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Abstract—An improved square root unscented fast simultane-
ous localization and mapping (FastSLAM) is proposed in this
paper. The proposed method propagates and updates the square
root of the state covariance directly in Cholesky decomposition
form. Since the choice of the proposal distribution and that of
the resampling method are the most critical issues to ensure the
performance of the algorithm, its optimization is considered by
improving the sampling and resampling steps. For this purpose,
particle swarm optimization (PSO) is used to optimize the pro-
posal distribution. PSO causes the particle set to tend to the high
probability region of the posterior before the weights are up-
dated; thereby, the impoverishment of particles can be overcome.
Moreover, a new resampling algorithm is presented to improve
the resampling step. The new resampling algorithm can conquer
the defects of the resampling algorithm and solve the degeneracy
and sample impoverishment problem simultaneously. Compared
to unscented FastSLAM (UFastSLAM), the proposed algorithm
can maintain the diversity of particles and consequently avoid
inconsistency for longer time periods, and furthermore, it can
improve the estimation accuracy compared to UFastSLAM. These
advantages are verified by simulations and experimental tests for
benchmark environments.

Index Terms—Particle swarm optimization (PSO), simulta-
neous localization and mapping (SLAM), square root unscented
Kalman filter (SRUKF), unscented FastSLAM (UFastSLAM).

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is
a key issue to achieve intelligent navigation for mo-

bile robots. Two main computational solutions to SLAM are
the extended Kalman filter based SLAM (EKF-SLAM) and
FastSLAM [1]. However, EKF-SLAM has two major problems,
namely, the computational complexity and data association
[2], [3]. The FastSLAM approach has been proposed as an
alternative approach to solve the aforementioned problem. In
FastSLAM, the particle filter is used for the mobile robot
position estimation, and EKF is used for the feature location
estimation [4], [5].

There have been many investigations on FastSLAM [6], [7].
However, FastSLAM also suffers from a number of drawbacks,
namely, the problem caused by the derivation of the Jacobian
matrices and the linear approximations of the nonlinear func-
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tions [8], [9]. To solve these problems, many authors have
proposed UFastSLAM [8]–[11]. UFastSLAM overcomes the
drawbacks caused by linearization in the FastSLAM frame-
work. In UFastSLAM, the linearization process with Jacobian
calculations is removed by applying the unscented transforma-
tion (UT) [12], [13]. In [11], a full version of the UFastSLAM
algorithm is presented. In this approach, unscented Kalman
filter (UKF) is used to update the mean and covariance of
the feature and to initialize new features. Also, UT is used
in the prediction step of the vehicle state, and the unscented
particle filter provides a better proposal distribution without the
accumulation of linearization errors and without the need to cal-
culate the Jacobian matrices in the measurement updates [11].

As the vehicle and the feature states are estimated without
accumulating linearization errors in UFastSLAM, the accu-
racy of the state estimation has been significantly improved.
However, one of the most costly operations in UFastSLAM
is the calculation of the square root of the state variable co-
variance matrix at each time. From the consistency viewpoint,
this approach is performing more consistently for longer time
periods compared to the other methods. However, since, in
UFastSLAM, residual systematic resampling (RSR) is used as
the resampling method, this usually causes the loss of diversity
of particles and consequently threatens the consistency. To
overcome these problems, in this paper, a new machinery called
square root unscented FastSLAM (SRUFastSLAM) is proposed
in order to reduce the computational cost and increase accuracy
and consistency. SRUFastSLAM uses the square root unscented
Kalman filter (SRUKF) to generate the importance density,
initialization, and estimation of features. Aside from the merit
of reducing the computational cost, SRUFastSLAM has some
other advantages such as increasing consistency which leads
to more numerical stability and better performance. This is
mainly because of the fact that all resulting covariance matrices
are guaranteed to remain positive semidefinite. Furthermore,
as the optimal choice of the proposal distribution and that of
the resampling method are crucial to improve accuracy and
consistency, SRUFastSLAM is optimized by improving the
sampling and resampling steps.

To optimize the sampling step, particle swarm optimization
(PSO) has been merged into the importance sampling step
of SRUFastSLAM. By this means, the particle set effectively
tends to the high probability posterior region before resampling,
and therefore, the distribution of the samples is significantly
improved.

In order to reduce the impact of resampling on the accuracy
and consistency of SRUFastSLAM, a new resampling approach
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is also proposed. The new resampling algorithm can maintain
the diversity of particles and ensure that the resampled particles
asymptotically approximate the samples from the posterior
probability density function (pdf) of the true state. The pro-
posed resampling method is computationally inexpensive since
it is conducted only on a part of the particles. Simulation results
show that the improvement of the proposed algorithm over the
resampling algorithm is manifested in three aspects: increased
estimation accuracy, reduced number of particles required to
achieve the same level of accuracy, and maintained diversity of
particles.

The rest of this paper is organized as follows. In Section II,
the SLAM problem and the required background are reviewed.
The SRUFastSLAM framework and its theoretical principles
are presented in Section III. The improved SRUFastSLAM is
presented in Section IV. In Section V, the results are shown,
and the concluding remarks are given in Section VI.

II. BACKGROUND

A. SLAM Problem

From a probabilistic point of view, the SLAM problem
involves the estimation of the posterior over the robot path
together with the map [5]

p(st,Θ|zt, ut, nt) (1)

in which st = {s1, . . . , st} is the robot path, st is the robot
pose at time t, Θ is the map, and zt = {z1, . . . , zt} and ut =
{u1, . . . , ut} are the measurements and controls up to time t,
respectively. The map Θ consists of a collection of features,
each of which will be denoted by θn, and the total number
of stationary features will be denoted by N . The FastSLAM
algorithm is developed based on the following factorization [5]:

p(st,Θ|zt, ut, nt) = p(st|zt, ut, nt)
N∏

n=1

p(θn|st, zt, ut, nt)

(2)

where nt = {n1, . . . , nt} is the data association, in which each
nt specifies the identity of the landmark observed at time t.
Each particle m in FastSLAM is denoted by [5]

S
[m]
t =

{
st,[m], μ

[m]
1,t ,Σ

[m]
1,t , . . . , μ

[m]
N,t,Σ

[m]
N,t

}
(3)

where [m] indicates the index of the particle, st,[m] is the m-th
particle’s path estimate, and μ

[m]
N,t and Σ

[m]
N,t are the mean and the

covariance of the Gaussian distribution representing the N -th
feature location conditioned on the robot path. In FastSLAM,
the robot pose st is sampled as follows [5]:

st ∼ q(st|st−1,[m], zt, ut, nt) (4)

and the importance weight w[m]
t is given by

w
[m]
t =

target distribution
proposal distribution

=
p(st,[m]|zt, ut, nt)

q(st−1,[m]|zt−1, ut−1, nt−1)q(st|st−1,[m], zt, ut, nt)
.

(5)

In the final step of FastSLAM, particles are resampled ac-
cording to their weights.

B. PSO

PSO is a population-based search algorithm based on the
simulation of the social behavior of birds within a flock [14].
PSO is initialized with a group of random particles and then
searches for optima by updating generations. Suppose that the
search space dimension is D and the number of particles is NP ,
the position and velocity of the ith particle are represented by
xi = [xi1, . . . , xiD] and vi = [vi1, . . . , viD], respectively. Let
Pbi = [pi1, . . . , PiD] denote the best position that particle i has
achieved so far, and Pg denote the best position of Pbi for any
i = 1, . . . , NP . The PSO algorithm may be performed by the
following formulations [14]:

vi(k) =wvi(k − 1) + c1r1 (Pbi − xi(k − 1))

+ c2r2 (Pg − xi(k − 1)) (6)

xi(k) =xi(k − 1) + vi(k) (7)

where k represents the iteration number and c1 and c2 are
some positive coefficients. Usually, c1 = c2 = 2, r1 and r2 are
random numbers in the interval (0, 1), and w is the inertial
weight. Note that PSO has strong global search ability if large
inertial weight w is used.

III. SRUFASTSLAM

SRUFastSLAM is based on the UT. The proposed algorithm
consists of the sampling strategy, feature update, calculation of
the importance weight, and resampling.

A. Sampling Strategy

The choice of proposal distributions is very important in the
design of FastSLAM. The most common strategy is to sample
the transition motion (or prior distribution) [5]. However, this
strategy may fail when the prior distribution is much broader
than the likelihood or most measurements that appear in the
tail of the proposal distribution. Several researchers have intro-
duced the most current observations into the proposal distribu-
tion [5]. To overcome the drawbacks caused by linearization,
UKF is used in the design of the proposal distribution in
UFastSLAM [10], [11]. However, the calculation of the square
root of the state variable covariance matrix at each time is one
of the computationally intensive operations in UFastSLAM.

To reduce computational cost and to increase consistency,
in SRUFastSLAM, the mean and covariance of the vehicle are
computed by applying the square root unscented particle filter
(SRUPF) technique [15]. In this algorithm, poses are sampled
from a proposal distribution as (4). SRUFastSLAM generates
posterior probability with SRUPF. In this approach, each parti-
cle is updated at the measurement time using SRUKF. The first
step for implementing SRUFastSLAM is to form an augmented
state and augmented covariance matrix by appending the mean
and covariance of the process noise vector. Assuming that the
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mean of process noise is zero, then the mean and covariance of
the augmented state are respectively given as follows:

s
a[m]
t−1|t−1 =

[
s
[m]
t−1|t−1
0

]
, P

a[m]
t−1|t−1 =

[
P

[m]
t−1|t−1 0
0 Qt

]
(8)

where s
a[m]
t−1|t−1 is the augmented vector, Qt is the process noise

covariance, and s
[m]
t−1|t−1 and P

[m]
t−1|t−1 are the previous mean and

covariance of the robot pose, respectively. Use the Cholesky
factor of P a[m]

t−1|t−1 as follows:

S
a[m]
t−1|t−1 = chol

[
P

[m]
t−1|t−1 0
0 Qt

]
. (9)

Since Cholesky factorization decomposes a positive-definite
matrix P

a[m]
t−1|t−1 into the product of an upper triangular matrix

and its transpose, we can write P a[m]
t−1|t−1 = S

a[m]
t−1|t−1S

a[m]′

t−1|t−1. To

predict over a time step t− 1 to t, the first sigma point δa[[0]][m]
t−1|t−1

is defined to be equal to the current state, and further 2n sigma
points are determined by adding and subtracting the ith column
of S

a[m]
t−1|t−1 to the current mean. Therefore, a symmetric set

of 2n+ 1 sigma points δ
a[i][m]
t−1|t−1 for the augmented state will

appear as follows:

δ
a[0][m]
t−1|t−1 = s

a[m]
t−1|t−1

δ
a[i][m]
t−1|t−1 = s

a[m]
t−1|t−1 + γ

(
S
a[m]
t−1|t−1

)
i
, i = 1, . . . n

δ
a[i][m]
t−1|t−1 = s

a[m]
t−1|t−1 − γ

(
S
a[m]
t−1|t−1

)
i
, i = n+ 1, . . . , 2n

(10)

where γ is γ =
√
n+ λ in which λ is defined as λ = n(α2 − 1)

and (St−1|t−t)i is the ith column of Sa[m]
t−1|t−1. The constant α

controls the size of the sigma-point distribution, and it is usually
set to a small positive value (e.g, 10−14 ≤ α ≤ 1). Each sigma
point δa[i][m]

t−1|t−1 contains the state and control noise components
given by

δ
a[i][m]
t−1|t−1 =

[
δ
[i][m]
t−1|−1 δ

u[i][m]
t

]T
. (11)

The set of sigma points δ
a[i][m]
t−1|t−1 is transformed through the

motion model as

s
[i][m]
t|t−1 = fv

(
δ
[i][m]
t−1|t−1, ut + δ

u[i][m]
t

)
. (12)

Here, fv is the nonlinear motion function and s̄
[i][m]
t|t−1 is the trans-

formed sigma point of the vehicle state. The predicted mean is
calculated from the transformed sigma points as follows:

s
[m]
t|t−1 =

2n∑
i=0

ω[i]
ms

[i][m]
t|t−1 (13)

where a weight ω[i]
m is calculated as follows:

ω[0]
m =

λ

(n+ λ)
, ω[i]

m =
λ

2(n+ λ)
, i = 1, . . . , 2n. (14)

Calculating the Cholesky factorization is computationally in-
tensive, and it involves the computation of a set of weighted
deviations as

ei =

√
ω
[0]
c

(
s
[i][m]
t|t−1 − s

[m]
t|t−1

)
, i = 1, . . . , 2n

e0 =

√
ω
[1]
c

(
s
[0][m]
t|t−1 − s

[m]
t|t−1

)
(15)

and performing QR decomposition on the matrix B =
[e1 . . . e2n] as follows:

S
[m]
t|t−1 = qr

{[√
ω
[1]
c

(
s
[1:2n][m]
t|t−1 − s

[m]
t|t−1

)]}
(16)

where weight ω[i]
c is calculated as follows:

ω[0]
c =

λ

(n+ λ)
+ (1− α2 + β), ω[i]

c

=
λ

2(n+ λ)
, i = 1, . . . , 2n. (17)

The parameter β is a nonnegative scalar which can be used
to incorporate the prior knowledge of the distribution. For any
Gaussian distribution, β = 2 is optimal. The predicted factor
S
[m]
t|t−1 is then found using the Cholesky updating as

S
[m]
t|t−1 = cholupdate

{
S
[m]
t|t−1,

(
s
[0][m]
t|t−1 − s

[m]
t|t−1

)
, ω[0]

c

}
. (18)

The function cholupdate efficiently transforms the Cholesky
decomposition of a matrix A into the Cholesky decomposition
of the matrix A+XXT , where X is a column vector. When
some features are observed, data association provides their
identities, and hence, predicted measurement z̄[m]

t is calculated
as follows:

ζ
[i][m]
t =h

(
s
[i][m]
t|t−1 , μ

[m]
n,t−1

)

z
[m]
t =

2n∑
i=0

w[i]
mζ

[i][m]
t

Szt = qr
{[

w[1]
c

(
ζ
[1:2n][m]
t − z

[m]
t

)
,
√

Rt

]}

Szt = cholupdate
{
Szt ,

(
ζ
[0][m]
t − z

[m]
t

)
, w[0]

c

}
. (19)

Here, Szt is square and triangular, and h(.) is the observation
model. In order to determine how much the predicted mean
and square root of the covariance are adjusted based on the
measurements, the gain matrix K

[m]
t is calculated

K
[m]
t =

(
P

[m]
δυ /ST

zk

)/
Szk (20)

where cross-covariance P
[m]
δυ is as follows:

P
[m]
δυ =

2n∑
i=0

ω[i]
c

(
s
[i][m]
t|t−1 − s

[m]
t|t−1

) (
ζ
[i][m]
t − z

[m]
t

)T

. (21)
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Finally, the state mean s
[m]
t|t and square root of the covariance

matrix S
[m]
t|t are updated as

s
[m]
t|t = s

[m]
t|t−1 +K

[m]
t (zt − z

[m]
t ) (22)

U =K
[m]
t Szt

S
[m]
t|t = cholupdate

{
S
[m]
t|t−1, U,−1

}
. (23)

From the Gaussian distribution generated by the estimated
mean and covariance of the vehicle, the state of each particle
is sampled as

s
[m]
t ∼ N

(
st; s

[m]
t|t , P

[m]
t|t

)
(24)

where the covariance matrix of the robot pose is as follows:

P
[m]
t|t =

(
S
[m]
t|t

)T

S
[m]
t|t . (25)

B. Feature Update

Feature update is applied if a landmarkn is observed at time t.
If the feature is not observed (n �= nt), the posterior landmark
remains unchanged. For the observed feature (n = nt), the
update is specified through the following equation:

p(θnt
|st,[m]), nt, zt)

= η p(zt|θnt
, st,[m], nt, zt−1)︸ ︷︷ ︸

∼N
(
zt,h

(
θnt ,s

[m]

t|t

)
,Rt

) p(θnt
|st,[m], nt, zt−1)︸ ︷︷ ︸

∼N
(
θnt ,μ

[m]
n,t−1

,Ω
[m]T
n,t−1

Ω
[m]
n,t−1

)
(26)

where Rt is the measurement noise covariance. The proba-
bility p(θnt

|st,[m], nt, zt−1) at time t− 1 is represented by a

Gaussian distribution with mean μ
[m]
n,t− and covariance

Σ
[m]
nt,t−1 = (Ω

[m]
nt,t−1)

TΩ
[m]
nt,t−1 in which Ω

[m]
nt,t−1 is the feature

square root of the covariance matrix. In SRUFastSLAM, UT is
used to approximate h(θnt

, s
[m]
t ). For this purpose, the sigma

points are defined using the previously registered mean and
square root of the covariance matrix as follows:

χ[0][m] =μ
[m]
nt,t−1

χ[i][m] =μ
[m]
nt,t−1 + γ

(
Ω

[m]
nt,t−1

)
i
, i = 1, . . . , n

χ[i][m] =μ
[m]
nt,t−1 −

(
γΩ

[m]
nt,t−1

)
i
i = n+ 1, . . . , 2n

Σ
[m]
nt,t−1 =

(
Ω

[m]
nt,t−1

)T

Ω
[m]
nt,t−1. (27)

The sigma points are propagated through the measurement
model as follows:

Z
[i][m]
t =h

(
χ[i][m], s

[m]
t|t

)
, i = 0, . . . , 2n

ẑ
[m]
t =

2n∑
i=0

ω[i]
g Z

[i][m]
t

S
[m]
ty = qr

{[
ω[1]
c

(
Z

[i][m]
t − ẑ

[m]
t

)
,
√

Rt

]}
S
[m]
ty = cholupdate

{
S
[m]
ty ,

(
Z

[i][m]
t − ẑ

[m]
t

)
, ω[0]

c

}
(28)

where s
[m]
t|t is the current vehicle state of the mth particle. The

cross-covariance between the state and observation Σ̄
[m]
tχZ and

the gain of filter K̄ [m]
t are determined as follows:

Σ
[m]
tχZ =

2n∑
i=0

ω[i]
c

(
χ[i][m] − μ

[m]
nt,t−1

) (
Z

[i][m]
t − ẑ

[m]
t

)T

K
[m]
t =

(
Σ

[m]
tχZ/

(
S
[m]
ty

)T
)
/S

[m]
ty . (29)

Using this gain, the mean μ
[m]
nt,t

and the square root of covari-

ance Ω
[m]
n,t of the nth feature are updated as

μ
[m]
nt,t

=μ
[m]
nt,t−1 +K

[m]
t

(
zt − ẑ

[m]
t

)

U =K
[m]
t Σ

[m]
tχZ

Ω
[m]
n,t = cholupdate

{
Ω

[m]
n,t−1, U,−1

}
. (30)

C. Calculating Importance Weight and Resampling

The importance weight is determined as follows:

w
[m]
t = w

[m]
t−1

p
(
zt|s[m]

t

)
p

(
s
[m]
t |s[m]

t−1, ut

)
N

(
st|t; s

[m]
t|t , P

[m]
t|t

) . (31)

Since the variance of the importance weights increases over
time, particles are resampled according to the weights [16].

IV. OPTIMIZATION OF SRUFASTSLAM

In this section, the optimization of SRUFastSLAM is consid-
ered. As the performance of SRUFastSLAM seriously depends
on the sampling strategy and resampling method, this optimiza-
tion is considered with improving sampling and resampling
steps.

A. Improved Sampling of SRUFastSLAM

To obtain better importance sampling distribution functions,
in SRUFastSLAM, the proposal distribution is generated by
SRUPF. It is valid when the posterior distribution can be closely
approximated by a Gaussian distribution. However, the number
of sigma points is small and may not represent complicated
distributions adequately. To solve this problem, PSO is merged
in SRUPF to move particles toward a region of the state space
where a posterior probability density is significant before sam-
pling. For this purpose, we consider the maximization posterior
probability density as the cost function

argmax
s

p(st|zt, ut, nt). (32)

On the other hand, by applying Bayes, the posterior over the
robot path is given by

p(st|zt, ut, nt) = ηp(zt|st, zt−1, ut, nt)

p(st|st−1, zt−1, ut, nt)p(st−1|zt−1, ut−1, nt−1) (33)
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where η is a normalizing constant. As a result, the cost function
is as follows:

argmax
s

p(zt|st, zt−1, ut, nt)p(st|st−1, zt−1, ut, nt)

p(st−1|zt−1, ut−1, nt−1). (34)

This cost function is equal to

argmax
s

t∏
i=1

p(zi|si, zi−1, ui, ni)

t∏
i=1

p(si|si−1, zi−1, ui, ni)p0

(35)

where p0 is as

p0 = p(st−1|zt−1, ut−1, nt−1). (36)

Therefore, the problem of moving particles toward a region of
high probability can be easily stated as an optimization problem
in the presence of constraints in terms of the dynamical and
observation models as follows:

argmax
s

t∏
i=1

p(zi|si, zi−1, ui, ni)
t∏

i=1

p(si|si−1, zi−1, ui, ni)p0

(37)

subject to

st = f(st−1, ut) + wt

zt =h(st) + vt. (38)

The objective function (37) can be reformulated in an equiva-
lent and convenient form by taking logarithms as

t∑
i=1

log p(zi|si, zi−1, ui, ni) +

t∑
i=1

log p(si|si−1, zi−1, ui, ni)

+ log p0 =

t∑
i=1

log p(zi|si) +
t∑

i=1

log p(si|si−1, ui−1)+log p0.

(39)

If we consider the objective function as f0(st), it can be
expressed recursively as follows:

fo(st) = log p(zt|st) + log p(st|st−1, ut−1) + fo(st−1) (40)

where f0(st−1) is as

fo(st−1)=

t−1∑
i=1

log p(zi|si) +
t−1∑
i=1

log p(si|si−1, ui−1)+log p0.

(41)

The expression (40) contains the state transition probability
density pωt

(si|si−1, ui−1) and the observation probability den-
sity pvt

(zi|xi) derived from the robot motion model and the
observation model, respectively. By substituting the expres-
sions of pvt

and pωt
into the objective function, the problem

of moving the particles to a high probability area can be
reformulated as follows:

Min (log pνt
(zt|st) + pωt

(st|st−1, ut−1)) (42)

subject to

st = f(st−1, ut) + wt

zt =h(st) + vt. (43)

In general, this problem has no explicit analytical solution
for nonlinear models. To solve this optimization problem, in
this paper, an evolutionary computation procedure is used.
Although there are many different types of evolutionary algo-
rithms, we use PSO to solve the problem. This is because PSO
finds the solution much faster than most of other evolutionary
algorithms. In addition, it is easily implemented and has few
parameter adjustments. To solve the optimization problem (42)
and (43), we consider the fitness function of PSO as follows:

Fitness = log pνt
(zt|st) + pωt

(st|st−1, ut−1). (44)

The particles should be moved such that the fitness function
is optimal. This is done by tuning the position and velocity
of the PSO algorithm. The standard PSO algorithm has some
parameters that need to be determined before use. Most ap-
proaches use a uniform probability distribution to generate
random numbers. However, it is difficult to obtain the fine
tuning of the solution and escape from local minima using a
uniform distribution. Hence, we use velocity updates based on
the Gaussian distribution [17]. In this approach, there is no need
to specify the coefficients c1 and c2. Furthermore, the inertial
weight ω is set to zero, and an upper bound for the maximum
velocity vmax is not necessary anymore [17]. Thus, the only
parameter to be specified is the number of particles. The PSO
algorithm updates the velocity and position of each particle as
follows [17]:

s
[m]
t = s

[m]
t−1 + v

[m]
t (45)

v
[m]
t = |randn|

(
Ppbest − s

[m]
t−1

)
+ |randn|

(
Pgbest − s

[m]
t−1

)
.

(46)

PSO moves all particles toward the particle with the best fitness.
Because PSO is an iteration algorithm in search space, it will
cost much time. However, in our algorithm, PSO does not
need to iterate so many times. This is because the searching
space is a small area around the position at time step t− 1
and initialized particles are also around the true position. The
experiments demonstrate that five times is appropriate. At the
end of iterations, Pgbest and Ppbest are calculated, and the
particles are distributed according to the values of Pgbest and
Ppbest. With this set of particles, the sampling process will be
conducted on the basis of the proposal distribution. Fig. 1 shows
the loop of sampling in the proposed method.

B. Improved Resampling of SRUFastSLAM

In general, a property of particle filters and, consequently,
FastSLAM algorithms is that the variance of sample weights
increases over time.

To solve this problem, resampling is performed. Although
the resampling step reduces the effects of the degeneracy
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Fig. 1. Loop of sampling in the proposed method.

problem, it introduces other practical problems in the Fast-
SLAM algorithm. It can delete good samples from the sample
set, and in the worst case, the filter diverges. In addition,
whenever resampling is performed in FastSLAM, an entire pose
history and map hypothesis is lost forever. This leads to a loss
of diversity among the particles representing past poses and
consequently erodes the statistics of the landmark estimates
conditioned on these past poses. As time goes by, the number
of distinct particles decreases, and consequently, the covariance
of samples will decrease. This will eventually lead to filter
inconsistency.

To overcome this problem, it is important to determine when
and how the resampling must be performed. Grisetti et al.
introduced the effective number of particles Neff to estimate
how well the current particle set represents the true posterior
[16]. The resampling process is operated whenever Neff is
below a predefined threshold Nif . In this paper, we use this
criterion for resampling. In the field of particle filters, many
resampling algorithms have been researched for performing
resampling. The most representative resampling algorithms are
multinomial resampling [18], stratified resampling [19], [20],
systematic resampling [18], [20], and the residual resampling
[18], [19], [21]. In FastSLAM algorithms, the usual resampling
technique is the RSR technique which uses weight strata to
decide how many copies of each particle should be made. This
technique is used in many research works [10], [11]. Although
the RSR technique has a fine performance, it causes the loss
of particle diversity. In order to restrain the loss of diversity,
the adaptive partial rank-based resampling (APRR) algorithm
is introduced.

1) APRR: The idea of APRR is to perform resampling only
on particles with large weights and replace them with particles
with negligible weights. Particles with moderate weights are not
resampled. The APRR methods consist of two steps: 1) The
particles are classified as moderate, negligible, or dominating,
and 2) the number of times that each particle is replicated is
determined.

TABLE I
RANK EACH PARTICLE

In the first step of APRR, the weight of each particle is
compared with high and low thresholds ωh and ωl, respec-
tively. Particles with weights between these two thresholds are
considered moderate and are not resampled. Let the number
of particles with weights greater than ωh and less than ωl be
denoted by Mh and Ml, respectively. A sum of the weights
of the particles that are resampled is computed using Shl =∑Mh+Ml

i=1 w
[i]
t , where i is chosen so that the condition w

[i]
t >

wh or w[i]
t < wl is satisfied.

In the second step of APRR, the ranks of particles whose
weights satisfy w

[i]
t > wh or w[i]

t < wl are determined by their
weights. For example, suppose that, in a population of size 3,
the weight values of particles are {0.05, 0.5, 0.3}. The ranks of
particles are determined as in Table I.

In this case, the particle with the highest weight value has
rank 1, and the ranks of other particles are also determined
according to their weights. Then, APRR gives each particle a
selection probability. In a population size of np, if the rank of
the least fit individual is defined as zero and that of the best fit
individual is defined as np − 1, then the selection probability
for individual i is defined as follows:

p(i) =
αrank + [rank(i)/(np − 1)] (βrank − αrank)

np
(47)

where αrank is the number of offsprings allocated to the worst
individual and βrank is the expected number of offsprings to
be allocated to the best individual during each generation. It
is shown that, when the number of particles is fixed, αrank =
2− βrank and 1 ≤ βrank ≤ 2. With this selection probability,
one of the stratified resampling algorithms is conducted only
on particles whose weights satisfy the threshold constraints.
Systematic resampling is used since it is the fastest resampling
algorithm for computer simulations.

As a result, in comparison with RSR, the proposed resam-
pling method is different in structure and characteristics such
as speed and diversity that is very important in computational
complexity and consistency. In RSR, resampling is conducted
on all particles, while APRR resampling is conducted on a part
of the particles. In RSR, resampling is based on weights of
particles, while in APRR, resampling is based on the selection
probability. Moreover, the APRR algorithm can control the
thresholds for keeping a degree of particle diversity or reducing
the degeneracy. These characteristics of APRR will cause the
resampling to be conducted faster as it is conducted on a smaller
number of particles.

C. Computational Complexity

The computational complexity of the proposed algorithm is
related to the sampling strategy, feature estimation, calculation
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TABLE II
COMPARISON OF COMPLEXITY COMPUTATION

TABLE III
COMPUTATIONAL COST OF ALGORITHMS

of the importance weight, and resampling. As the computa-
tional complexity of SRUKF is equivalent to UKF and EKF
[15], the number of particles M̄ , the number of features N , and
the number of iterations in PSO k determine the complexity
of the proposed algorithm. In the proposed algorithm, the
complexity of moving particles toward the high probability
region using PSO is O(KM̄) that can be approximated to OM̄
as PSO does not need to iterate so many times, as mentioned
previously. In addition, computing the proposal distribution,
calculating the importance weights, and updating the landmarks
have a complexity of O(M̄). Also, the complexity of resam-
pling is O((Ml +Mh)N) or O((Ml +Mh) logN) when the
landmarks are represented by a binary tree. Table II depicts
the complexity of the individual operations in algorithms where
M is the number of particles in FastSLAM and UFastSLAM.
As it can be seen from Table II, the proposed algorithm has
an additional operation (i.e., moving particles toward the high
probability region). However, in the proposed algorithm, re-
sampling is conducted on a part of the particles (i.e., Ml +
Mh < M ), and as a result, the complexity of resampling is
less than that of UFastSLAM and FastSLAM. Moreover, the
proposed method requires fewer particles to obtain the same
estimation accuracy compared to UFastSLAM and FastSLAM
(i.e., M̄ < M ). For example, as will be shown in Table III in
Section V, the estimation accuracy of the proposed method
with 10 particles (i.e., M̄ = 10) is better than that of UFast-
SLAM with 30 particles (i.e., M = 30). This means that the
complexity of other operators is less than that of UFastSLAM
and FastSLAM. Therefore, considering the complexity of the
additional operator, the complexity of the proposed algorithm
is almost the same as those of UFastSLAM and FastSLAM.

V. RESULTS

The proposed algorithm is evaluated on simulated data and
real world data sets. The simulated data allow comparison with

Fig. 2. Experiment environment.

ground truth, while the real world data prove the applicability
of the proposed approach to practical problems.

A. Simulation Results

Simulation has been carried out to evaluate the performance
of the proposed approach in comparison with UFastSLAM for
the benchmark environment, available in [22]. Fig. 2 shows
the robot trajectory and landmark location. The star points
(∗) depict the location of the landmarks that are known and
stationary in the environment. The robot moves at a speed of
3 m/s and with a maximum steering angle of 30◦. The robot
also has a 4-m wheel base and is equipped with a range-
bearing sensor with a maximum range of 20 m and a 180◦

frontal field of view. The control noise is (0.3 m/s, 3◦), and the
measurement noise is (0.1, 1◦). The control frequency is 40 Hz,
and observation scans are obtained at 5 Hz.

1) Performance Comparison of Proposed Method and
UFastSLAM: At first, we compare the performance of the
proposed algorithm with that of UFastSLAM while the mea-
surement noise is (σr = 0.1, σθ = 1) and the control noise is
(σr = 0.3, σθ = 3). In this experiment, the number of particles
is 30. Also, the results are obtained over 30 Monte Carlo runs.

Fig. 3 shows the estimated robot path and estimated land-
mark with the true robot path and true landmarks. The root-
mean-square error (RMSE) of the position robot over time is
shown in Fig. 4, and its mean and variance are shown in Fig. 5.
Each bar in Fig. 5 represents the mean and variance of RMSE
for the robot position. It is observed that the performance of
the proposed method is better than that of UFastSLAM. This is
because sampling and resampling are improved in the proposed
method. In the proposed method, PSO merges into the proposal
distribution to improve the distribution samples and speed up
the convergence of the particle set. Therefore, the effect of each
particle is enhanced, and the diversity is improved. On the other
hand, SRUKF is able to estimate the mean and the covariance to
a higher order of accuracy and consistency than UKF. Finally,
the new resampling method increases the diversity of particles
and thus increases the accuracy and consistency of estimation.

Now, the performances of the two algorithms are compared
while the level of measurement noise is changed. The mean
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Fig. 3. Estimated robot path and estimated landmark with true robot path
and true landmarks. The “. . .” is the estimated path, and the “o” denotes the
estimated landmark positions: (a) UFastSLAM and (b) proposed method.

Fig. 4. RMSE with respect to time.

and variance of RMSE are calculated over ten independent
runs for each algorithm. The results of this experiment are
shown in Fig. 6. As the measurement noise is increased, the
RMSE of the proposed method and the UFastSLAM algorithm
increases. However, the mean and variance of RMSE for the
proposed method are smaller than those of UFastSLAM. Thus,
the proposed method is more robust than UFastSLAM while
varying the level of measurement.

Next, the proposed algorithm is compared with UFastSLAM
with various numbers of particles. Fig. 7 shows the results for

Fig. 5. RMSE for the robot position.

Fig. 6. Performances of algorithms with varying levels of measurement noise.
Measurement noises of each experiment are as follows: (A) (σr = 0.1, σθ),
(B) σr = 0.5, σθ = 3, and (C) (σr = 0.9, σθ = 4).

Fig. 7. Performance of algorithms with different numbers of particles.

this case. It is observed that the performance of the proposed
method does not heavily depend on the number of particles,
while the performance of UFastSLAM depends on the number
of particles. This is because PSO places the particles in the
proprietary region before sampling in the proposed method. In
addition, the new resampling algorithm maintains the diversity
of particles and makes the resampled particles asymptotically
approximate the samples from the posterior pdf of the true state.
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That is, the proposed algorithm can avoid the sample impover-
ishment; thus, there is no need to sample a large number of
particles for compensation. The advantage of the new algorithm
is that it can decrease the computational cost to a certain extent
since resampling is conducted only on a part of the particles.

2) Computational Cost: The computational cost of the pro-
posed algorithm is analyzed using Matlab simulations on
an Intel Core2Duo@3GHz PC. Although PSO increases the
computational time of sampling, the required computational
time of the proposed method is approximately close to that
of UFastSLAM, as shown in Table III. This is because the
proposed approach uses SRUKF to generate the importance
density, initialization, and estimation of features. SRUKF is
faster than UKF, while their computational complexities are the
same. In addition, resampling is conducted on a smaller number
of particles. The main advantage of the proposed method from
a computational cost viewpoint is that, to obtain the same
estimation accuracy as that of UFastSLAM, a lower number of
particles is needed. Table III shows that, when one-third of the
particles of UFastSLAM (10 particles) is used, the estimated er-
ror is smaller than that of UFastSLAM. Therefore, the proposed
algorithm gains more accuracy with a lower computational cost.

3) Consistency of Proposed Method: To verify the consis-
tency, the average normalized estimation error squared (NEES)
is used. For an available ground truth st and the estimated mean
and covariance {ŝt and P̂t}, we can use NEES to characterize
the filter performance [23]

εt = (st − ŝt)
TP−1

t (st − ŝt). (48)

Consistency is evaluated by performing multiple Monte Carlo
runs and computing the average NEES. Given NR runs, the
average NEES is computed as

εt =
1

NR

NR∑
i=1

εit. (49)

Given the hypothesis of a consistent linear-Gaussian filter,
NRε̄t has a χ2 density with NR dim(st) degrees of freedom.
Thus, for the 2-D vehicle position, with 20 Monte Carlo sim-
ulations, the two-sided 95% probability concentration region
for ε̄ is bounded by interval [1.3, 2.79]. Fig. 8 shows that
the consistency of the proposed method is more than that of
UFastSLAM. This is because the diversity of particles in the
proposed method is more than that of UFastSLAM. An estimate
of the rate of loss of particle diversity is obtained by recording
the number of distinct particles. Fig. 9 shows the number of
distinct particles, which are counted after every resampling
for the proposed method and UFastSLAM. The result shows
that the number of distinct particles in the proposed method is
more than that of UFastSLAM. Hence, the consistency of the
proposed method is more than that of UFastSLAM.

One advantage of the proposed method from a consistency
viewpoint is that its consistency is more than that of UFast-
SLAM for a large loop. As the size of the loop increases,
the errors of both algorithms are almost equal, as shown in
Fig. 10. However, the proposed algorithm consistently outper-
forms UFastSLAM, as shown in Fig. 11. This is because of

Fig. 8. Consistency: (a) UFastSLAM and (b) proposed method.

Fig. 9. Number of distinct particles.

better proposal distribution and resampling. The better proposal
distribution and the resampling algorithm cause more diversity
and, consequently, consistency in the proposed algorithm.

B. Experimental Results

The proposed algorithm is compared to UFastSLAM using
the Car Park data set and Victoria data set, two popular data
sets in the SLAM community. These two data sets are available
in [24]. The experimental platform was a four-wheeled vehicle
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Fig. 10. Estimated robot path and estimated landmark with true robot path
and true landmark. The “. . .” is the estimated path, and the “o” denotes the
estimated landmark positions: (a) UFastSLAM and (b) proposed method.

equipped with wheel encoders, GPS, and a laser sensor. The
vehicle had a 2.83-m wheel base and was equipped with the
SICK laser range finder with a 180◦ frontal field of view.

In the Car Park test, the vehicle was driven around the
park. The steering angle and the velocity were measured using
encoders, but uneven terrain induced additional nonsystematic
errors because of wheel slippage and attitude errors. Conse-
quently, the odometry information from the encoder is poor as
shown in Fig. 12. The nature of the terrain created additional
errors in the vehicle prediction since wheel slip and attitude
errors are not taken into account in the prediction models of
our current implementation. The artificial landmarks were used
that consisted of 60-mm steel poles covered with reflective tape.
With this approach, the feature extraction becomes trivial, and
the landmark observation model is more accurate. Since the true
position of the landmarks was also obtained with GPS, a true
navigation map was available for comparison purposes. Also, a
kinematic GPS system is used to provide ground truth for the
robot position.

The performance of the proposed algorithm is compared
with that of the classical UFastSLAM in a situation that the
correspondences between the observation and the landmarks
were assumed to be unknown and 20 particles were used for
both algorithms. Each algorithm has been executed 20 times to
confirm the variance of the estimated error. For the unknown
data association, the individual compatibility nearest neighbor

Fig. 11. Consistency: (a) UFastSLAM and (b) proposed method.

Fig. 12. Odometry of the vehicle.

test with a 2σ acceptance region is used. Fig. 13 shows the
trajectory and landmark estimates produced by the proposed
approach and UFastSLAM, while Fig. 14 shows the RMSE
errors of the robot position for the two algorithms. The results
show that the performance of the proposed algorithm is better
than that of UFastSLAM.

The second experimental run was performed in the Victoria
data set that is a larger area with mild uneven terrain and
different types of surfaces. The vehicle was driven around
in the park for about 30 min and moved over 4 km, with a
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Fig. 13. (a) UFastSLAM. (b) Proposed method. The “. . .” is the path esti-
mated, the “+” denotes the estimated beacon positions, the “__” is the GPS
path reference, and the “o” denotes the beacon positions given by the GPS.

Fig. 14. RMSE for the robot position.

sensor to measure the velocity and the steering angle. Fig. 15
shows the Victoria Park with the GPS path. GPS data were
collected to provide ground-truth data. Fig. 16 shows the tra-
jectory based on odometry only. Since the robot is driving over
uneven terrain, the odometry information from the encoder is
poor. Although the vehicle was equipped with GPS, due to
occlusion by foliage and buildings, ground-truth data were not
available over the whole experiment. Nevertheless, the ground
true position of the vehicle from the GPS was good enough to
validate the estimated vehicle state. Each algorithm has been
executed independently several times to verify the variance

Fig. 15. Victoria Park with the GPS path.

Fig. 16. Trajectory based on odometry only.

Fig. 17. Comparison of UFastSLAM and the proposed method.

and the estimated error, as well as the comparison results of
accuracy for each approach. Fig. 17 presents the trajectories
for the proposed approach and UFastSLAM. The results show
that the performance of the proposed algorithm is better than
that of UFastSLAM. This is because the estimated trajectory of
the proposed method coincides very well with GPS paths. As
the proposal distribution and resampling step are optimized
in the proposed approach, the uncertainties are propagated well,
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and the accuracy of the state estimation has been improved over
that of UFastSLAM.

VI. CONCLUSION

UFastSLAM has been recently proposed for solving the
SLAM problem. However, this approach can only be achieved
consistently for longer time periods. In addition, one of the
most costly operations in UFastSLAM is the calculation of
the matrix square root of the covariance of the state variable
at each time in order to form the square set. In this paper,
we proposed SRUFastSLAM with improved proposal distri-
bution and resampling. Simulations and experimental results
indicate that the proposed algorithm can improve the accuracy
of estimation evidently and maintain the diversity of particles.
The main advantage of the proposed method is that, to obtain
the same estimation accuracy as that of UFastSLAM, a lower
number of particles is needed. In addition, the consistency of
this approach is higher than that of UFastSLAM.
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