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Abstract—Analytic Iterative Redundancy Resolution (AIRR)
is a semi-analytic method for redundancy resolution in cable-
driven manipulators. As all previous redundancy resolution
methods were based on numerical algorithms, they impose an
uncertainty to execution time which is barely acceptable in real-
time implementation. In this paper, AIRR is implemented as a
fast solution to redundancy resolution problem by checking a
set of analytic solutions instead of using numerical algorithms.
Furthermore, the performance of this method is compared to
previous numerical method implemented on KNTU robot with
respect to execution time and accuracy. It is shown that the real-
time performance of this implementation in closed-loop control
structure is at least fifteen times faster than that of previously
implemented methods. Such decrease in execution time in real-
time implementation is very promising for future applications.

I. INTRODUCTION

PARALLEL cable robots are a class of parallel manipula-
tors whose moving platform is driven by cables. As the

cables can be ultimately retracted, cable-driven robots may
be applied in very large workspace [1], [2]. Large workspace
and other important potential features of this kind of robot
such as high speed and acceleration and high load to weight
ratio make them a popular alternative in many applications
[3], [4]. Since, cables can apply only tensile forces, actuator
redundancy becomes a necessity in fully-constrained cable-
driven robots [5], [6]. Although redundancy is mostly a
desirable feature in robot manipulators, it leads to complexity
in the forward kinematics and the robot control scheme [7].

Redundancy resolution techniques have been extensively
studied during past four decades. Most of these approaches
use pseudo-inverse of the Jacobian matrix of the manipulator
and Jacobian null space concept. In some recent works, the re-
dundancy resolution of a planar cable robot has been studied at
kinematics and dynamics levels in order to minimize the norm
of actuator forces, and the norm of mobile platform velocity,
while considering positive tension in all the cables [8].

It is important to note that the numerical methods are the
only way to find the optimal solution in implementation of
all previous redundancy resolution techniques [9]. Due to the
stop condition in numerical algorithms which depends to final
solution precision, these methods are usually computationally
expensive, and in contrast to the analytic methods, the solution
time is variable and is not bounded to a certain limit. This
can be an important drawback in real-time implementation

of such methods in closed-loop control applications. These
facts can clarify the importance of analytic methods versus
numerical ones in redundancy resolution schemes. Analytic
Iterative Redundancy resolution (AIRR) is an analytic and
iterative method proposed in 2011 to solve redundancy reso-
lution problem in cable-driven robots [10]. This technique can
efficiently limit the required amount of time to find optimal
solution to redundancy resolution problem using a semi-
analytic approach based on Karush-Kuhn-Tucker (KKT) [11]
method of optimization. In [10], this method is applied only
in simulations and no real-time implementation of AIRR has
been reported in the literature.

In this paper, first a brief review on AIRR technique is
given and then this technique is evaluated by two steps. In the
first step, it is compared to the fastest numerical optimization
algorithm available in MATLAB environment (interior-point
method [12]) and the previously implemented method (CF-
SQP [13], [14], [8]) through simulation. It is shown that the
proposed method works as accurate as numerical algorithms.
Then, AIRR and CFSQP are simultaneously implemented
on KNTU cable-driven robot using RT-LAB as the real-
time implementation software. It is shown that, the AIRR is
considerably faster than the previously implemented method.

II. A REVIEW ON ANALYTIC ITERATIVE REDUNDANCY
RESOLUTION TECHNIQUE

A. Background Theory

Jacobian analysis is an important part in redundancy reso-
lution study. Actually Jacobian is the matrix of all first-order
partial derivatives of a vector valued function. This matrix
describes the relation between length variable velocities (L̇)
and moving platform velocities (Ẋ), as well as the relation
between actuator forces (τττ ) and forces acting on the moving
platform (F ) of a parallel robot [15]:

L̇n×1 = Jn×mẊm×1 (1)

Fm×1 = JTτττn×1 (2)

Where n is the number of actuators and m is robot degrees
of freedom (DOF).
Regarding the fact that all the cables must always remain under
tension; τττ in Eq. (2) shall be larger than a positive constant
τττmin.

Fm×1 = JTτττn×1

τττ ≥ τττmin
(3)
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As it mentioned earlier, to satisfy the tensionability condition
in a fully-constrained cable robot the number of active cables
must be more than robot DOFs. Denoting actuator redundancy,
Jacobian matrix is non-square and therefore, the problem
stated in (3) leads to many solutions. The minimum norm
solution of this problem is driven through pseudo-inverse:

τττ0 = JT †F (4)

However, it is notable that this solution does not guarantee
positive tension in the cables. To generally guarantee the
minimum threshold considered for τττ ; the problem may be
redefined as a constrained optimization problem under the
equality constraints of F = JTτττ and the inequality constraints
denoted by τττ ≥ τττmin. It is shown in [10], that the general solu-
tion to such constrained optimization problem may be obtained
by τττ = τττ0+Ay, in which A denotes the null-space of JT . As
further detailed in [10], the function ε(y,λλλ,µµµ) is defined as (5)
in order to drive optimum solution of redundancy resolution
using KKT theorem [11] with λλλ = [λ1, λ2, · · · , λm]T and
µµµ = [µ1, µ2, · · · , µn]

T as Lagrangeian and KKT multipliers,
respectively, for equality and inequality constraints defined as
g(y) = 0 and r(y) ≥ 0.

ε(y,λλλ,µµµ) = f(y) + λλλT g(y) +µµµT r(y)
f(y) =‖ τττn×1 ‖2= τττTτττ = (τττo +Ay)T (τττo +Ay)

r(y) = τττmin − τττ = τττmin − (τττo +Ay) ≤ 0

g(y) = F − JT (τττo +Ay)

(5)

Considering KKT theorem conditions, the optimal solution is
within the following three cases:

• Case 1: All the forces lie on the boundary of inequality
constraints.

• Case 2: All the forces are inside the boundary of inequal-
ity constraints.

• Case 3: Some of the forces are on the boundary of
inequality constraints and the others are inside them.

In case 1, ∀i ∈ [1, n] ri(y0) = 0 and the solution is directly
driven through τττn×1 = [τmin1

, τmin2
, · · · , τminn

]T .
In case 2, considering µµµ = 0, the optimization problem is
simplified to :

r = nullity of (JT )

2ATτττ0 + 2y0 −ATJλλλ0 = 0

g(y) = F − JT (τττo +Ay)

(6)

Eq. (6) is rewritten in a matrix form:

B0 ·X = C0 X = B0
−1 ·C0

B0(m+r)×(m+r)
=

[
2Ir×r −(ATJ)r×m

(JTA)m×r (0
¯
)m×m

]
X(m+r)×1 =

[
y0

λλλ0

]
C0 =

[
−2ATτττ0
F − JTτττ0

] (7)

y0 is obtained from (7) and subsequently the optimum τττ is
driven by subscribing y0 in τττ = τττo + Ay. Considering B0

as an invertible matrix, this problem will lead to a unique

solution. As proved in [10], B0 is always invertible except at
singular configurations of the manipulator.

Case 3 is the more often case to happen, which is the
composition of two later cases. In this case, some of the
forces perch on the boundaries (for some i ∈ [1, n], ri(y0) =
0 & µi ≥ 0 therefore τi = τmini

) and the other ones are
inside the boundaries of inequality constraints (for some j ∈
[1, n], j 6= i, rj(y0) < 0 and µj = 0). In this case y0 is
driven through solving the following matrix equation [10]:

B ·X = C X = B−1 ·C

B=



B0

[ [
~a1

T , ..., ~ani

T
]

0
¯

]

 ~a1

...
~ani


0
¯

 [0
¯
]m×m



X =


y0

λλλ µ1

...
µni



 C =


2ATτττ0 τmin1
− τ01

...
τminni

− τ0ni




(8)
Where, ni is the number of µi > 0 and for each µi > 0,
~ai is the corresponding row vector of matrix A. This matrix
equation has a solution if matrix B is invertible. In [10] it
is proved that B is invertible in the whole wrench feasible
workspace of the manipulator.

III. SEARCH ALGORITHM

In order to implement the prescribed method, this section
deals with an overview on the method that is deliberately
studied in [10].

First, it is assumed that all forces lie inside the bound-
aries of solution set defined by inequality constraints, i.e.
∀i ∈ [1, n], ri(y) < 0. With this assumption, the first loop
is the same as case 2 and τττ is obtained as detailed. If this
solution satisfies all the optimization constraints, i.e. g(y) = 0
and r(y) ≤ 0 ; the algorithm is terminated and is valid
and optimized. Otherwise, the combination of forces which
may lie on the boundaries of inequality constraints must be
found. There exist C(m,S) different combinations for this
search, where m = [1, 2, · · · , n]T and S represents the step
which is between 0 and n (s = 0, 1, · · · , n). The solution is
checked by sweeping all possible combinations. Clearly, the
last implementation loop is S = n in which all the forces
lie on the boundaries of constraints (∀j ∈ [1, n], rj(y) = 0)
and is the same as the case 1. Thus, τττ is simply found from
τττn×1 = [τmin1 , , τminn ]

T [10].
It is shown that if there exists a solution, the number

of iterations to perform redundancy resolution through this
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method lies within a certain range which is:

1 ≤ number of iterations ≤
n∑

S=0

C(n, S) (9)

The flowchart of the search routine is given in Fig 1.

IV. IMPLEMENTATION RESULTS

A. KNTU Cable-Driven Robot

KNTU cable-driven robot is a planar cable-driven robot built
in K. N. Toosi University of Technology for possible high
speed maneuvers, and is used in this research to implement
the analytic iterative redundancy resolution scheme. Like most
other cable robots, this robot is composed of a fixed frame and
a moving platform. The moving platform is supported by four
cables which connect it to the motors placed on the corner of
the fixed frame. Fig 2 illustrates the schematics of this robot.

B. Simulation Results

In this section both AIRR and CFSQP schemes are im-
plemented on KNTU cable-driven robot through simulation.
Furthermore, constraint optimization command in MATLAB,
namely fmincon, is used to verify optimal solution obtained.
Although this command constructs a reliable numerical op-
timization method, it only supports Mfile codes and is not
executable in Simulink and real-time workshop environment.
Therefore, it cannot be used in real-time implementation.
This numerical optimization technique includes three different
optimization methods, namely, interior-point [12], trust-region-
reflective [16] and active-set optimization [17]. Since interior-
point is the fastest one among these three methods, it is chosen
as the reference for comparison. Fig 3 represents the results
of these three methods in a typical simulation of the robot.
As it is seen in this figure, both CFSQP and AIRR methods
guarantee minimum force threshold which means the cables
are always in tension and furthermore, since the results are
identical as the ones obtained from fmincon, both methods
lead to the right optimal solution.

Since CFSQP is C-based block and AIRR is M-based code
in simulation environment, it is pointless to compare them in
term of execution time. Hence, Table I compares fmincon
as a numerical optimization method with AIRR as the analytic
one for this trajectory. As it illustrates, AIRR executes about
23 times faster than that of numerical optimization methods.

V. REAL-TIME IMPLEMENTATION

1) Preparing the model: For real-time implementation, it
is required to embed object code into a Simulink model. User
defined toolbox in MATLAB is developed for this purpose.

TABLE I
AVERAGE ELAPSED TIME TO SIMULATE REDUNDANCY RESOLUTION

method Average elapsed time (ms) Speed (step/s)
AIRR 1.8 574.75

fmincon 43.5 23

Start

S = 0
m = [1, · · · , n]

ni =
n(Comb(m,S)))

K = 1

Kth combination:
µi = 0, µj > 0
i, j ∈ [1, n], j 6= i

S = S + 1

K = K + 1

B · X = C
y = x(1 : n)
τττ = τττ0 + Ay

KKT
condition

Algorithm
Concluded

K = ni?!S = m?!

NO SOLUTION

No

No

Yes

Yes

No

Yes

Fig. 1. Search algorithm flowchart

Among its blocks, Embedded MATLAB Function is the best
for M-based codes as it is more convenient to use and a bit
faster than S-function; however, if the code needs to be seg-
mented into individual parts such as initialization, simulation
or termination, separately or if the code is C-based, S-function
block is the best alternative [18].
Both these blocks are used in this research.

2) Connecting to robot: To connect an offline dynamic
software to a real-time robot, a real-time software is needed.
RT-LAB is one such software that links the Simulink using
interface cards and computer networks and enables Simulink
models to interact with the real world in real-time. An RT-
LAB model can be divided into multiple subsystems and
execute complex codes on a network of destination computers,
giving each subsystem to one of them simultaneously [19].
Fig 4 illustrates required steps to execute a model in RT-Lab
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Fig. 2. KNTU Cable-Driven Robot
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Fig. 3. Cable forces through AIRR, CFSQP and fmincon

environment.
3) Implementation results: In this section, in parallel to

the previous numerical method used for redundancy resolution
named CFSQP [13], the AIRR technique is implemented on
KNTU cable robot. The performance of both methods are then
evaluated in term of their execution speed.
For sake of comparison, both methods are implemented
through RT-LAB 8.1.3 and MATLAB 7.3 as the medium
software using an intel dual core CPU with 3GHz processor
speed and 1.00GB ram. Step time for this system is set to 1ms
and MATLAB function block is used to implement AIRR codes.
As this block does not support some of the commands used
in the proposed algorithm, we were forced to write suitable
functions to correctly replace that commands.
As a result:

RT-Lab
Main

Control

Open
ModelConnect

Configuration Compile

Correctly
Compiled?!

Load

Execute

No

Yes

Fig. 4. Connecting to RT-Lab flowchart

1) Both CFSQP and AIRR lead to the same solution.
2) All the cables remain in tension and the forces are al-

ways higher than the minimum tension forces threshold
which is set to τττmin = 7.5N .

3) When CFSQP is in close loop structure, the elapsed time
for most steps exceeds the step time of 1 ms and it can
cause time over run.

4) The standard deviation of elapsed time vector for CF-
SQP is much higher than that of AIRR. This is due to
the numerical nature of CFSQP which does not ensure
a certain execution time period

Fig 5 which is magnified in Fig 6 shows that the elapsed
time required to calculate the redundancy resolution scheme
through AIRR is much less than that of CFSQP. The worst
elapsed time to perform AIRR is 69.97 µs which is 4.16 times
better than the best case of CFSQP (291.18 µs). Table II
represents a quantitative comparison of different aspects of
these implementation methods. As it is seen in this table the
average elapsed time for AIRR method is limited to about
54 µs, which is 15 times faster than that of CFSQP. This
is emphasized in the fifteen times faster overall execution
speed of this method as given in the table. Furthermore, the
standard deviation of the execution time in CFSQP is very
high compared to that of AIRR. This reveals the fact that due
to numerical nature of CFSQP in some occasions the search
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Fig. 5. Required elapsed time to calculate the redundancy resolution scheme

for the optimal solution last much longer than other steps.
However, in AIRR method the maximum of the iteration time
is limited, and in worst case scenario the number of iterations
is limited and is quite acceptable.

TABLE II
AVERAGE ELAPSED TIME TO EXECUTE REDUNDANCY RESOLUTION

method Average elapsed time Speed standard
method (µµµs) (step/ms) deviation
AIRR 53.97 18.53 3.89

CFSQP 814.71 1.23 706.30

VI. CONCLUSIONS

In this paper an analytic iterative solution to redundancy
resolution problem in cable-driven robots is implemented
on KNTU cable robot. As redundancy resolution for such
robots involves nonlinear optimization problems with equality
and inequality constraints, Karush-Kuhn-Tucker theorem is
used to formulate the optimization problem, and an iterative
method is presented to find the solution. The performance of
the proposed method is verified in simulation and real-time
implementation, and it is shown that due to the structure used
in analytic iterative solution the execution time and its standard
deviation in real-time implementation is significantly reduced
compared to that of the numerical one. It is shown that the
worst elapsed time to perform AIRR is 4.16 times better than
that of the best execution time in CFSQP. Furthermore the
average elapsed time of AIRR method is 15 times faster than
that of CFSQP. Such increase in execution time in real-time
implementation is very promising for future applications.
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