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a b s t r a c t

In this paper dynamic analysis and robust PID control of fully-constrained cable driven parallel manipu-
lators are studied in detail. Since in this class of manipulators cables should remain in tension for all
maneuvers in their workspace, feedback control of such robots becomes more challenging than that of
conventional parallel robots. In this paper, structured and unstructured uncertainties in dynamics of
the robot are considered and a robust PID controller is proposed for the cable robot. To ensure that all
cables remain in tension internal force concept is used in the proposed PID control algorithm. Then,
robust stability of the closed-loop system with proposed control algorithm is analyzed through Lyapunov
direct method and it is shown that by suitable selection of the PID controller gains, the closed-loop sys-
tem would be robustly stable. Finally, the effectiveness of the proposed PID algorithm is examined
through experiments on a planar cable driven robot and it is shown that the proposed control structure
is able to provide suitable performance in practice.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cable driven parallel manipulators (CDPMs) are a special class
of parallel robots in which the rigid extensible links are replaced
by actuated cables. In a CDPM the end-effector is connected to
the base by a number of active cables, and by controlling the cables
length the end-effector is moved toward the desired position and
orientation. Based on this structure, cable driven robots have some
advantages compared to that of conventional parallel robots.
Replacing rigid links by cables inaugurates many potential applica-
tions such as very large workspace robots [1,2], high speed manip-
ulation [3], handling of heavy materials [4], cleanup of disaster
areas [5], access to remote locations, and interaction with hazard-
ous environment [6].

CDPMs can be classified into two types, fully-constrained and
under-constrained [5,7,8]. In the fully-constrained type cables
can create any wrench by pulling on the end-effector [9] or equiv-
alently, for a given set of cable lengths the end-effector cannot be
moved in position and orientation [5,10]. To fully constrain a CDPM
the number of cables driving the end-effector must be at least one
greater than the number of robot degree of freedoms. According to
aforementioned facts, a wrench-closure pose of a CDPM is a pose at
which the end-effector is fully-constrained by the cables. Based on
this definition, wrench-closure workspace of a CDPM can be de-
fined as the set of wrench-closured poses [11]. The wrench-closure

workspace only depends on the geometry of the mechanism [8,12].
The cable robots to be discussed in this paper are of fully-con-
strained type and it is assumed that the motion control is in the
wrench-closure workspace.

Replacing rigid links by cables, however, introduces many new
challenges in the study of CDPMs which are quite different from
that of conventional robots. Unlike the rigid links, cables can only
apply tensile forces and therefore they shall be kept in tension in
the whole workspace of the robot and as soon as the cables become
slack, the structure of the cable robot collapses [13]. Due to above
mentioned physical limitation, well-known control theories cannot
be used directly for CDPMs and they must be modified to provide
positive tension for the cables. In the field of parallel robots, there
are many researches on dynamics and control aspects [14–16].
However, in comparison with the large amount of articles pub-
lished on the control of conventional robots only few has been
published on the control of cable driven robots. With assumption
of massless rigid string model for the cables some of the control
schemes which have been used for conventional robots may be
adapted for CDPMs. Lyapunov based control [3,17], computed tor-
que method [17,18], sliding mode [19] and fuzzy plus PI control
[20] are some control algorithms being used in the control of
CDPMs.

Kawamura et al. have proposed a control algorithm in cable
length coordinates using PD controller with gravity compensation
and internal forces [3]. The stability of motion is analysed based on
Lyapunov theorem and vector closure conditions. Alp and Agrawal
used PD control with gravity compensation in task space coordi-
nates and analyzed asymptotic stability based on Lyapunov second
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method [17]. Inverse Dynamics Control (IDC) or computed torque
technique is another method which is used in [17,18]. In this tech-
nique, the actuator forces are calculated to cancel out the effects of
nonlinear dynamical terms on the manipulator. Fang et al. used
nonlinear feedforward control laws in the cable length coordinates
[21]. They proposed optimal tension distribution algorithm to
compensate dynamic errors.

But in these studies, the controller structures are usually com-
plex and robust stability analysis of the closed loop system is not
investigated. As a consequence, real time implementation of these
controllers is not efficient and even may be impractical. Further-
more, exact and accurate information of dynamic equations of
the CDPMs is not accessible in practice and only some partial infor-
mation of the dynamics terms with uncertainties is available. Thus,
investigating robust performance of the mechanism and real time
implementation issue are of particular importance. Only few stud-
ies have been performed systematically relating to these aspects.

The goal of this paper is to develop a theoretical framework for
robust position control of CDPMs based on a simple PID controller
structure. To develop the idea, modeling uncertainties are taken
into account and robust stability of the closed-loop system with
proposed control algorithm is performed. According to the unique
property of cables that can only pull and not push and in order to
ensure that all the cables remain in tension for all maneuvers in
their workspace, a corrective term is used in the proposed control
algorithm. This term which interpreted as internal forces is
obtained based on null space of transposed Jacobian matrix of
the robot. In this paper we assume that the motion is within the
wrench-closure workspace and as a consequence, for all times,
sufficient positive internal forces can be produced such that the
cables are kept in tension. Furthermore, it is assumed that in non-
linear dynamic equations of the cable robot all terms are uncertain
and only some information about their upper bounds is available. A
robust PID controller is proposed to overcome the partly missing
knowledge of the robot and to guarantee boundedness of tracking
errors. Then, robust stability of the system with proposed control
algorithm is analyzed through Lyapunov second method. To
confirm the effectiveness of the proposed control algorithm, the
proposed control structure is implemented on a planar cable
driven robot with four actuated cables as shown in Fig. 1. As shown
in this figure, the fixed attachment points are located on the
vertices of a rectangle to provide a relatively large workspace of
about four square meters.

The paper is organized as follows. In Section 2 kinematics and
dynamics of CDPMs are studied, some properties of dynamic equa-
tions are elaborated and the bounds on dynamical terms are deter-
mined. Section 3 focuses on the control in which the proposed
control scheme is introduced and a method is presented to tune
the control gains based on the bounds of dynamical terms. Then,
robust stability of the closed loop system is analyzed through
Lyapunov direct method. Finally, to show the effectiveness of the
proposed control algorithm experimental results on a planar CDPM
are discussed in Section 4 and the results are summarized in
Section 5.

2. Robot kinematics and dynamics

2.1. Kinematics analysis

Cable driven robot is a closed kinematic chain mechanism
whose end-effector is connected to the base by a number of actu-
ated cables. The kinematics notation of a general cable driven par-
allel robot with n cables is shown in Fig. 2. In this figure li is the
vector along ith cable and the magnitude of li is the same length
as the cable. The length of the ith cable is denoted by li. Si denotes
the unit vector along the ith cable from the base to the end-effec-
tor. Ai and Bi denote the attachment points of the ith cable on the
base and the end-effector, respectively. The positions of the attach-
ment points Ai and Bi are represented by vectors ai; bi, respectively.
Obviously, ai is a constant vector in the base frame Fo and bi is a
constant vector in the end-effector frame Fe. The origin of the
end-effector frame Fe is fixed at a reference point P, the center of
mass of the end-effector which is used to define the position vector
of the end-effector p. Based on the kinematics notation defined in
Fig. 2 the position of the end-effector may be given by:

p ¼ ai þ li � bi ði ¼ 1;2; � � � ;nÞ ð1Þ

where all vectors are represented in the base frame Fo. As a result

l2i ¼ ½p� ai þ bi�T � ½p� ai þ bi� ð2Þ

Differentiate this equation with respect to time, and rewrite it into
matrix form as:

_L ¼ ~Jt ð3Þ

where

~J ¼
S1 S2 � � � Sn

b1 � S1 b2 � S2 � � � bn � Sn

� �T

ð4Þ

in which _L ¼ _l1;
_l2; � � � ; _ln

h iT
denotes the velocity vector in cable

length space and the end-effector twist is denoted by
t ¼ _pT ;xT

� �T ¼ _px; _py; _pz;xx;xy;xz
� �T . The matrix ~J is the Jacobian

matrix corresponding to the general CDPM, and _p denotes the
velocity vector of point P and x denotes the angular velocity of
the end-effector.

2.2. Dynamics analysis

For a cable robot the mass of the cables is extremely small com-
pared to the end-effector and can therefore be neglected. Based on
the dynamics notation in Fig. 3, when all cables are in tension the
equations of motion can be derived using Newton–Euler formula-
tions [22].

mI3�3 03�3

03�3 IP

� �
€p
_x

� �
þ

03�1

x� IPx

� �
þ
�mg
03�1

� �
¼ �~JTs ð5Þ

In this equation, m denotes the mass of the end-effector; IP denotes
the inertia tensor of the end-effector about point P in Fo frame; I3�3

is a 3� 3 identity matrix; g denotes the gravity acceleration vector;
Fig. 1. Prototype of a planar cable driven robot fabricated at K. N. Toosi University
of Technology.
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s ¼ s1; s2; � � � ; sn½ � denotes the vector of cable forces, while scalar si

denotes the tension force of the ith cable.
Consider x ¼ xp; yp; zp;a; b; c

� �T as generalized coordinates vec-
tor, in which h ¼ a; b; c½ �T denotes the vector of a set of Pitch–
Roll–Yaw Euler angles. With this definition the rotation matrix
Fo RFe can be written in terms of Pitch-Roll-Yaw Euler angels as:

Fo RFe ¼
cbcc ccsasb� casc caccsbþ sasc
cbsc caccþ sasbsc �ccsaþ casbsc
�sb cbsa cacb

2
64

3
75 ð6Þ

where s and c represent sin and cos functions, respectively. Further-
more, the angular velocity of the end-effector can be written in the
following form,

x ¼ E _h; _h ¼ _a; _b; _c
h iT

ð7Þ

in which,

E ¼
cosðbÞ cosðcÞ � sinðcÞ 0
cosðbÞ sinðcÞ cosðcÞ 0
� sinðbÞ 0 1

2
64

3
75

Thus, one can write

_L ¼ J _x ð8Þ

in which,

J ¼ ~J
I3�3 03�3

03�3 E

� �
ð9Þ

With this notation, the equations of motion can be written in terms
of x. By some manipulations these equations may be derived as,

MðxÞ€xþ Cðx; _xÞ _xþ GðxÞ ¼ �JTs ð10Þ

where

MðxÞ ¼
mI3�3 03�3

03�3 ET IPE

� �
ð11Þ

Cðx; _xÞ _x ¼
03�1

ETfIP
_E _hþ ðE _hÞ � IPðE _hÞg

� �
ð12Þ

Cðx; _xÞ ¼
03�3 03�3

03�3 ET IP
_E þ ETðE _hÞ�ðIPEÞ

� �
ð13Þ

GðxÞ ¼
�mg
03�1

� �
ð14Þ

in which, the matrix ðE _hÞ� is a skew-symmetric matrix defined by
the components of the angular velocity vector xx;xy , and xz as

ðE _hÞ� ¼
0 �xz xy

xz 0 �xx

�xy xx 0

2
64

3
75 ð15Þ

2.3. Properties of the dynamics formulation

In this section some properties of the robot dynamics formula-
tion are investigated. These properties are used in design of control
law in order to have simpler and more effective representation. In
practice a robot usually experiences friction and disturbance forces
during its maneuver. Therefore, the equations of motion can be
rewritten as

MðxÞ€xþ Cðx; _xÞ _xþ GðxÞ þ Fd _xþ Fsð _xÞ þ Td ¼ �JTs ð16Þ

in which, x denotes the generalized coordinates vector, s denotes
the vector of cable forces, Fd as the coefficient matrix of viscous fric-
tion and Fs as a Coulomb friction term. MðxÞ denotes the mass ma-
trix, Cðx; _xÞ denotes the Coriolis/centripetal matrix, and GðxÞ
denotes the gravity vector which are defined in previous section. J
is the jacobian matrix of the robot and Td denotes disturbance
which may represent any modeling uncertainty. The robot dynam-
ics may be written as

MðxÞ€xþ Nðx; _xÞ ¼ �JTs ð17Þ

where,

Nðx; _xÞ ¼ Cðx; _xÞ _xþ GðxÞ þ Fd _xþ Fsð _xÞ þ Td ð18Þ

2.3.1. Properties of the mass matrix
Using MðxÞ expression, it can be shown that in spite of uncer-

tainty in the parameters MðxÞ is symmetric, positive definite and
bounded from above and below. Boundedness property of MðxÞ
implies that

mI 6MðxÞ 6 mI ð19Þ

or

m 6 kMðxÞk 6 m ð20Þ

where I is the identity matrix and m and m are positive scalars.

2.3.2. Properties of coriolis and centripetal matrix
From (13) it is clear that dependence on x appears only in terms

of sin and cos functions, and therefore Cðx; _xÞ has an upper bound

Fig. 2. Schematic of a general CDRPM denoting kinematics notions.
Fig. 3. Schematic of a general CDRPM denoting dynamics notions.
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that is independent of x. However this bound is a function of _x.
Thus, we can write

kCðx; _xÞk 6 nck _xk ð21Þ

where nc is a known, positive scalar.
Furthermore, it can be shown that the matrix representing the

difference between time derivative of the mass matrix MðxÞ and
Coriolis/centripetal Matrix Cðx; _xÞ is a skew symmetric matrix
[23]. That is,

zTð _MðxÞ � 2Cðx; _xÞÞz ¼ 0 ð22Þ

2.3.3. Properties of gravity vector
According to (14), it is clear that in spite of uncertainty in mass

of the end-effector, gravity vector has an upper bound. Thus

kGðxÞk 6 ng ð23Þ

where ng is a known and positive scalar.

2.3.4. Properties of friction terms
Friction terms are complex, and indeed, may be the most con-

trary terms to describe in the robot dynamics model [24]. Coulomb
friction has a functional dependance on _x, although due to eccen-
tricities in power transmissions and other effects, it may depend
on the position as well that it is ignored in this paper. Frictions
are dissipative and a bound on the friction terms may be assumed
by

kFd _xþ Fsð _xÞk 6 nf 0 þ nf 1k _xk ð24Þ

It is assumed that nf 0 and nf 1 are known and positive constants.

2.3.5. Properties of the disturbance term
As it is mentioned before, disturbance term may be used to rep-

resent any inaccuracy in model dynamics. Therefore, it may be as-
sumed that it is bounded by

kTdk 6 nt ð25Þ

where nt is a known and positive constant.

3. Robust PID control of cable driven robot

In this section considering uncertainties in the robot model a
robust PID controller is proposed based on the bounds of dynami-
cal terms of the equations of motion and then its robust stability is
analyzed with respect to the model uncertainties. In stability anal-
ysis it is assumed that the dynamical terms MðxÞ, Cðx; _xÞ and other
terms are uncertain and there is only some information about their
bounds. Furthermore, it is assumed that Jacobian matrix of the
manipulator (J) cannot be obtained precisely, and therefore we
have to use an inaccurate estimated Jacobian matrix Ĵ. The control
law is designed based on these bounds and assumptions such that
to satisfy some conditions for robust stability.

Recall the dynamic model of system (16) and design a PID con-
troller for �ĴTs by:

f ¼ �ĴTs ¼ KV _eþ KPeþ K I

Z t

0
eðsÞds ¼ Ky ð26Þ

f is the applied wrench on the end-effector by the cables and

e ¼ xd � x
K ¼ K I KP KV½ �

y ¼
R t

0 eTðsÞds eT _eT
h iT

8>><
>>:
in which, xd is the vector of desired trajectory and e denotes the po-
sition and orientation errors. According to (26) the proposed PID

control is formed in task space and thus to implement the controller
it should be mapped onto cable length (joint) space, while satisfies
cables tensionability condition.

As it mentioned earlier, in the fully-constrained type of the
cable robots redundancy in actuation is necessary. Thus, Jacobian
matrix of the mechanism is a non-square matrix and as a result
(26) is an under-determined system of equations and has many
solutions if ĴT Ĵ is invertible. In this case general solution of (26) is,

s ¼ sþ Q : ð27Þ

Here, s denotes the vector of tension in the cables and s is the
minimum solution of (26) derived by using the pseudo-inverse of
inaccurate transposed Jacobian matrix ĴT and is given by

s ¼ �ĴðĴT ĴÞ
�1

KV _eþ KPeþ K I

Z t

0
eðsÞds

� �
ð28Þ

The vector Q which is used in the control effort to ensure that
all cables remain in tension, can be written in the following form

Q ¼ NðĴTÞc ð29Þ

NðĴTÞ is the null space or kenel of matrix ĴT and c is a ðn� rÞ-
dimentional vector, where r is the rank of matrix ĴT and n is the
number of cables. A well known results in the literature on cable
robots report that a pose is fully-constrained if and only if the cor-
responding wrench matrix W r (in this paper �JT ) is of full rank and
there exists a positive vector h > 0 in the null space of W r [9].
According to (29), Q is a positive vector and it spans the null space
of ĴT which satisfies

ĴT Q ¼ 0 ð30Þ

Q can be physically interpreted as the vector of internal forces
and it may increase the stiffness of the system [13]. Based on the
aforementioned discussion, tensionability condition is met using
the vector of internal forces

s ¼ sþ Q P 0 ð31Þ

With this notation, the proposed control scheme is imple-
mented according to Fig. 4. In this paper we assume that the mo-
tion is within the wrench-closure workspace and as a
consequence, positive internal forces can be produced to keep
the cables in tension.

The estimated Jacobian matrix ĴT is assumed to be bounded by
the following upper bounds

kI� JT Ĵyk 6 d1; kJ � Ĵk 6 d2 ð32Þ

in which, Ĵy is the pseudo-inverse of ĴT . Substitute control law s de-
noted by (27) into (16) to get the following relation for the closed-
loop system:

_y ¼ Ay þ BDA ð33Þ

in which,

A ¼
0 I6 0
0 0 I6

�M�1K I �M�1KP �M�1KV

2
64

3
75

B ¼
0
0

M�1

2
64

3
75

ð34Þ

and

DA ¼ Nðx; _xÞ þM€xd þ ðI� JT ĴyÞf þ ðJT � ĴTÞQ

Before stating the stability results, we present the following
lemma.
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Lemma 3.1. Assume that the following properties hold for Lyapunov
function of a dynamic system:

mkXk2
6 VðXÞ 6 mkXk2

;

_VðXÞ 6 kXkð/0 � /1kXk þ /2kXk
2Þ ð35Þ

where m; m and /i ði ¼ 0;1;2Þ are constants. Given that

d ¼ 2/0

/1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

1 � 4/0/2

q
ffiffiffi
m
m

s
ð36Þ

then the system with the initial condition X0 is uniformly ultimately
bounded with respect to Bð0;dÞ, provided that

/1 > 2
ffiffiffiffiffiffiffiffiffiffiffi
/0/1

p
ð37Þ

/2
1 þ /1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

1 � 4/0/2

q
> 2/0/2ð1þ

ffiffiffi
m
m

s
Þ ð38Þ

/1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

1 � 4/0/2

q
> 2/2kX0k

ffiffiffi
m
m

s
ð39Þ

where kX0k denotes the norm of the initial condition.

Proof. Proof can be found in [25] under 3.1 h

3.1. Stability analysis

To analyze the robust stability of the system consider the fol-
lowing Lyapunov function candidate

VðyÞ ¼ yT Py ð40Þ

in which,

P ¼ 1
2

lKP þ lK I þ l2M lKV þ K I þ l2M lM
lKV þ K I þ l2M lKV þ KP þ l2M lM

lM lM M

2
64

3
75

and l is a positive scalar and l < 0:5. Now if we assume diagonal
gain matrices for PID controller,

KP ¼ kPI; KV ¼ kV I; K I ¼ kII

Then we can conclude on the positive definiteness of matrix P
by the following lemma.

Lemma 3.2. Assume the following inequalities hold:

0 < l < 0:5 ð41Þ
s1 ¼ lðkP � kV Þ � ð1� lÞkI � lm > 0 ð42Þ
s2 ¼ kP � kI � lm > 0 ð43Þ

Then P is positive definite and satisfies the following inequality
(Rayleigh–Ritz):

kðPÞkyk2
6 VðyÞ 6 kðPÞkyk2 ð44Þ

in which,

inf ðkðPÞÞ ¼ minf1� 2l
2

m;
s1

2
;
s2

2
g

supðkðPÞÞ ¼ maxf1þ 2l
2

m;
s3

2
;
s4

2
g

and

s3 ¼ lðkP þ kvÞ þ ð1þ lÞkI þ ð1þ 2lÞlm

s4 ¼ lmð1þ 2lÞ þ 2lkV þ kP þ kI

m and m are defined before in (20).

Proof. Proof is based on Gershgorin theorem and is similar to that
in [26] when a1 ¼ a2 ¼ l. h

Now when P is positive definite then we can conclude on the
negative definiteness of the Lyapunov function (40).

_VðyÞ ¼ yTðAT P þ PAþ _PÞy þ 2yT PBDA ¼ �yT Hy

þ 1
2

yT
lI
lI
I

2
4

3
5 _M lI lI I½ �y þ yT

lI
lI
I

2
4

3
5DA

þ 1
2

yT
0 l2M l2M

l2M 2l2M ðl2 þ lÞM
l2M ðl2 þ lÞM 2lM

2
4

3
5y

Referring to (22),

zT _Mz ¼ 2zT Cz

therefore,

_VðyÞ ¼ �yT Hy þ 1
2

yT

lI
lI
I

2
64

3
75ðC þ CTÞ lI lI I½ �y þ yT

lI
lI
I

2
64

3
75DA

þ 1
2

yT

0 l2I l2I
l2I 2l2I ðl2 þ lÞI
l2I ðl2 þ lÞI 2lI

2
64

3
75

M 0 0
0 M 0
0 0 M

2
64

3
75y

where

H ¼
lkII 0 0

0 ðlkP � lkV � kIÞI 0
0 0 kV I

2
64

3
75

Thus,

_VðyÞ 6 �ckyk2 þ k1kCkkyk2 þ l�1k1kykkDAk þ k2mkyk2

in which,

c ¼ minflkI; lðkP � kV Þ � kI; kVg

In spite of uncertainties in dynamic terms, from dynamics for-
mulation properties we may conclude that

m 6M 6 m

kCðx; _xÞk 6 nck _xk ¼ nck _xd � _x� _xdk
6 nck _ek þ nck _xdk 6 b3 þ b4kyk

kGðxÞk 6 ng

kNðx; _xÞk 6 b0 þ b1kyk þ b2kyk
2

kðI� JT ĴyÞf Þk 6 kðI � JT ĴyÞkkf k 6 d1nf kyk

kðJ � ĴÞ
T
Qk 6 nQ

By using these inequalities one can rewrite _VðyÞ as

_VðyÞ 6 kykðn0 � n1kyk þ n2kyk2Þ ð45Þ

Fig. 4. Internal force control structure.
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in which,

n0 ¼ l�1k1b0 þ l�1k1k3mþ l�1k1nQ

n1 ¼ c� k1b3 � k2m� l�1k1b1 � d1nf

n2 ¼ k1b4 þ l�1k1b2

ð46Þ

where

k1 ¼ kmaxðQ 1Þ; k2 ¼ kmaxðQ 2Þ; k3 ¼ supk€xdk
and kmax denotes the maximum eigenvalue of the matrix.
Furthermore,

Q 1 ¼
l2I l2I lI
l2I l2I lI
lI lI I

2
64

3
75

Q 2 ¼
1
2

0 l2I l2I
l2I 2l2I ðl2 þ lÞI
l2I ðl2 þ lÞI 2lI

2
64

3
75

According to the result obtained so far, we can prove the stabil-
ity of the error system based on the following theorem.

Theorem 3.1. The error system (33) is stable of the form of Uniformly
Ultimately Bounded (UUB), if n1 is chosen large enough.

Proof. According to Eqs. (44) and (45) and Lemma (3.1) if the fol-
lowing conditions hold, the system is UUB stable. The conditions
are:
n1 > 2

ffiffiffiffiffiffiffiffiffi
n0n2

p
ð47Þ

n2
1 þ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 � 4n0n2

q
> 2n0n2ð1þ

ffiffiffiffiffiffiffiffiffiffi
kðPÞ
kðPÞ

s
Þ ð48Þ

n1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 � 4n0n2

q
> 2n2ky0k

ffiffiffiffiffiffiffiffiffiffi
kðPÞ
kðPÞ

s
: ð49Þ

These conditions can be simply met by making n1 large enough.
Recall that n1 ¼ c� k1b3 � k2m� l�1k1b1 � d1nf and c ¼ minflkI;

lðkP � kV Þ � kI; kVg, then it can be seen that for any given
0 < l < 0:5, the inequalities (41) and (42) and above mentioned
inequalities can be satisfied by suitable choice of PID control gains. h

Remark 3.1. The inequalities (41)–(43) and (47)–(49) form a con-
structive and conservative algorithm for suitable choice of gains in
PID controller.

Remark 3.2. By choosing PID control gains properly, the stabiliy of
uniformly ultimate boundeness holds in any finite region of the
state space.

This proof reveals an important aspect of the proposed control-
ler law. This aspect that can be concluded from this analysis is ro-
bust stability of the closed-loop system in presence of modeling
uncertainties. Since the unmodeled but bounded dynamics of the
system is systematically encapsulated in the system model (as sta-
ted in Eqs. (20)–(25)), the only influence that this impose on the
stability is the respective bounds on the controller gains depicted

in conditions derived from Lemma 3.2 and Theorem 3.1. At the
next section some experimental results are given to verify the
effectiveness of the proposed control in practice.

4. Experimental results

4.1. Experimental setup

In order to verify the effectiveness of the proposed method, the
robust PID controller is applied to a planar CDPM illustrated in
Fig. 1. This manipulator consists of four cable driven actuators with
three degrees of freedom planar motion, which is under investiga-
tion for high speed and wide workspace applications. The manipu-
lator end-effector has a mass of m ¼ 2:5 kg with a variation of
0:5 kg payload. The actuators are located on the vertices of a rect-
angle with dimension of 2:24 m� 2:1 m. Furthermore, a special
design is used in the cable winches by which the attachment points
of the robot are kept fixed. As it is shown in Fig. 5, this is accom-
plished by moving the cable drum along its axis with a pitch equal
to the cable width. Furthermore, two touching ball bearings are
used to guide the cable toward the end-effector. The block diagram
of control system setup is shown in Fig. 6. The host computer
serves as the user interface and enables the user to edit and modify
control structure and parameters. The target computer is a real
time processing unit in which QNX operating system is used and
performs real time execution of the control algorithm and real time
communication with I/Os. RT-LAB software is used with Simulink
to define models in real time environment. RT-LAB is designed to
automate the execution of control law for the controllers built in
Simulink, in a real time multiprocessing environment [27]. A num-
ber of PCI input/output boards were integrated with the RT-LAB
and Simulink to create a real time control system.

4.2. Cable robot dynamic model

According to (13) and (16) by neglecting friction terms the
equations of motion for planar CDPM can be written in the follow-
ing form

Fig. 5. The system of cable winch.

Fig. 6. Control system setup.
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M€xþ G þ Td ¼ �JTs ð50Þ

where M is the inertia matrix for the mechanism, G is the vector of
gravity terms, Td is the vector of disturbance terms that may be
used to represent any inaccuracy in model dynamics and J denotes
the Jacobian matrix of the robot. According to (11) and (14)

M ¼
m 0 0
0 m 0
0 0 Iz

2
64

3
75 G ¼

0
mg

0

2
64

3
75

All geometrical and mechanical parameters of the cable robot
are given in Tables 1, and 2.

Based on this structure, bounding norms can be written as

kCðx; _xÞk ¼ 0
m ¼ 3; m ¼ 2

Iz ¼ 0:12; Iz ¼ 0:08
ng 6 30

Furthermore, To consider the effects of uncertainties in design
procedure of the controller, it is assumed that nt 6 5. These bounds
are used to synthesize the PID control based on conditions derived
from Lemma 3.2 and Theorem 3.1. According to these results PID
control gains kP ¼ 10;000; kV ¼ 3000; kI ¼ 1000 are chosen to sat-
isfy the stability conditions. These gains are used for the experi-
ments and the proposed control algorithm which uses internal
forces concept is implemented based on (27).

4.3. Control structure

To have a desirable performance in position and orientation
tracking, servo drives should accurately provide the required ten-
sions in the cables according to the proposed control algorithm.
In other words, the applied tensions on the end-effector should
be the outputs of the proposed algorithm according to (27). This
requirement necessitates to have ideal torque sources as the actu-
ators. In practice, however, the actuator drivers suffer from a num-
ber of limitations, and cannot perform as ideal torque sources. In
order to overcome this shortcoming, cascade control scheme is
implemented in the experiments. The cascade control strategy uses
two feedbacks, namely the outer loop and the inner loop as shown
in Fig. 7. In this figure L and F denote vectors of cables length and
cables tension, respectively.

The main goal of the outer loop, which consists of the proposed
PID controller, is to control the position and orientation of the end-
effector. Inputs of this controller are the position and orientation

errors vector and its outputs are the required cable tensions. In
the inner loop, the desired tensions are compared to the actual ten-
sions measured by the load cells located near the end-effector
attachment points. TLL500 from Transducer Techniques is used
to measure the cable tensions in the setup. The proposed controller
is implemented using RT-LAB software. The equations of forward
kinematics are solved by CFSQP1 routine [28] implemented as an
s-function in Simulink to derive Cartesian position x ¼ ðx; y;/Þ from
encoders information L in real time.

4.4. Results

The first set of experiments aims to generate two disjointed lin-
ear motions in translation and rotation. In x direction, it is consid-
ered to move the end-effector from the origin to ½0:25 m;0;0�T . In /
direction it is considered to rotate the end-effector from its central
position to ½0;0; p6 rad�T . Furthermore, a more challenging circular
profile is considered in the next experiments, to track a circular
path of 0.2 m about the central position.

For the first experiment, suppose that the home position for the
end-effector is x ¼ ½0;0;0�T in SI units and the desired end-effector po-
sition and orientation is xd ¼ ½0:25 m;0;0�T . The results of implemen-
tation using proposed PID control (26) in companion to the required Q
which ensures that all the cables are in tension, are given in Fig. 8. The
controller gains are selected in the feasible stability region of the sys-
tem considering modeling uncertainty bounds as it was mentioned in
previous subsection, as kP ¼ 10;000; kV ¼ 3000; kI ¼ 1000. As it is
seen in this figure, position and orientation outputs track the desired
values very well and the steady state errors are very small and in order
of 10�3, while as it is shown in Fig. 9 all cables are in tension for the
whole maneuver. The prescribed uniformly ultimately bounded track-
ing error for the control structure is verified in all three directions in
this experiment.

In the next experiment, suppose that the desired orientation of
the end-effector is xd ¼ ½0;0; p6 rad�T , while the same controller
gains are considered. The experimental results are given in
Fig. 10. As it is observed, tracking performance is very suitable
and the position errors in x and y directions are small and in order
of 10�3. Furthermore, as it is shown in Fig. 11, it is observed that all
tensions in the cables for this test are also positive.

To investigate the robustness of the proposed controller another
test with maximum mass of the end-effector m ¼ 3 kg and
Td ¼ 0:1G is performed. As it is shown in Fig. 12, in spite of uncer-
tainties in the dynamics of the manipulator the desired trajectory
xd ¼ ½0:25 m;0;0�T is suitably tracked and the steady state errors
can be ignored. Comparing Fig. 12 to Fig. 8 shows that the proposed
control algorithm is able to robustly stabilize the system in pres-
ence of modeling uncertainties.

For the circular profile, the end-effector is commanded to move
from origin and track a circular path with radius of 0.2 meter in 10
s, while attempting to maintain / ¼ 0 in all time. The reference
Cartesian positions for this experiment are x ¼ 0:2 cosð0:2ptÞ
usðt � 2:5Þ and y ¼ 0:2 sinð0:2ptÞusðtÞwhere usðtÞ denotes unit step
function. Figs. 13 and 14 show the reference and actual circle and

Table 2
Inertial parameters of the planar cable robot.

Parameter Symbol Value

End-effector mass m 2.5 ± 0.5 kg
End-effector inertia Iz 0.1 ± 0.02 kg m2

Gear ratio N 50
Gravity Acceleration g 9.8 m/s2

Drum radius r 3.5 cm

Table 1
Position of the cable attachment points.

Attachment points on the base in global frame (m) Attachment points on the end-effector in local frame (m)

A1 (�1.12,1.05) B1 (�0.155,0)
A2 (1.12,1.05) B2 (0.155,0)
A3 (�1.12,�1.05) B3 (�0.155,0)
A4 (1.12,�1.05) B4 (0.155,0)

1 C code for Feasible Sequential Quadratic Programming.
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deviation of / from its zero desired value. It can be seen that the
proposed PID control scheme is capable to perform such maneuver,
while the absolute positioning errors are relatively small. As it is
seen in Fig. 14, orientation error in this test is very small and in or-
der of 10�3. There are some potential sources of error in these
experiments which are under current improvement. One issue is
the friction and backlash in the gearing transmission of the actua-
tors and other uncertainties that are not taken into account. Fur-
thermore, as explained before, actual position and orientation of
the end-effector are not directly measured and are computed by
forward kinematics solution. This leads to a finite error in the com-
putations which may lead to the final positioning error of the sys-
tem. Furthermore, the elasticity of the cables is simply neglected in
this analysis, which may lead to positioning errors, especially at
high speed maneuvers.

To verify the repeatability of the cable robot another experiment
is performed. Repeatability of the cable robot is considered by
repeating performance of a circular trajectory of the end-effector.
In this experiment, the trajectory is considered eight turns for a circle
with radius of 0.2 meter, while attempting to maintain zero orienta-

tion. Fig. 15 shows the performance of the robot in this experiment.
As it is seen in this figure the repeatability performance of the robot is
far better than absolute positioning of the end effector.

From the above experimental results, it may be concluded that,
although the proposed controller has a simple structure, it can
achieve a suitable control performance and has high robustness
against uncertainties.

5. Conclusions

This paper addresses the issues of dynamic analysis and control
of fully-constrained cable robots. According to unique property of
cables that can only apply tensile forces, and in order to ensure that
all the cables are in tension for all maneuvers in their workspace, a
corrective term based on null space of the Jacobian matrix is used
in companion with the proposed PID algorithm. In the design of the
proposed PID controller it is assumed that in dynamic equations of
cable robot all terms are uncertain and only some information
about their upper bounds is available. A Robust PID controller is
proposed to overcome partial knowledge of robot, and to
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Fig. 8. Implementation results showing the actual and desired position and orientation of the end-effector for xd ¼ ½0:25 m;0;0�T .

Fig. 7. Cascade control block diagram.
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Fig. 12. Suitable tracking performance for the system with uncertainties.
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guarantee boundedness of tracking errors. Finally, to show the
effectiveness of the proposed algorithm several experiments on a
three degrees of freedom planar cable robot are performed with
different desired trajectories and suitable tracking performance
of the closed loop system is reported.
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Fig. 13. Implementation results showing circular trajectory generation by the end-
effector.
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Fig. 15. Implementation results showing the repeatability of the cable robot.
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