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Abstract—In this paper, control of fully–constrained parallel
cable robots with elastic cables is studied in detail. In the model-
ing process, longitudinal vibration of cables is considered as their
dominant dynamics, and the governing equations of motion are
rewritten to the standard form of singular perturbation. The pro-
posed composite controller consists of two main components. A
rigid controller is designed based on the slow or rigid model of the
system and a corrective term is added to guarantee asymptotic sta-
bility of the fast dynamics. Then, by using Tikhonov theorem, slow
and fast variables are separated and incorporated into the stability
analysis of the overall closed–loop system, and a set of sufficient
conditions for the stability of the total system is derived. Finally,
the effectiveness of the proposed control law is verified through
simulations.

Index Terms—Cable driven parallel robots, composite control,
elastic cable, Lyapunov analysis, singular perturbation, stability
analysis, Tikhonov theorem.

I. INTRODUCTION

S INCE the late 1980s, the study of cable driven parallel
robots has received increasing attention. By replacing the

rigid links in parallel robots with cables, some of the tradi-
tional shortcomings of conventional robots are remedied. Using
cables instead of rigid links introduces many potential appli-
cations such as very large workspace robots [1], high speed
manipulation [2], handling of heavy materials [3], cleanup of
disaster areas [4], access to remote locations, and interaction
with hazardous environments [5]. Cable robots can be sorted
into two types: fully–constrained and under–constrained ma-
nipulators [4], [6], [7]. In the fully–constrained robots, cables
can create any wrench on the end–effector [8] or equivalently,
for a given set of cable lengths, the end–effector cannot be
moved in position and orientation [9]. The cable robots under
study in this paper are restricted to the fully-constrained type
and it is assumed that the motion control is performed just in
the wrench-closure workspace.

Replacing rigid links with cables introduces new challenges
to the study of cable driven robots, of which control is the most
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critical. Cables can only apply tensile forces and they can only
be used to pull and not to push an object. Therefore, in order to
avoid structural failures, control algorithm should be designed
such that all cables remain under tension in all configurations.
Dynamic behavior of the cables is another major challenge in
mechanical design and control of such robots. Cables can be
modeled as elastic elements and may encounter elongation and
vibration. Therefore, elasticity in cables may cause position
and orientation errors for the moving platform. Furthermore,
due to the axial vibrations in cables, the moving platform may
experience unwanted vibrations, and even become uncontrol-
lable. This problem is a critical concern in applications where
high bandwidth or high stiffness is a stringent requirement [10].
Again, to encounter this problem, control is playing a vital role.
Proposed control strategies for cable robots should be able to
efficiently damp vibrations and achieve good tracking perfor-
mance.

Control of cable driven robots has received limited attention
compared with that of conventional robots. With the assump-
tion of massless and inextensible models for the cable, most
of the common control strategies for conventional robots have
been adapted for cable robots. Lyapunov based control [2], [11],
computed torque method [11], [12], sliding mode [13], robust
PID control [14], and adaptive PD control [15] are some of
reported control algorithms being used in the control of cable
robots. Kawamura et al. have proposed a PD controller accom-
panied with gravity compensation and internal forces in the
cable-length coordinates [2]. The stability of motion is ana-
lyzed based on the Lyapunov theorem and vector closure con-
ditions. Alp and Agrawal [11] used PD control with gravity
compensation in task space coordinates and analyzed asymp-
totic stability based on the Lyapunov second method. Inverse
dynamics control (IDC) or computed torque technique is an-
other method which is used in [11] and [12]. In this technique,
the actuator forces are calculated to cancel out the effects of
nonlinear dynamical terms on the manipulator. Fang et al. [16]
used nonlinear feed forward control laws in the cable length co-
ordinates. They proposed optimal tension distribution algorithm
to compensate dynamic errors. In [17], an approach based on
the Hessian matrix was developed to conduct the stability anal-
ysis of equilibrium configurations for 3-D cable systems with
multiple aerial robots.

However, in these studies, cables are treated as massless in-
extensible strings, and no elasticity in cables are considered.
It should be noted that modeling the dynamic effects of elas-
tic cables is an extremely comprehensive task. Furthermore,
it is also important to note that the obtained model must be
not only sufficiently accurate, it must be usable for controller
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synthesis, as well. Therefore, in practice, the inclusion of only
dominant effects in the dynamic analysis is proposed. For this
reason, in many robotic applications, cable masses have been
neglected and cable has been considered to be a nonelastic ele-
ment [11], [18]. However, in practice, using this assumption will
mislead the results in control especially the stability of the ma-
nipulator. Ottaviano and Castelli [19] have analyzed the effects
of cable mass and elasticity and their effects on pose capability
of the cable robots. They have shown that cable mass can be
neglected if the ratio of the end-effector to cable masses is large
or generally, the ratio of the end-effector wrenches to the cable
tensions is small. Using natural frequencies of system, Diao and
Ma in [10] have shown that in fully–constrained cable robots,
transversal vibration of cables has very limited effects on the
vibration of the end-effector and can be ignored compared with
that of axial flexibility. Therefore, dominant dynamic character-
istics of cable can be modeled by an axial spring in dynamic
modeling of fully-constrained cable robots. According to these
results, in this paper, linear axial spring is used to model dom-
inant dynamics of the cable and by this means, a more precise
model of fully-constrained cable robots is derived for the con-
troller design and stability analysis of such robots.

Inclusion of cable dynamic characteristics in the modeling
of the cable robots leads to complication in control algorithms
and research on this topic is in its infancy and is very limited.
Meunier et al. used multiloop control scheme for large adap-
tive reflector (LAR), in which the inner loop deals with cable
model. This loop uses H∞ controller and gain scheduling tech-
nique for adaptation of H∞ with cable lengths. In the outer loop,
a PID+IDC structure is used [20]. However, in this research,
stability analysis of the closed–loop system has not been per-
formed. In [21], elastic massless model for cable is derived and
a new model for the cable robot and a new control algorithm are
proposed. This control algorithm is formed in cable length space
and uses internal force concept and a damping term. Stability
of closed-loop system is analyzed through the Lyapunov theory
and vector closure conditions.

Since both the capability of the cable robot to achieve high
accuracy in positioning and its vibrations depend directly on the
control scheme of the system, investigation of the control and
the stability in parallel robots with elastic cables is of particu-
lar importance. However, only a few works have systematically
treated these aspects. The main goal of this paper is to develop a
new approach to dynamic modeling and control of cable robots
with elastic cables using singular perturbation theory. With the
assumption of axial spring model for the cables, singular per-
turbation theory is found to be very suitable for modeling and
control of cable robots. Singular perturbations cause a multitime
scale behavior of dynamic systems characterized by presence of
both slow and fast transients in the response of the system [22].
Thus, dynamics of system can be divided into two subsystems,
namely, slow and fast dynamics. These subsystems are used in
the design of efficient control algorithms. The effectiveness of
this theory has been investigated in modeling and control of
flexible joint robots [23], but rarely in cable robots [24], [25].

The structure of this paper is as follows. First, dynamics of
cable robot with ideal nonelastic cables is elaborated on and

a new control algorithm is proposed for it. Then, asymptotic
stability of rigid system with the proposed controller is ana-
lyzed through the Lyapunov theory. In the following sections,
dynamics of cable robots with elastic cable is derived and it
is rewritten to the standard form of singular perturbation. A
composite control structure is proposed for this model, which
consists of a rigid control term in accordance with correspond-
ing slow or rigid model of the system and a corrective term
for vibrational damping. Next, Using Tikhonov’s theorem, slow
and fast variables are separated and incorporated in to the sta-
bility analysis of the closed-loop system. Then, total stability of
system is analyzed and sufficient conditions for its asymptotic
stability are derived. Finally, to demonstrate the effectiveness
of the proposed controller, simulation results on a spatial cable
robot are discussed.

II. CONTROL OF PARALLEL ROBOTS WITH

NONELASTIC CABLES

In this section, we assume that elasticity of cables can be
ignored and cables behave as massless rigid strings. This simple
model has been used in many papers [11], [18]. Based on this
assumption, the standard model for the overall dynamics of
n-cable parallel robot with actuators is developed in [21] and
[26] and given as follows:

M eq (x)ẍ + Ceq (x, ẋ)ẋ + Geq (x) = JT (x)ur (1)

in which
⎧
⎨

⎩

M eq (x) = rM(x) + r−1JT Im J

Ceq (x, ẋ) = rC(x, ẋ) + r−1JT ImJ̇
Geq (x) = rG(x)

(2)

where x ∈ R6 is the vector of generalized coordinates, M(x) is
the 6 × 6 inertia matrix, Im is diagonal matrix of actuator iner-
tias reflected to the cable side of the gears, C(x, ẋ) represents
the Coriolis and centrifugal matrix, G(x) is the gravitational
terms, r is radius of pulleys, and ur represents the input torque.
J represents the Jacobian of robot and relates the derivative
of generalized coordinate ẋ, to derivative of cable length vec-
tor L̇ by L̇ = Jẋ. Although these equations are nonlinear and
coupled, they have inherited some properties seen in general
robotic manipulators, which are very helpful in the design of
control strategies.

Property 1: The inertia matrix M eq (x) is symmetric and
positive definite.

Property 2: The matrix Ṁ eq (x) − 2Ceq (x, ẋ) is skew
symmetric.

A. Control Algorithm

Given a twice continuously differentiable reference trajectory
xd for (1), consider the following control law

ur = J †(M eq (x)ẍd + Ceq (x, ẋ)ẋd + Geq (x)

+ Kp(xd − x) + Kv (ẋd − ẋ)) + Q (3)

where M eq ,Ceq , and Geq are defined in (2) and Kp ,Kv are
diagonal matrices of positive gains. J † denotes the pseudoin-
verse of JT , which is determined by J † = J(JT J)−1 . The
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final term Q, is a vector that spans the null space of JT

JT Q = 0. (4)

It is important to note that the vector Q does not contribute to
the motion of the end-effector and only causes internal forces in
the cables. This term ensures that all cables remain in tension in
the whole workspace. In this paper, we assume that the motion
is within the wrench–closure workspace and as a consequence,
positive internal forces can be produced to keep the cables in
tension.

Furthermore, it is notable that internal forces are necessary for
the rigidity of the manipulator, but they can change the overall
stiffness of the system [27]. If the pose of the end-effector is sta-
bilizable, increasing the internal forces enhances the equivalent
stiffness of the mechanism [28]. In the cable robots, stabiliz-
ability criterion ensures that the cable robot is stable in any cir-
cumstances as long as the internal forces are large enough [28].
In other words, when a manipulator is stabilizable in a cer-
tain pose, it can become more stiff by increasing the internal
forces. Stabilizability of a cable robot depends on its geomet-
rical parameters [29]. Based on the aforementioned facts, the
equivalent stiffness of the manipulator can be controlled by the
internal forces. This means that according to the end–effector
pose and geometrical parameters of the manipulator, the vector
of internal forces can be chosen such that the cables remain in
tension, and furthermore, equivalent stiffness of the cable robot
is enhanced.

B. Stability Analysis

Substitute (3) in (1) and use (4), the closed–loop system may
be written as:

M eq (x)ë + Ceq (x, ẋ)ė + Kpe + Kv ė = 0 (5)

where

e = xd − x. (6)

Consider the following Lyapunov function for the closed loop
system (5)

VR =
1
2
ėT M eq (x)ė +

1
2
eT Kpe (7)

which is generated using total energy in the system and it is
positive, if Kp is chosen to be positive definite, since based on
property 1, M eq is positive definite. The time derivative of the
Lyapunov function VR is given by

V̇R = ėT M eq (x)ë + eT Kp ė +
1
2
ėT Ṁ eq (x)ė. (8)

Using (5), one can write:

V̇R = ėT (−Kv ė − Kpe) + eT Kp ė

− ėT Ceq (x, ẋ)ė +
1
2
ėT Ṁ eq (x)ė

= −ėT Kv ė + ėT

(
1
2
Ṁ eq (x) − Ceq (x, ẋ)

)

ė.

According to property 2, the second term vanishes and therefore

V̇R = −ėT Kv ė ≤ 0. (9)

This implies that e and ė are bounded. Since the system (5) is
nonautonomous, use Barbalat’s lemma to complete the proof of
asymptotic stability. In order to do that, let us check the uniform
continuity of V̇R . The derivative of V̇R is

V̈R = −2ėT Kv ë

= 2ėT KvM−1
eq (x)(Ceq (x, ẋ)ė + Kpe + Kv ė).

This shows that V̈R is also bounded, since e and ė are bounded;
hence, V̇R is uniformly continuous. Applying Barbalat’s lemma
indicates that ė → 0 as t → ∞. Hence, according to uniform
continuity of ë, it can be concluded that ë → 0 as t → ∞.
As a result, from (5), Kpe → 0 as t → ∞. Since Kp is a
positive diagonal matrix, we may conclude that x → xd , as
time tends to infinity and motion remains within the wrench–
closure workspace.

III. ROBOT WITH ELASTIC CABLES

A. Dynamic Model

As mentioned earlier, in a cable robot vibration caused by in-
evitable flexibility of cables shall be attenuated for applications
that require high accuracy or high bandwidth. Thus, elasticity
of cables is considered in this section. When elasticity in cables
is considered in the modeling, actuator position is not directly
related to the end–effector position. Hence, an augmented state
vector may be considered, which consists of the position of
actuators and the position of the end–effector. New research
results have shown that in fully–constrained cable robots, dom-
inant dynamics of cables are longitudinal vibrations [10] and
therefore, axial spring model may suitably describe the effects
of dominant dynamics of cable.

In order to model a general cable driven robot with n ca-
bles assume that: L1i : i = 1, 2, ..., n denotes the length of ith

cable with tension, which may be measured by a string pot
or calculated by the solution of inverse kinematics problem.
L2i : i = 1, 2, ..., n denotes the cable length of ith actuator,
which may be measured by the motor shaft encoder. If the
system is rigid, then L1i = L2i ,∀i. Let us denote

L = (L11 , L12 , . . . , L1n , L21 , L22 , . . . , L2n )T = (LT
1 ,LT

2 )T .

In a cable driven robot, the stiffness of cables is a function of
cable lengths, which are changing during the motion of the robot.
Furthermore, cables can be modeled by linear axial springs with
Young’s modulus E and cross-sectional area A. Therefore, the
instantaneous potential energy of ith cable is

pi =
EA(L1i − L2i)2

2L2i
. (10)

The total potential energy of the system can be expressed
by: P = P0 + P1 , in which P0 denotes the potential energy
of the rigid robot and P1 denotes the potential energy of the
cables. Using linear axial spring model for cable and ignoring
the effects of temperature, tension history etc., the total potential
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energy of cables is given by

P1 =
1
2
(L1 − L2)T K(L2)(L1 − L2) (11)

where K is the stiffness matrix of the cables during the motion
and is a function of L2 . Suppose that all cables have the same
Young’s modulus E and cross-sectional area A, then

K(L2) = EA · diag−1(L2). (12)

Furthermore, kinetic energy of the system is

T =
1
2
ẋT M(x)ẋ +

1
2
q̇T Im q̇. (13)

In which, x denotes the generalized coordinates in task space,
q is the motor shaft position vector, M(x) is the mass matrix,
and Im is the actuator moments of inertia. Lagrangian function
may be expressed as

L = T − P =
1
2
ẋT M(x)ẋ +

1
2
q̇T Im q̇

− P0 −
1
2
(L1 − L2)T K(L2)(L1 − L2). (14)

Using Euler–Lagrange formulation and some manipulations,
final equations of motion can be written in the following form:

M (x)ẍ + N (x, ẋ) = JT K(L2 )(L2 − L1 ) (15)

Im q̈ + rK(L2 )(L2 − L1 ) + rH(L2 , L1 )(L2 − L1 ) = u (16)

in which,

N(x, ẋ) = C(x, ẋ)ẋ + G(x), L2 − L0 = rq

H(L2 ,L1) = −1
2
K(L2) diag−1(L2) diag(L2 − L1).

In these equations, L0 is the vector of cable length at x = 0
and J is the Jacobian matrix of the system, which relates ẋ to
the derivative of the cable length vector by L̇1 = Jẋ, and other
parameters are defined as before. Since in practice

In×n � −1
2

diag−1(L2) diag(L2 − L1) (17)

where In×n is n × n identity matrix. Thus, the equations of
motion (15) and (16) can be written in the form of

M(x)ẍ + N(x, ẋ) = JT K(L2 − L1) (18)

Im q̈ + rK(L2 − L1) = u. (19)

For notational simplicity, we assume that all cable stiffness con-
stants are the same1 and K is large with respect to other system
parameters. To quantify how large the cable stiffness is with
respect to other parameters, we assume that K is of the order
O(1/ε2) (ε is a small scalar parameter).

Equations (18) and (19) represent the cable driven robot as a
nonlinear and coupled system. This representation includes both
rigid and flexible subsystems and their interactions. It can be
shown that the model of cable driven parallel robot with elastic
cables may be reduced to (1), if the cable stiffness K tends

1This assumption does not reduce the generality of problem. For general case,
use variable scaling.

to infinity. Furthermore, this model has inherited the properties
of rigid dynamics (1), such as positive definiteness of inertia
matrix and skew symmetricity of Ṁ − 2C [21].

B. Control

In this section, we show that the control law (3) developed
for a cable robot with nonelastic cables, can be modified for the
robot with elastic cables. First, consider a composite control law
by adding a corrective term to the control law (3) in the form of

u = ur + Kd(L̇1 − L̇2) (20)

where ur is given by (3) in terms of x, and Kd is a constant
positive diagonal matrix whose diagonal elements are in order
of O(1/ε). Notice that

L2 = rq + L0 =⇒ L̇2 = rq̇ and L̈2 = rq̈. (21)

Substitute control law (20) in (19) and define variable z as

z = K(L2 − L1). (22)

The closed loop dynamics reduces to:

r−1Im z̈ + Kd ż + rKz = K(ur − r−1Im L̈1). (23)

By the assumption on K and our choice for Kd , we may assign

K =
K1

ε2 ; Kd =
K2

ε
(24)

where K1 , K2 are of O(1). Therefore, (23) can be written as

ε2r−1Im z̈ + εK2 ż + rK1z = K1(ur − r−1Im L̈1). (25)

Now, (18) and (25) can be written together as

M(x)ẍ + C(x, ẋ)ẋ + G(x) = JT z (26)

ε2r−1Im z̈ + εK2 ż + rK1z = K1(ur − r−1Im L̈1). (27)

The variable z and its time derivative ż may be considered the
fast variables while the end–effector position variable x and its
time derivative ẋ are considered the slow variables. Using the
results of singular perturbation theory [22], elastic system (26)
and (27) can be approximated by the quasi–steady state or slow
subsystem and the boundary layer or fast subsystem as follows.
With ε = 0, (27) becomes

z̄ = r−1(ūr − r−1Im
¨̄L1) (28)

in which, the over bar variables represent the values of variables
when ε = 0. Substitute (28) into (26)

M(x̄)¨̄x + C(x̄, ˙̄x) ˙̄x + G(x̄) = r−1JT (ūr − r−1Im
¨̄L1).

(29)
Furthermore, substitute ¨̄L1 = J ¨̄x +J̇ ˙̄x in the previous equation
as

(rM(x̄) + r−1JT Im J)¨̄x

+(rC(x̄, ˙̄x) ˙̄x + r−1JT ImJ̇ ˙̄x) + rG(x̄) = JT ūr (30)

or equivalently

M eq (x̄)¨̄x + Ceq (x̄, ˙̄x) ˙̄x + Geq (x̄) = JT ūr . (31)
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Equation (31) is called the quasi-steady state system. Notice that
we were able to formulate (31) as the rigid model (1) in terms
of slow variable x̄. Using Tikhonov’s theorem [22], for t > 0,
the elastic force z(t) and the end-effector position x(t) satisfy

z(t) = z̄(t) + η(τ) + O(ε)

x(t) = x̄(t) + O(ε) (32)

where, τ = t/ε is the fast time scale and η is the fast state
variable that satisfies the following boundary layer equation.

r−1Im
d2η

dτ 2 + K2
dη

dτ
+ rK1η = 0. (33)

Considering these results, elastic system (26) and (27) can be
approximated up to O(ε) by

M(x)ẍ + C(x, ẋ)ẋ + G(x) = JT (z̄ + η(τ)) (34)

r−1Im
d2η

dτ 2 + K2
dη

dτ
+ rK1η = 0. (35)

According to (28)

M eq (x)ẍ + Ceq (x, ẋ)ẋ + Geq (x) = JT (ur + rη(τ )) (36)

r−1Im
d2η

dτ 2 + K2
dη

dτ
+ rK1η = 0. (37)

Notice that the controller gain K2 can be suitably chosen such
that the boundary layer system (37) becomes asymptotically
stable. By this means, with sufficiently small values of ε, the
response of the elastic system (18) and (19) with the composite
control (20) consisting of the rigid control ur given by (3) and
the corrective term Kd(L̇1 − L̇2), will be nearly the same as
the response of rigid system (1) with the rigid control ur alone.
This happens after some initially damped transient oscillation
of fast variables η(t/ε).

C. Stability Analysis of the Total System

Control of the rigid model and its stability analysis were dis-
cussed in previous section. It is demonstrated that the boundary
layer or the fast subsystem (33) is asymptotically stable, if the
corrective term is used in the control law. However, in general,
individual stability of boundary layer and that of quasi-steady
state subsystems does not guarantee the stability of total closed-
loop system. In this section, the stability of the total system is
analyzed in detail. Recall the dynamic equations of elastic sys-
tem (36) and (37), and apply the control law (3) from previous
section. This results in

M eq (x)ë + (Ceq (x, ẋ) + Kv )ė + Kp e = −rJT η(t/ε) (38)

r−1Im
d2η

dt2 + Kd
dη

dt
+ rKη = 0. (39)

Consider y =
[

e
ė

]

and h =
[

η
η̇

]

, in which, e = xd − x, then

ẏ = Ay + B [I 0] h (40)

ḣ = Ãh (41)

in which

A =
[

0 I
−M−1

eq Kp −M−1
eq (Kv + Ceq )

]

B =
[

0
−rM−1

eq JT

]

Ã =
[

0 I
−r2I−1

m K −rI−1
m Kd

]

.

Then, the stability of this system may be analyzed by the
following lemma.

Lemma 1: There is a positive definite matrix Kd such that the
closed-loop system described by the state space representation
(41), is asymptotically stable.

Proof: Consider the following Lyapunov function candidate:

VF = hT Wh, W =
1
2

[
r2(Kd + K) rIm

rIm Im

]

. (42)

According to Schur complement, in order to have positive def-
inite W , it is sufficient to have Kd > Im . Differentiate VF

along trajectories of (41)

V̇F = ḣ
T
Wh + hT Wḣ + hT Ẇh

= −r3ηT Kη − rη̇T (Kd − Im )η̇. (43)

V̇F can be written as

V̇F = −hT Sh, S =
[

r3K 0
0 r(Kd − Im )

]

. (44)

Since, K,Kd , and Im are diagonal positive definite matrices,
V̇F becomes negative definite if Kd > Im . If this condition
holds, the closed-loop system (41) is asymptotically stable. �

Theorem 1: The closed-loop system (40) and (41) is asymp-
totically stable, by proper selection of controller gains Kv , and
Kd .

Proof: Consider the following composite Lyapunov function
candidate

V (y,h) = VR + VF (45)

in which, VR denotes the Lyapunov function candidate for the
rigid subsystem given in (7), and VF denotes that for the fast
subsystem (33), given in (42). Differentiate V (y,h) along tra-
jectories of (40) and (41). Hence

V̇ (y,h) = V̇R + V̇F = −ėT Kv ė − rėT JT η − hT Sh.
(46)

According to Rayleigh–Ritz inequality

−hT Sh ≤ −λmin(S)‖h‖2 . (47)

Therefore

−ėT Kv ė ≤ −λmin(Kv )‖ė‖2 (48)

−rėT JT η ≤ rσmax(JT )‖ė‖‖h‖ (49)

in which λmin and σmax denote the smallest eigenvalue and
largest singular value of the corresponding matrices, respec-
tively. Using the above inequalities, one may write

V̇ (y,h) ≤
− λmin(Kv )‖ė‖2 + rσmax(JT )‖ė‖‖h‖ − λmin(S)‖h‖2
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or equivalently

V̇ (y,h) ≤

[‖ė‖ ‖h‖]
[ −λmin(Kv ) 0.5rσmax(JT )

0.5rσmax(JT ) −λmin(S)

] [ ‖ė‖
‖h‖

]

.

In order to have V̇ (y,h) ≤ 0, it is sufficient to satisfy the
following inequality:

λmin(Kv )λmin(S) > 0.25 r2σ2
max(J

T ). (50)

This condition is simply met by choosing appropriate values for
Kv in (3) and Kd for fast subsystem. Enforcing V̇ (y,h) to be
negative semidefinite, implies that y and h are bounded. This
indicates that V̈ (y,h) is bounded. Hence, V̇ (y,h) is uniformly
continuous. Like before, by using Barbalat’s lemma, one may
conclude that ė → 0 and h → 0 as t → ∞. According to uni-
form continuity of ë, it can be concluded that ë → 0 as t → ∞.
As a result, the total closed-loop system (40) and (41) becomes
asymptotically stable. �

The control gains Kp and Kv are obtained according to
asymptotic stability of the corresponding rigid model (31). In
addition, Kv and Kd should be chosen so as they satisfy equa-
tion (50) and negative definiteness of S. Furthermore, Kd de-
termines damping rate of the vibrations caused by fast variables
η(t).

Remark 1: In design procedure of the controller, it is assumed
that the Jacobian matrix of the cable robot is nonsingular and at
all times, positive internal forces can be generated such that the
cables remain in tension.

Remark 2: Internal forces can change the cables tensions. As
a consequence, the elastic forces −z = K(L1 − L2) and fast
variable η(t) will be affected and this can cause vibrations in
the mechanism. However, as proved in lemma 1, because of
using corrective term Kd(L̇1 − L̇2) in the proposed control
algorithm (20), the fast or boundary subsystem (39) is asymp-
totically stable and thus, the resulting vibrations are efficiently
damped.

Remark 3: In a cable robot with high elasticity in cables,
according to remark 1, choosing high gains for Kv may limit
the reachable workspace. In this case, the choice of Kv is related
to the volume of the desired reachable workspace. This subject
is under current research.

IV. CASE STUDY

In order to verify the effectiveness of the proposed control
algorithm, a simulation study has been performed on a spa-
tial cable driven manipulator. KNTU cable robot is a fully–
constrained spatial cable manipulator actuated by eight cables.
This manipulator is under investigation for possible high speed
and wide workspace applications at K. N. Toosi University [30].
There exist different designs for KNTU cable robot based on
different approaches such as collision avoidance scheme, force
feasibility, and dexterity. A special design of KNTU cable robot
is shown in Fig. 1, which is called Galaxy. This manipulator
possesses six degrees of freedom with two degrees of actuator
redundancy.

Fig. 1. Schematics of KNTU Galaxy design [30].

Consider x = [xp, yp , zp , α, β, γ]T as generalized coordi-
nates vector, in which θ = [α, β, γ]T denotes the vector of a
set of Pitch–Roll–Yaw Euler angles. With this definition, the
angular velocity of the end-effector can be written in the fol-
lowing form:

ω = Eθ̇, θ̇ =
[
α̇, β̇, γ̇

]T

(51)

in which

E =

⎡

⎢
⎣

cos(β) cos(γ) − sin(γ) 0
cos(β) sin(γ) cos(γ) 0
− sin(β) 0 1

⎤

⎥
⎦ .

With this notation, the equations of motion can be written in
terms of x. By some manipulations, these equations may be
derived as [26]

M(x)ẍ + C(x, ẋ)ẋ + G(x) = F (52)

where

M(x) =
[

mI3×3 03×3

03×3 ET IP E

]

(53)

C(x, ẋ)ẋ =
[

03×1

ET {IP Ėθ̇ + (Eθ̇)×IP (Eθ̇)}

]

(54)

G(x) =
[−mg

03×1

]

. (55)

In these equations, m denotes the mass of the end-effector; IP

denotes the inertia tensor of the end-effector; I3×3 is a 3 × 3
identity matrix, and g denotes the gravity acceleration vector.
By considering elasticity in the cables, the system components
are given as follows:

F = JT K(L2 − L1), L2 = rq + L0

Im q̈ + rK(L2 − L1) = u. (56)

The following parametric values in SI units are used
in the simulations; Im = 0.6 I8×8 , r = 0.035 , K = 1000
I8×8 , m = 2.5 , and IP = diag[0.212 , 0.225 , 0.03]. In order
to demonstrate a high flexible system, K is intentionally set
very low. To show the effectiveness of the proposed composite
control algorithm, suppose that the system is at the origin and
has to track the following smooth reference trajectories in task
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Fig. 2. Closed-loop system experiences instability, if only rigid controller ur

is applied.

space coordinates

xd = yd = 0.3 + 1.5e−t − 1.8e−t/1.2

zd = 0.2 + e−t − 1.2e−t/1.2

αd = βd = 0

γd = 0.2 + e−t − 1.2e−t/1.2

in which, the translational task space variables xP , yP , and zP ,
and rotational task space variables αP , βP , and γP reach a fi-
nal value of 0.3 m, 0.3 m, 0.2 m, 0 rad, and 0.2 rad from the zero
states, respectively. The controller is based on (20) and con-
sists of rigid control ur given by (3) and the corrective term.
Controller gain matrices are chosen as Kp = 250 I6×6 ,Kv =
30 I6×6 , and Kd = 550 I8×8 to satisfy the stability conditions.
In the first step, rigid control ur alone is applied to the manipu-
lator. As illustrated in Fig. 2, the manipulator experiences insta-
bility if only the rigid control ur is applied to the system. The
main reason for instability is the divergence of its fast variables.

Fig. 3 illustrates dynamic behavior of the closed-loop system
with the proposed control algorithm. Internal force Q is used
whenever at least one cable becomes slack (or L1i < L2i , i =
1, . . . , 8) to ensure that the cables remain in tension. Although
the system is very flexible, the proposed control algorithm can
suitably stabilize the system. As seen in this figure, position and
orientation outputs track the desired values very well and the
steady state errors are very small, while as it is shown in Fig. 4,
all cables are in tension for the whole maneuver.

To compare the performance of the proposed control algo-
rithm with respect to the traditional (rigid) one, a more realistic
case study with K = 10000 I8×8 is considered. In this simula-
tion, suppose that the home position for the end-effector is zero
and the desired end-effector position and orientation are

xd = 0.2(1 − e−t)

yd = zd = 0

αd = βd = γd = 0.

Fig. 3. Suitable tracking performance of the closed-loop system to smooth
reference trajectories; proposed control algorithm.

Fig. 4. Simulation results showing the cables tension for smooth reference
trajectories.

As illustrated in Fig. 5, the closed-loop system becomes stable
however there exists vibrations in the output, provided that only
the corresponding rigid control effort ur is applied on the sys-
tem. These vibrations limit the absolute accuracy and bandwidth
of the mechanism which are very important in many applica-
tions such as high speed manipulation. However, as illustrated in
Fig. 6, the system becomes stable and the desired trajectories are
well tracked by using the proposed control algorithm. Moreover,
as it is shown in Fig. 7, all cable tensions are positive.

To investigate the effects of internal forces on the per-
formances of the closed–loop system, another simulation is
performed. In this simulation, the following reference trajec-
tories are chosen such that the end-effector approaches near the
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Fig. 5. Tracking performance of the closed-loop system with K = 104 I8×8 ,
if only rigid controller ur is applied.

Fig. 6. Suitable tracking performance of the closed-loop system with K =
104 I8×8 ; proposed control algorithm.

boundary of the wrench-closure workspace

xd = yd = 0

zd = 0.42 − 0.42e−2t

αd = βd = γd = 0.

In this trajectory, the task space variable zP reaches the final
value of 0.42 m, which is near the boundary of the workspace.

Fig. 7. Simulation results showing the cables tension with K = 104 I8×8 ;
proposed control algorithm.

Fig. 8. Tracking performance of the closed-loop system when the end–effector
approaches near the boundary of the workspace.

A well known result in the literature on cable robots reports that a
pose is fully-constrained if and only if the corresponding wrench
matrix W r (in this paper, −J ) is of full rank and there exists a
positive vector t > 0 in the null space of W r [8]. According to
this result, near the boundaries of the wrench-closure workspace,
some elements of the vector t are near zero and thus internal
forces, which are used to avoid cable slackening, may become
very high for a number of cables. Simulation results confirm
this fact, as shown in Figs. 8 and 9, the internal forces in cable
7 and 8 are high in this case.

The internal forces among the cables are increased in the
next simulation by setting the minimum tension force to 100.
As illustrated in Fig. 10, and notice the scale of figures of Eu-
ler angles, it is observed that the deviations from zero desired
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Fig. 9. Cables tension when the end–effector approaches near the boundary
of the workspace.

Fig. 10. Tracking performance of the closed-loop system when the end–
effector approaches near the boundary of the workspace and the internal forces
increase.

value in these variables are lower than that shown in Fig. 8. This
confirms that since the pose is stabilizable the equivalent stiff-
ness has increased. However, as shown in Fig. 10, the error in z
direction is larger than that shown in Fig. 8, and furthermore, the
response is slower than when the minimum tensions is set to 10.
This observation confirms that by increasing the internal forces,
the elastic forces and the overall stiffness of the manipulator are
increased. Therefore, the amplitude of high oscillation may de-
crease while the frequency of them may increase. However, the
proposed control law is still capable to damp the oscillation of
fast variable and stabilize the total motion of the robot, although
the transient of the motion will be changed.

Fig. 11. Cables tension when the end–effector approaches near the boundary
of the workspace and the internal forces increase.

Fig. 12. Suitable tracking performance of the closed-loop system to sinusoid
reference trajectories; proposed control algorithm.

In order to verify the reachable bandwidth of the closed-
loop system, another simulation is performed. The following
reference trajectories are considered for this simulation:

xd = yd = 0.2 sin(2t)

while the other parameters are set to zero. Fig. 12 shows the
reference and actual trajectories of x, y, and deviation of the
other parameters from its zero desired value. It can be seen that
the proposed control scheme is capable of performing such a
maneuver, while the positioning errors remain small. Further-
more, as shown in Fig. 13, it is observed that all tensions in
the cables for this test remain positive as well. The simulation
results illustrate the guaranteed stability of the system with the
proposed controller for the manipulator with elastic cables.
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Fig. 13. Simulation results showing the cables tension for sinusoid reference
trajectories.

V. CONCLUSION

This paper addresses stability analysis and control of fully-
constrained cable driven robots with elastic cables. Inevitable
elasticity of cables has negative impacts on accuracy and band-
width of the cable robot. Thus, to cope with vibrations caused
by cable elasticity, control scheme shall be designed to mini-
mize the effects of elasticity on the closed–loop performance. In
order to accomplish this goal, with assumption of axial spring
model for the cable, dynamics of fully–constrained cable robot
is derived and a composite control algorithm is proposed to
achieve suitable tracking performance. This controller consists
of two major parts: 1) a rigid controller, which is based on a
rigid model of the system; and 2) a corrective term added for vi-
brational damping. Then, the closed loop dynamic equations of
motion are converted to the standard form of singular perturba-
tion formulation. This representation allows the use of singular
perturbation theory in the course of controller design. Based on
these results, two subsystems, namely slow and fast, are sep-
arated and incorporated in to the stability analysis of the total
closed-loop system. Stability of the total closed-loop system is
analyzed through the Lyapunov second method and the stabil-
ity conditions are derived for the closed-loop system. Finally,
the performance of the proposed controller is examined through
simulation studies on a spatial cable robot.
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