk and replacement
of it in 1

2‖ · ‖
2 function [8].

In order to use Gauss-Newton method in iSAM2 algorithm,
an incremental version of it is created. This procedure in its
matrix form is very similar to iSAM which is thoroughly
described by Rosen et al. in [4]. However, combination of op-
erations with factor graph, Bayes net and Bayes tree graphical
models [9] is the main difference of iSAM2 to iSAM.

Apart from the advantages of Gauss-Newton method, there
is an important disadvantage, namely the convergence is not
guaranteed. If the norm of

∑m
j=1 rj∇2rj matrix (second

term in (8)) is large enough, the method may divert from
real solution. In order to solve this fundamental problem,
Levenberg-Marquardt method is proposed. The convergence of
this method is guaranteed like that of steepest descent method
[8] for the points far from the optimal solution. However, its
behavior resembles Gauss-Newton method in the vicinity of
optimal point [10]. Although Levenberg-Marquardt has global
convergence property, system of equations may be solved
several times during an iteration and this issue significantly
increases the complexity of computations.

B. Dogleg

Powell has introduced a method named Dogleg [7], which
composes the steepest descent and Gauss-Newton methods like
Levenberg-Marquardt [11]. Dogleg is a trust region method,
and therefore, is inherently suitable for nonlinear least-square
problems. In trust region methods, objective function is ap-
proximated with a trust model function in a region around the
current point. Then, minimum of the model function in this
region is considered the solution. At each iteration of Dogleg
method, it is desired to find the solution of the following
suboptimal problem.

min
h∈Rn

fk + gTk h+
1

2
hTGkh s.t.‖h‖ ≤ ∆k (11)
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Equation (11) is in fact a Taylor expansion of objective
function fk around xk, in which ∆k > 0 is the trust region
radius, Gk is the Hessian and gk is the gradient of fk, while ‖·‖
denotes the norm. This suboptimal problem is a constrained
form of approximate function (10) for nonlinear least-square
problem.

Trust region radius ∆k is chosen at each iteration based on
the following gain ratio:

ρk =
f(xk)− f(xk + hk)

mk(0)−mk(hk)
(12)

in which the numerator and denominator denote actual and
predicted reductions, respectively. The amount of ρk states
the compromise between objective and model functions [8].
Procedure of updating ∆ based on ρ is given in Algorithm 2.

Algorithm 2: Update of trust region radius ∆

Inputs: ρ, hdl,∆, 0 < µ1 < µ2 < 1, 0 < c1 ≤ c2
Output: ∆

Step 1 If ρ > µ2, then put: ∆← max
{

∆, c2‖hdl‖
}

Step 2 Else if ρ < µ1, then put: ∆← c1∆

In trust region methods, if the obtained step makes a
reduction at least equal to the reduction of Cauchy step in
the model, it has global convergence (sufficient reduction
condition) [12], [8]. Cauchy step is specified by the distance of
the origin to the minimum point of m in the steepest descent
direction (negative of gradient) as, [10]:

hcd = − gT g

gTJTJg
g (13)

Dogleg method is based on selection of one of the two
steps hcd and hgn or combination of them. These two steps
have the following relation [12]:

‖hcd‖ ≤ ‖hgn‖, m (hgn) ≤ m
(
hcd
)

(14)

Suppose that h∗(∆) is the exact solution of the suboptimal
problem (11). According to (14), two states occur for hcd and
hgn in the trust region [8]:

1) Gauss-Newton point is inside the trust region. In
this condition, Gauss-Newton step will be an exact
solution for (11):

h∗(∆) = hgn, when‖hgn‖ ≤ ∆ (15)

2) Gauss-Newton point is outside the trust region. In this
condition, as it is shown in Fig. 1, Dogleg method
considers a path consisting of two line segments
instead of optimal curve h∗(∆). The first line seg-
ment continues from origin to hcd and the second
line segment extends from hcd to hgn. This path is
presented by h̃(β), β ∈ [0, 2]:

h̃(β) =

{
βhcd 0 ≤ β < 1
hcd + (β − 1)(hgn − hcd) 1 ≤ β < 2

(16)

trust region

steepest descent 

direction

Gauss-Newton point

Cauchy point

Dogleg point
current point

Double Dogleg point

thgn

Fig. 1: Gauss-Newton point is outside and Cauchy point is inside
the trust region. Dogleg and Double Dogleg steps and optimum path
(dotted curve) are specified in the figure.

The value of β is found as the solution of following
equation [8].

‖hcd + (β − 1)(hgn − hcd)‖2 = ∆2 (17)

The solution of Dogleg method is the minimum point of
model function during the approximate path which is obtained
with respect to the trust region range (Algorithm 3).

Algorithm 3: Computation of Dogleg step hdl

Inputs: hgn, hcd,∆
Output: hdl

Step 1 If ‖hgn‖ ≤ ∆, then put: hdl ← hgn

Step 2 Else if ‖hcd‖ ≥ ∆, then put: hdl ←
(

∆
‖hcd‖

)
hcd

Step 3 Else put: hdl ← hcd+ (β−1)(hgn−hcd), where
β is obtained from ‖hdl‖ = ∆.

IV. THE PROPOSED OPTIMIZATION METHOD

In this section, we present an improved optimization
method for iSAM2 based on the algorithm introduced by
Dennis and Mei [5] named double Dogleg. Dogleg method
has suitable convergence properties and is accurate, but it can
lessen the effect of the use of Gauss-Newton step, and hence,
reduce the speed of convergence of algorithm [13]. Moreover,
it seems that a Dogleg step is significantly oriented to gradient
direction near the solution [5] and thus, in this case:

• We have approximately used steepest descent method
with specific step length, while steepest descent
method with optimum step length is very slow near
the solution.

• Computations do not depend on Hessian matrix. Hes-
sian matrix was just used for computing step length
and it has no role in the determination of the direction.

Therefore, double Dogleg method was introduced by Dennis
and Mei for more inclination of Dogleg step toward Gauss-
Newton step at each iteration.

A. Double Dogleg

Suppose that hcdk and hgnk are respectively Cauchy and
Gauss-Newton steps at k’th iteration. Also, Gk = JTk Jk
denotes the approximate of the Hessian, gk = JTk rk denotes
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the gradient of the model and Hk = G−1
k . We consider step 3

of Algorithm 3 where ‖hcdk ‖ ≤ ∆k and ‖hgnk ‖ ≥ ∆k.

As was mentioned, essential property of Dogleg step is to
guarantee the convergence of the algorithm. If the approximate
obtained within this step has a reduction equal to the reduction
of Cauchy step in the model, it has a global convergence.
Therefore, first, a step that the approximate reduction of which
in the model is like Cauchy step is considered in the direction
of Gauss-Newton step . In this regard, parameter t is specified
as follows:

mk(−tHkgk) = mk

(
hcdk
)

= mk

(
−
(
‖gk‖2

gTk Gkgk

))
, (18)

and we have:

t2
(

1

2
gTkHkgk

)
− t
(
gTkHkgk

)
+

1

2

(
‖gk‖4

gTk Gkgk

)
= 0. (19)

As a result, after solving equation (19), t is obtained as:

t = 1±
√

1− c (20)

in which,

c =
‖gk‖4

gTk Gkgkg
T
kHkgk

(21)

that c ≤ 1. Now, if ‖thgnk ‖ > ∆k, Dogleg step is considered
between hcdk and thgnk [5].

In this method, ĥ(β) is a new approximate path that is
named double Dogleg path. As it is shown in Fig. 1, it consists
of two line segments. The first line segment is from the current
point to hcd and the second line segment extends from hcd to
thgn. In this case, a point named double Dogleg is obtained
from

ĥ(β) = hcd + (β − 1)(thgn − hcd), 1 ≤ β ≤ 2. (22)

With respect to Fig. 1, double Dogleg step (dashed vector) is
more oriented toward Gauss-Newton step than Dogleg step,
and therefore, it is expected to have more speed of algorithm
while maintaining global convergence. It is better to consider
parameter t as [5]:

t = 1− γ
√

1− c. (23)

Parameter γ is chosen such that mk is steadily reduced along
a line from δ = hcdk to δ = thgnk . Hence,

t = 1− γ
√

1− c, δk(θ) = (1− θ)hcdk + θthgnk . (24)

By this means, the value of γ must be found as:(
∂

∂θ

)
mk(δ(θ)) ≤ 0, ∀θ ∈ [0, 1]. (25)

By such calculations we may select any γ that satisfies the
following relation.

0 < γ <
√

1− c. (26)

Calculation of double Dogleg point is detailed in Algorithm
4. The only additional cost of double Dogleg method compared
to that of Dogleg is the computation of c in step 2 of this
algorithm. Since

c =
‖g‖4

gThgn‖J(x)g‖2
=
‖g‖2

gThgn
‖g‖2

‖J(x)g‖2
=
‖g‖2

gThgn
α (27)

Algorithm 4: Computation of Double Dogleg step hdl

Inputs: hgn, hcd,∆
Output: hddl

Step 1 If ‖hgn‖ ≤ ∆, then put: hddl ← hgn

Step 2 Else, compute t with using (23). If ‖thgn‖ ≤ ∆,
then put: hddl ←

(
∆
‖hgn‖

)
hgn

Step 3 If ‖thgn‖ > ∆, then compute Cauchy step hcd =(
− ‖g‖

2

gTGg

)
g.

Step 4 Else if ‖hcd‖ ≥ ∆, then put: hddl ←
(

∆
‖hcd‖

)
hcd

Step 5 Else put: hddl ← hcd+(β−1)(thgn−hcd), where
β is obtained from ‖hddl‖ = ∆.

and values g, ‖g‖, hgn, α are also computed in Dogleg proce-
dure, it is expected that the computation cost of double Dogleg
is not much greater than Dogleg.

B. Sensitivity of Trust-region Methods to Parameters

Trust region algorithms are dependent on values of param-
eters ∆0, µ1, µ2, c1, c2 (in Algorithm 2). In this section, we
present suitable values for these parameters that increase the
efficiency of incremental double Dogleg algorithm.

The values µ1 = 0.25, µ2 = 0.75, c1 = 0.5, c2 = 3
are proposed by Powell and have been used frequently in
practical applications [12]. The question is, what are the most
appropriate values for each trust region algorithm. Gould et
al. in [6] have studied the sensitivity of the trust region
algorithms to the values of parameters in acceptance of step
and radius updating. They have chosen a broad spectrum of
each parameter in a standard trust region algorithm. Over
20 different choices for parameters µ1 and µ2 and over 10
different choices for parameters c1 and c2 have been given in
intervals 0 ≤ µ1 ≤ 0.4, 0.5 ≤ µ2 ≤ 0.999, 0.25 ≤ c1 ≤ 0.75
and 1.5 ≤ c2 ≤ 5.

Numerical considerations and results in several standard
optimization problems with selecting broad spectrum of pa-
rameters (close to 4000) showed that results of an algorithm
may be significantly dependent on the selected values of these
parameters. After analysis of the numerical results, they have
offered the best choices of parameters in the structure of a
standard trust region method as: c1 = 0.25, c2 = 3.5, µ1 =
0.0001, µ2 = 0.99. We have studied different choices in
our incremental algorithm, and observed that by using this
selection, the performance of the optimization solution will
increase as well. Therefore, these values have been used for
implementation.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of our pro-
posed optimization algorithm with conventional optimization
methods in iSAM2. Results show significant improvement of
double Dogleg with Gould parameters compared to Gauss-
Newton and Dogleg methods for large-scale datasets. All tests
have been run on a laptop with Intel 2.8 GHz Core i7-2640M
processor and 6 GB RAM. GTSAM library has been used
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Fig. 2: City10000 dataset: (a) result of Dogleg. (b) result of double Dogleg with Gould parameters (solid line) and the ground
truth (dotted line)
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Fig. 3: Chi-square diagrams of datasets for Dogleg and double Dogleg: (a) City10000 (b) W10000.

TABLE I: Accuracy and time of our proposed method and previous methods in iSAM2 (GN: Gauss-Newton, D: Dogleg, DD:
double Dogleg).

Normalized χ2 Time(ms)

Datasets Poses Measurements GN D DD with Gould params. GN D DD with Gould params.

City10000 10000 20688 Indeterminate sys. 2.65E+05 2.13 – 137.3 140.5

W10000 10000 64311 Indeterminate sys. 2.05E+05 1.74E+05 – 122 128

from https://collab.cc.gatech.edu/borg/gtsam for iSAM2 algo-
rithm. We have developed the incremental version of double
Dogleg with Gould parameters which is compatible with the
structure of iSAM2. SLAM are frequently applied in large-
scale environments. Thus, the main objective of our proposed
method is to improve the results in large-scale datasets. All
results are summarized in Table I that consists of three main
parts. The first part is about the property of used datasets. The
second part, normalized χ2 column is the result of accuracy
for Gauss-Newton (GN), Dogleg (D) and double Dogleg (DD)
with Gould parameters. The third part, time column includes
the execution time of three mentioned methods. Experiments
are performed on City10000 and W10000 large-scale datasets
reported in [2]. The number of poses and measurements of

datasets can be seen in Table I, which clearly indicates the
large size of the optimization problem. Threshold parameters
in iSAM2 have been initialized as α = 0.001 and β = 0.01
and relinearization skip has been set to 1. Initial value of the
trust region radius has been initialized to 1 in Dogleg and
double Dogleg methods. Parameter γ in (23) in double Dogleg
algorithm has been set to γ = 0.8

√
(1− c) based on [5], and

therefore, t = 0.2 + 0.8c is used. Although we tested other
values for γ, the proposed value by Dennis in [5] is more
suitable to our problem.

There are many approaches to evaluate the accuracy of so-
lutions. Since there are Gaussian errors in SLAM problem, the
least-square objective function is the best choice. Therefore,
we choose normalized chi-square (χ2) criterion that is more
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compatible to the least-square objective function and also has
been used in [2]. Normalized chi-square with m − n degrees
of freedom (DOF) is defined as

1

m− n
∑
i

‖hi(Θi)− zi‖Σi
(28)

in which the numerator is equal to Equation (3). Furthermore,
this performance index yields to 1 for a large number of normal
distributed observations.

The normalized chi-square values of our proposed method
and conventional methods applied to iSAM2 have been shown
in Table I. These values have been obtained at the very
last step of algorithm after collecting all measurements. As
it can be seen, Gauss-Newton could not manage to obtain
any solution for both datasets. The reason is that the system
becomes indeterminate during the execution of the algorithm.
In this case, the Hessian matrix of the system is either not
positive semidefinite or the system is ill-conditioned [14]. As a
result, Gauss-Newton algorithm diverges and inevitably stops.
Unlike Gauss-Newton method, Dogleg method converges to
an optimum value for the objective function. Nevertheless,
the values of objective function are very large (of order 105)
and the accuracy of the solution is poor. With respect to the
results of double Dogleg with Gould parameters, they have
less chi-square values than Dogleg results in both cases, and
therefore, we have obtained more accuracy. The improvement
of the accuracy is exceptionally well in City10000 dataset in
which chi-square is near to 1. This means that the optimal
solution is very close to the real value. The ground truth
of City10000 dataset and the results of Dogleg and double
Dogleg methods can be compared in Fig. 2. Fig. 2(a) shows
the result of Dogleg that is very disordered and obviously
far from the ground truth. In Fig. 2(b) the result of double
Dogleg with Gould parameters has been drawn simultaneously
with the ground truth for better comparison. As can be seen,
using double Dogleg method with Gould parameters reaches
an almost perfect solution. Furthermore, the accuracy increases
for W10000 dataset.

Diagrams of chi-square values for both datasets have been
presented in Fig. 3. As it is seen in part (a) of this figure, the
chi-square for City 10000 dataset is perfectly reduced, while
relatively better performance is obtained for W10000 dataset
(Fig. 3(b)) using double Dogleg with Gould parameters. The
reason of difference between improvements in two datasets
is their distinct property. City10000 is a sparse dataset while
W10000 is a dense one with a large number of measurements,
and almost 6 times of its poses. Thus, our proposed method
has a greater impact on sparse datasets than dense ones.
Nevertheless, it has slight improvement on dense datasets.

Execution times of Gauss-Newton, Dogleg and double
Dogleg in iSAM2 have been compared in Table I as well.
These times are related to updating η and computing new
estimate at the very last step after collecting all measurements.
As previously mentioned, the extra computation cost of double
Dogleg is merely for calculation of Equation (27), which is not
that significant. Hence, the execution time of double Dogleg
method is close to that of Dogleg method, and their difference
is less than 0.01 second.

VI. CONCLUSIONS

In this paper, double Dogleg trust region optimization
method is proposed and adjusted to be used in iSAM2 al-
gorithm. By carefully studying previous optimization meth-
ods used in iSAM2, we found that the latest used method,
namely Dogleg, is not accurate enough for practical large-scale
applications. Double Dogleg method is found with a better
performance and accuracy compared to Dogleg method and
hence, is implemented on iSAM2. Meanwhile, the proposed
method is capable of maintaining the execution time within
the acceptable amounts in large-scale datasets. On the other
hand, with respect to the influence of values of trust region
parameters, we investigated the sensitivity analysis of Gould et
al. With the selection of the appropriate values for parameters
based on Gould et al. suggestion, we can obtain better perfor-
mance in the algorithm. Double Dogleg method with Gould
parameters can be used in other incremental algorithms as well.
It guarantees global convergence and can improve accuracy of
the solution especially for large-scale datasets. This method
can be utilized in real and practical applications, in accordance
to many usages of SLAM in large scale environments.
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