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Abstract—Spherical Parallel Robot (SPR) is a complex but
widely used type of manipulators that performs only rotational
motion. Dynamic analysis of SPR has a vital role in mechanical
design, model-based controller, identification and fault detection
of such robots. Complexity of SPR kinematic structure makes
traditional dynamic modeling methods such as Newton-Euler,
virtual work and Lagrange formulations a prohibitive task. In
this paper a new procedure for deriving closed form dynamics
of general SPR using Gibbs-Appell method is presented. The
proposed method does not require any recursive computation
or symbolic manipulation and dynamic matrices of the robot
is directly derived in an explicit form. By using the proposed
method, closed form dynamic formulation of a general 3DOF
SPR, known as agile wrist, is obtained and it is verified for an
arbitrary trajectory. The unique feature of the method presented
in this paper, makes it promising to be used for other parallel
manipulators.
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I. INTRODUCTION

Parallel robot is a kind of mechanism which consists of
closed kinematic chains, that connects the moving platform to
the robot base. There are various designs for parallel robots
having different degrees of freedom which are combination
of rotational and translational displacement. The most well
known parallel robot is Stewart-Gough platform that has 6
DOFs [1]. For some applications it is unnecessary to have all
possible DOFs, thus having a mechanism with fewer DOFs
that are optimized for a specific task is of practical interest.

Spherical parallel robot (SPR) is a kind of mechanism
in which all the links have pure rotational motion. Several
SPRs with different architectures have been reported in the
literature; and as a representative one may look into [2],
[3]. Some applications of SPR are in minimally invasive
surgery [4], trust control [5], and rehabilitation. A typical
example of SPR, named, Agile-Wrist is shown in Fig. 1,
in which the moving platform of the robot has three pure
rotational degrees of freedom. In [6] kinematic, workspace and
singularity analyses of the robot are investigated . Furthermore,
an structure optimization is performed in the design of such
robot in [7].

Closed kinematic chains and variety of passive joints makes
dynamic modeling of parallel robot difficult. In the last two
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decades more attention have been given on kinematic model-
ing, while work on general formulation for dynamic problem
have been less reported in research field [8]. Whereas, having
a closed form dynamic model for robot in the form of:

M(q)g+C(q,q4)a+G(q) = Q 1)

is very applicable in mechanism design and its optimization,
controller design as well as parameters identification and fault
detection. [9] proves that there is a closed form solution for any
natural mechanism. Although many researchers have reported
dynamic formulation in closed form (1), the procedure is very
cumbersome, and it is not straightforward to obtain dynamic
matrices, M, C' and G matrices. In this paper we investigate
a new general procedure for obtaining closed form dynamic
of spherical parallel robots. Several algorithms have been
proposed for dynamic formulation of multi body systems
that are based on Newton-Euler, Lagrange, and Virtual-Work
method. Applying these modeling tools for parallel robots
is usually bulky and untractable [10]. The other strategy
for dynamic formulation is Gibbs-Appell (GA). This method
was first introduced independently by Gibbs (1879) and then
by Appell (1899). According to [11] this method provides
sufficient means to derive the simplest form of dynamic model.
In recent years it has been used to tackle dynamic modeling
of complex serial robots such as modular serial robots with
large number of joints, [12]. Despite the high potential of this
method in dynamic analysis of multi body systems, It has been
less addressed in the field of parallel robots.

Dynamic modeling of parallel manipulator has been studied
by several researchers through Newton-Euler method, [8],
[10]. Newton-Euler method requires force analysis of indi-
vidual mechanism members, and therefore, having a closed
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Fig. 1: A schematic of Agile—Wrist
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form dynamic model for the total system needs elimination of
all the internal forces, which is a prohibitive task. Lagrange
is the other common method for dynamic analysis and in
[13] it has been applied for dynamic formulation of various
parallel robots. Despite its simple appearance, the nonlinear
relation between passive and active joints of the mechanism is
a challenge for implementation of Lagrange method for gen-
eral parallel manipulators. Lagrangian based procedures need
symbolic matrix differentiating to obtain the coriolis matrix
of dynamic model, which is very difficult to obtain, [14].
Virtual work is the most frequently used method for dynamic
modeling of spherical parallel robots, [15], [16]. In [15] the
dynamic formulation leads to a recursive model, which is not
in closed form, and therefore, not computationally efficient. In
this paper a straightforward formulation is proposed, which is
an extension of GA method for parallel robots. This method
is developed based on GA energy function and robot Jacobian
matrix, and is used for dynamic formulation of SPR. In what
follows a general description of the GA method is given. This
method is then extended to include Jacobian matrices and by
this means an explicit form of dynamic matrices (M, C, G)
is obtained. Since in the proposed method a combination
of Gibbs-Appell energy function and Jacobian matrices are
used, it can be seen as a medium between Newton-Euler and
Lagrange method. Having the benefits of two methods the
method derives explicit dynamic model without any symbolic
differentiation and recursive computation. As a case study,
kinematic analysis and closed form dynamic formulation of
agile wrist, which is one of the most well-known 3 degrees
of freedom SPR, is obtained. Finally, the verification result is
reported for an arbitrary trajectory.

II. CLOSED FORM DYNAMIC FORMULATION

A. Review of Gibbs—Apell Formulation

In GA method dynamic formulation is derived using Gibbs-
Apell function, referred to as acceleration energy function, and
is defined as follows, [17]:

1
Szi/(ﬁ-&)dm )
in witch, @ denote acceleration of element dm. Consider a
rigid body with a coordinate system attached to it as shown
in Fig. 2. The origin of the body frame, A, is a point on the
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Fig. 2: The schematics of a rigid body

rigid body. The complete form of the GA acceleration energy
function for a rigid body is defined as, [17]:

1. 0H ﬂ
3 atA+a'-(w><HA)+...

méa- (@ x ) +mia [@x @ %)+ f(3,8) 3

1
§ = 3m(@a-da) + 56

\V]

in which the function f(¥,) is independant of g . Write the
angular momentum as:

H, = 1,46 “4)

where, I 4 is the symmetric inertia tensor and because the time
derivative of it in body coordinate is zero, one may write:

OH, . 0o

o ot

Generally, for a multi-body system with N degrees of freedom,
GA function, is a function of [V generalized coordinates ¢; and

its derivatives, ¢;, §;
Derive GA energy function with respect to ¢; , the governing
dynamic equation leads to:
oS
9q;
The right side of the equation is generalized forces acting on
the body. The matrix form of the equation may be written as:

=TI, (5)

(i=1...

=Q; (t=1...n) @)

(l? =Q , q & Q:[n,1] matriz (8)
9q

Substituting (4,5) in (8) yields:

oS dda\ . oa B
2 (22 =) a
oq m(3é>aA+<5d) (Lag) +

(g‘;‘) @ x (L)) +m (E“) (EXD)

mdA-(<g§) xﬁ)—&—m(a;;)-@x(wxﬁ)) )

The Jacobian matrix for linear and angular velocities of the
robot is defined as:

{VA:JDq (10)

w=JRrq

In which Jp is the translational Jacobian matrix that maps
generalized velocities into linear velocity of the rigid body and
J r denotes that of angular velocity mapping. By differentiat-
ing (10) and considering gravity term the following equations
for accelerations are obtained:

{aA—JDii+-7DqU

11
a=Jrq+ JRrq an

in which, o denotes the gravity acceleration, writing dynamic
equation in this form makes the formulation much simpler and
there is no need to include potential energy.
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B. Dynamic Formulation for SPR

Now, for the spherical mechanism only rotational motion
exist, therefore, the translational Jacobian Jp and its deriva-
tives are all zero. Thus equation (11) is simplified to:

ap = —0
. 12
{a:JRq+JRq 2

Substitute accelerations in the main equation (9):

R oa
mao- (p X (3(1)) (13)

Apply equation (12), to derive the implicit derivative of
angular acceleration as:

Jar
—=J
ag  “F

Substitute it in (13) and using matrix operator (*) to represent
cross product, equation (13) is simplified to:

(14)

%2 ZJEIAQ—&-JEwXIAw—Fm(pXJR)To (15)
Substitute equation (12) into (15):
a8 T L
9 =dJrla (JRQ+JRq) +--
T Iy (Jrg) +m(p*Tg) o (16)

Comparing the last equation with general form of explicit
dynamic formulation (1) M ,C,G matrices, for a single rigid-
body with pure rotation, is obtained as:

M = JpIadg
C = JhIAJp+JE(JRrq) Iadr (17)
G = m(pXJR)Ta

For a multi-body system Gibbs-Apell energy function, St,
is the summation of acceleration energy functions of all bodies

[17]:
N

St = Z (S)z

=1

(18)

Therefore, dynamic equation of SPR may be written in the
form of:
Mg+ Cg+ G =Q,

in which, the dynamic matrices M ,C,G, may be each
represented by X as derived by

19)

n  m;

Xi=Xeet Yy > Xy (20)
i=1 j=1
where,
T
Mij = J5;1i5J i
Cij=J 1 Ji+J(Ji50) 1ijJ (21)

T
_ X _ T =
Gij = mij(p)5Ji) 04 , 0ij = R;;§

Index 1 is the chain number that enumerates from 1 to n and
7 indicates the body number in the chain ¢, which enumerates
from 1 to m;. Index (ee) is used to represent the end effector.
It is very interesting that all dynamic terms are obtained in an
explicit form. Now, since I is a positive definite symmetric
matrix, the inertia matrix M is obviously determined as a
positive definite matrix, too. Matrix C' is obtained by using
rotational Jacobian and its derivative, and includes centrifugal
and coriolis terms. By introducing o within the Jacobian
derivatives, gravity term G is derived without any need to
introduce and differentiate the potential energy. The systematic
way to derive dynamic matrices in an explicit form is the
unique feature of the proposed method. The only remaining
term in (19) is @Q,, that may be simply derived by using the
principle of conversation of energy into the overall system.

QT g = Power, (22)

By this means, @, may be simply derived from the external
power injected into the system from the actuators, and other
possible external forces/moments.

The method presented in here to obtain the dynamic ma-
trices M ,C, G relies on Jacobian matrix and its derivative.
To clarify how these terms are obtained in practice, use
differential kinematics as follows.

b=Jg—J= 6fw

9q

Similarly, acceleration analysis may be used to directly derive
the derivative of the Jacobian as:

(23)

oa
0q
in which, partial derivative of the acceleration with respect to
g is used to derive the Jacobian derivative.

a=Jg+Jqg— J= (24)

III. DYNAMIC FORMULATION OF AGILE-WRIST

The kinematic structure of 3DOF spherical parallel robot is
shown in Fig. 3. As it is shown in this figure, the robot consists
of three identical arms with RRR kinematic structure. The
three rotational joints of each arm, and of all arms, intersect
at the center point, by which the moving platform of the
mechanism has pure rotational motion about it. As it is shown
in Fig. 3, the unit vector 4; represents the axes of ith input
angle, w; and v; denote the axes of motion of intermediate

4R
u;

Fig. 3: Kinematic structure of Agile—Wrist
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and moving platform joints. All the unit vectors pass through
the center of the mechanism, about which, all the mechanism
links have pure rotational motion. The angular length of the
links are denoted by o1, 0.

A. Kinematic Analysis

Using the 321 body-fixed Euler angles for representation of
moving platform the rotation matrix may be obtained by:

Ree = RZ (ql) Ry (QQ) RE (q3>

By choosing Euler angles as generalized coordinates, angular
velocity and acceleration of moving platform is obtained as
follow:

(25)

Qe =Eq , Qe = E§+ Eq (26)
in which:
0 —sin(q1) cos(q1)cos(q2)
E= |0 vcos(q1) sin(gi)cos(qgz)
1 0 —sin(gz)

Using successive rotations, rotation matrices of the first and
second links are obtained as:

Ry =R.(\) R, (v —7) R, (6;)
Ri; = R, (a1i) R, (¢:)

The initial configuration of moving-platform is defined by o
as:

27)

— sin(n;) sin(B)
cos (1) sin(f3)
cos(3)
that v, 8 are geometrical parameters of robot that have been

shown in Fig. 3. The unit vectors u;,0; and ; are derived
using rotation matrices as follows.

0
o7 = R. (1) R. () |0] = (28)
1

A~ Ak
V; = R 0,

0 —sin(A;) sin(y)
=R, (N)Ry(y—m)| 0 | = cos(\)sin(y)
1 —cos(7)

;= R. (\) Ry (v — ) R (6,) Ry (o) [0,0,1]7 (29)

Although in the formulations, general structure for the robot is
considered, in the simulations the following structural angles
are considered for the robot: n = [0,120,240]°, and A =
[0, 120, 240]°.

By dot product the unit vectors v; and w;, the angle 6; is
obtained which is equal to the angular length of mechanism
arm «;g.

’lA)i . ’LAU,‘ = COS(O(Qi) (30)

Write w; in the form:
w; = R, (\;) R, (v — 7) diag (sin ay;, — sin g4, cos ay;)
+ [sin6;, cos 0;,1]"
(31)
, and define:

C = diag (Sa,,, —Say,s Cay,) RE (v —m) RT (N ) o, (32)

equation (30) is simplified to:

a.cosb; +b.sinf; = ¢ (33)

in which, a = C; 2, b = C; 1, ¢ = cosay — C; 3. Solve the
above trigonometric equation for 6; and obtain the following
two solutions:

0 — atan2 (b, a) + atan2 (Va2 + b% — ¢2,c)
" | atan2(b,a) — atan2 (Va® + b — 2, ¢)
To have a real solution, condition a? + b2 — ¢ > 0 shall be

satisfied. To find, v; the angle between the two normals 711;
and Ty, is used:

(34)

ﬁixﬁ;i N ’l])iX’lAJi

Ny = ——, N
| sin o |

= — (35)
| sin aeg|

Since, m1;,79; are perpendicular to w,;, the angle ; is

obtained as follows:

COS Yy = Ty, - M1y (36)

Apply equations (34) and (36) to solve inverse kinematic of
each limb independently.

Now in order to analyze the velocities, the angular velocity
of the end effector is obtained as the sum of its successive
angular rotations.

Oita; + hiv; + Eb; = Qe (37)
Dot product equation (37) by (@; x ©;) and (¥; x w;) the
unknown #; and 1); are obtained, in explicit form:

('a"i X f)z) . ﬁee (’i)z X ﬁ)l) ) ﬁee

- (38)

G =
’ ! (’lAJZ X ’ll)z) U4

i =

To simplify the equations, define vectors p,;, Dy; and scalar
parameters h; as:
Dy = (Vs X W) , Py = (Ui X ¥;)
h = (8 X ;) - @ = Py, - (39)

Using these definitions in (38), to find the joint velocities as:

i _ (P . g o (P2) .G
91_ (h,L) Qe@ ’l/)z <h2> Qee

Differentiate with respect to time, and obtain acceleration
relations as follows.

5 P\ & hif’u — hipy; 5
91’ = . Qee . Qee
( hi > * ( h )

K3

1,[}1 _ <p21) _ﬁee + (thQZ - th22> 'ﬁee (41)

(40)

h; n?

?

The angular velocity of the first and second links of each limb
are written as follows.

Qi1 = 00, Qig = it + i, (42)

Differentiate with respect to time in order to obtain angular
accelerations as follows.

Q1 = O;u;

Qi = 0t1; + Pyw; + 1 (91111 X ﬁ’z’) (43)

579



B. Dynamic Formulation

As it is clear from equations (19,20,21), since in GA
formulation all the velocities and accelerations are expressed
in body coordinates, in order to perform dynamic formulation
only Jacobian matrix and its time derivatives are needed. In
order to determine these key elements, write angular velocity
relations. (z = [0,0,1]7)

@1 = R, Qi = 0,2
Gir = REQio = 0; (" Rin2) + 2

@ee = R Q.. = RT Eq (44)

Furthermore, write the acceleration in body coordinates:
dip = RHQpn = 6; (PRi2) + iz + ¥if; (PR 2) x 2
G..=RLQ.. = RLEG+ R Eq (45)

Use chain rule in partial derivatives of equation (23,24) as:

T 0 _ [&3“} [aéi]

oqg | 04, | | 9q
0z [6@-2} 90 {a@z] i
J 2 — T = - — | + T N 46
*7 9g 20; | | 9q o || 9q (#0)
Apply the same method to determine Ji1, o from angular

accelerations. Since the coriolis acceleration terms of second
links need more attention it is given in detail as follows:

0o

Jn=—2= = | = “| + | = ol aEE

P 0q [aeiHaql [awi [6q
1 a&ig} a6, 1 [8&12} i
- . ~ |+ = - . 47
2{391» [6111 2 Loy ]| 99 @

Furthermore, for the end effecter one may write:

Jee=RT'E, J.=RTE (48)

in which, for the assigned coordinate system the gravity
. L T
acceleration vector is given by g = [0,0, —9.81]" .

Assume there is no friction force, and only the gravity and
actuators torque are the external forces applied on the robot.
According to principle of conservation of energy, one may
write

7760 =QTq (49)
Use equation (38,39) to define J 4 as:
i hi'pl E
0= Jactq 5 Jact = hflpglE (50)
hy'p5H E
Then, Q, is obtained by substituting (50) into (49) as:
Q,=J, T (51)

IV. MODEL VERIFICATION

For verification purpose consider a symmetric configuration
with v = cos™'(v/3/3), and B = sin~'(v/3/3). Furthermore,
the angular length of limbs are set to a;; = 80°, and ayo =
70°, respectively, with length density of 1.378 [%} Assume
that the end effector has a mass of 1.351[kg] with an inertia
matrix of, diag(38.29, 38.29, 4.5)[kg.cm?]. Considering these
specifications, simulations is performed for a typical trajectory
as follows:

q; = a;sin(b;t)
(ji = aibicon (bit)
Qz = —azbfsm(bqt)

(52)

in which, a; = [10,30,20]° , b; = [r, /2, 37/2] (rad/sec).

In order to traverse on the prescribed trajectory, we need
to generate the corresponding actuator efforts applied to the
robot. Such forces are determined in a feedback structure, as
shown in Fig. 4. As it is shown in this figure, a high gain
PD controller is used with Matlab/SimMechanics model of
the robot to develop the robot simulator and to verify the
obtained dynamic model. The SimMechanics model consist
of three kinematic chains that are linked to end effecter of the
mechanism with revolute joint as well as three actuators and
required joint sensors.

Both dynamic and kinematic outputs are verified. Since, the
proposed dynamic formulation is based on kinematics, and
Jacobians, kinematic verification is of more priority.

In order to verify the kinematics solutions, the actual
trajectory of simulator output is given to kinematic model and
the joint space variables are obtained. The actual trajectory
traversed by closed loop robot simulator, and the one obtained
from the model are both plotted in Fig. 5, and their difference
is shown in top subplot of Fig. 7. As it is seen in these figures,
the kinematic outputs are quite identical, with an accuracy of
order 10~7. Furthermore the differential kinematic errors are
shown in the second and third subplots of Fig. 7, in which
the error in velocity and accelerations are also very small and
in order 10~°, and 1075, respectively. Dynamic verification
result is shown in Fig. 6. As it is shown in this figure, the
difference between the simulator actuator torque to that of the
obtained model is of order 10~°.

V. CONCLUSIONS

Having a closed form dynamic model for parallel robots is
of great interest in dynamic analysis, control, calibration and
fault detection. Due to complex kinematic structure of parallel

Robot Simulator

T
PD Simmechanics > W’?
» 0,6
controller R
» 4, q

Fig. 4: Block diagram of robot simulator containing robot and
controller
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simulator output

q raqy

0.25 0.5 0.75 1 1.25 1.5 1.75 2

G [rad/s?]

0.25 0.5 0.75 1 1.25 1.5 1.75 2
time [s]

Fig. 5: The simulator and model trajectory

robot, applying traditional method for dynamic formulation
leads to bulky models that are not cost efficient. In this
paper a new general and systematic method is proposed to
derive closed form dynamic formulation of spherical robots.
By rewriting the Gibbs-Appell energy function using Jacobian
matrix, dynamic matrices of M,C,G are derived in an
explicit form. This method is applied to one of the most
celebrated SPRs, namely agile wrist, and the obtained model is
verified by simulation. By taking the advantage of this method,
dynamic formulation of other SPMs can be achieved in a
tractable form. In future works the result of this contribution
will be experimentally applied for the spherical eye surgery
robot project conducted in ARAS robotic lab.
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