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Abstract: In this study, a new approach to design a controller for a visual servoing (VS) system is proposed. Kernel-measurement
is used to track the motion of a featureless object which is defined as sum of weighted-image value through smooth kernel
functions. This approach was used in kernel-based VS (KBVS). To improve the tracking error and expand the stability
region, sliding mode control is integrated with kernel measurement. Proportional-integral-type sliding surface is chosen as a
suitable manifold to produce the required control effort. Moreover, the stability of this algorithm is analysed via Lyapunov
theory and its performance is verified experimentally by implementing the proposed method on a five degrees of freedom
industrial robot. Through experimental results, it is shown that the performance of tracking error in the proposed method is
more suitable than KBVS, for a wider workspace and when the object is placed near the boundary of the camera’s field of view.

1 Introduction

One method to simplify the interaction with robots is to use a
visual servoing (VS) system. Our main goal in this paper is to
track a featureless object through kernel-measurement concept.
Kernel measurement was first introduced in [1, 2] and referred
to as kernel-based VS (KBVS), for three translational motions
and one rotational motion. Later, the KBVS method was
presented for different objects in [3]. In the KBVS
algorithm, the tracking of an object is accomplished through
the sum of weighted image, with the weights given by a
smooth kernel function. The extracted features are not taken
from some parts of the image such as lines, points and so
on, but are taken from full information of the image.

Using algorithms that do not need training is preferred in
practice, and KBVS needs almost no training. In the
kernel-based approach, tracking the object is accomplished
with the kernel-measurement. Sub-processes of ‘feature
tracking and feedback control’ in KBVS are combined
together as a superior feature compared with conventional
methods of VS techniques known as position-based VS
(PBVS) [4-8], image-based VS (IBVS) [4, 9-11] and 2-1/
two-dimensional (2D) VS [12-14].

In PBVS, the Cartesian position of the robot end effector is
estimated from the positions of extracted features within the
image plane. Accordingly, the end-effector position is
compared with the desired position and the resulting error
is used as a feedback signal to the controller. In IBVS,
the desired features from the image are compared with the
current features and the resulting difference as error
(feedback signal) is fed directly to the controller. The
image Jacobian maps the motion of features to the motion
of robot end effector. The error and the Jacobian are used
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to determine the control inputs. Sometimes in the IBVS
method, the image Jacobian matrix loses its rank and makes
the control ineffective, which is one of the main drawbacks
of this method. In 2-1/2D VS, the combination of feature
locations and 3D end effector position forms the error
feedback signal. This method remedies the problem of IBVS
and keeps the control inputs in the task space. In KBVS, the
control signal is obtained through the combination of
tracking error and derivative of kernel-measurement with
respect to time, which is called kernel-measurement
Jacobian. This Jacobian matrix maps the task space of robot
into the kernel-measurement space. The superiority of KBVS
over conventional methods stems from the fact that there is
no need to use the image Jacobian, the system dynamics and
the Cartesian estimation of the target object. Furthermore,
KBVS is only similar to IBVS from point of feature
comparison, whereas in KBVS no direct feature is extracted
from the image. The stability of the KBVS method is proved
by the Lyapunov analysis [2].

Other variations of kernel functions to track the target object
are presented in [15-18]. In [15], the feature for tracking is a
weighted spatial average of a histogram vector with an
isotropic kernel (kernel-weighted histograms) which is
similar to the kernel-measurement. Tracking in the desired
region is accomplished through minimising a cost function
based on the Bhattacharyya coefficient. In [16], a
kernel-based tracking algorithm is used in both Cartesian and
log-polar coordinates that can estimate the targets’ scale and
rotation in the tracking process. This method is based on the
kernel-based histogram of the target region that uses the
Bhattacharyya coefficient. In [17], multiple kernels are used
for tracking complex motions where kernels are sensitive
only to 1D motion. Furthermore, to converge faster with less
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computation, optimal kernels are developed in [18]. Another
featureless tracking method is to use the image moments for
VS of planar objects [19, 20], where the Jacobian relates
different forms of the image moments to the velocity of a
moving camera. The image moments are scalar values from
the image and provide similar measurement in comparison to
the weighted image signal in KBVS. Noting this fact, one
may call KBVS a specific case of moment-based VS which
is developed for six degrees of freedom (DOF), while KBVS
is limited to four DOF.

Nowadays, the performance and stability improvement of
VS systems gain more attention among researchers and
practitioners. VS systems are uncertain and non-linear by
nature. Uncertainties are in the visual parameters, the system
dynamics and the external disturbances which lead to
tracking error and degrade the overall stability of the VS
system. To improve the VS system’s performance and the
region of stability, we propose combining sliding mode
control (SMC) and KBVS. In our approach, firstly, the
kernel-measurement is calculated from visual information.
To show the calculation of this measurement, kernel
functions are analysed in Section 2, describing how weighing
the intensities of image pixels is performed. The controller
in the SMC method is designed by defining a sliding surface
that binds the system states to the surface within a finite time
[21]. Hence, we suggest an appropriate sliding surface to
guide in pace with kernel-measurement. This way, we
deduce the control signal in the task space from the
suggested sliding surface.

In contrast to our innovation, SMC is designed based on
uncertain system dynamics and is robust to parameter
variations and external disturbances such as IBVS in [22—
24] and PBVS in [25-27]. In conventional cases, a PD sliding
surface fits well to the problem formulation. To increase the
tracking performance, a proportional-integral-derivative
sliding surface is also implemented in [23]. However, in this
paper, we suggest a proportional-integral (PI) sliding surface
because of the type of kernel-measurement and the robot joint
command nature. By defining the desired sliding surface, the
control signal may be easily implemented. The proposed
combination of SMC and kernel-measurement is implemented
on an industrial robot which has an internal feedback loop. In
the presence of the internal feedback loop, the robot accepts
the Cartesian velocity or the incremental position commands
[8]. As a result, a simplified motion kinematics model can be
used for the industrial robot where the controller inputs are
the joint velocity command signal.

The rest of this paper is organised as follows: in Section 2,
the basic definitions for kernel-measurements in each
direction are presented. Section 3 is devoted to the design
of SMC based on the kernel-measurement and the motion
kinematics model. This section ends by determining the
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type of stability using Lyapunov analysis. The performance
of our proposed method (referred to as KBSMVS) is
reported in Section 4 and compared with conventional
KBVS for different initial conditions.

2 Basic definitions

The control process of KBVS integrated with SMC is
schematically depicted in Fig. 1. The control process begins
by capturing an image from the camera. After that, the
intensities of image signal are transformed to an appropriate
format for the kernel-projection process. Then, each pixel of
the image signal is weighted through kernel functions, and
the current kernel-measurement, & 1is calculated. The
difference value of ¢ and the goal kernel-measurement, &,
forms the tracking error that is fed as input to the sliding
mode controller. The desired control signal is obtained as
the Cartesian velocity from the sliding surface. Having
checked against the singularities of the robot as described in
[28], the position command in the joint space will be
applied via inverse kinematics. Integrating the joint velocity
signal within 10 ms will provide the joint position with
desirable accuracy. The target tracking will terminate when
the kernel-measurement error meets a stop condition (7).
In the case of a square shape object, the stop conditions
are empirically set to 0.5 for both x and y-directions

(Té:x = Tgy = 0.5), 10 for the z-direction (ng = 10) and

30 for the O orientation (T & = 30). Note that the empirical

stop conditions are related to the types of kernel functions
and shape of the target object. In brief, the objective is to
obtain a control input that will drive & to & or equivalently
the current robot pose, ¢, to the goal pose, .

In what follows, £ is defined for each axis, that s, [x, y, z, 6],
which is the pre-requisite of controller design. In the scheme
shown in Fig. 1, the camera is mounted on the robot end-
effector. Also, because of the existence of inner feedback
loop, the kinematic motion model for robot is applied to all
dimensions.

2.1 Kernel-measurement in the x — y-directions

In the planar motion, suppose that the robot end-effector is
moving parallel to the image plane. The robot configuration
denoted by ¢, =[x, y]" is given as

T
uxy = [ux9 uy]

where u,, is the 2D control signal.
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Fig. 1 Details of the VS control loop
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After image capturing, the intensities of the image,
I(o, q.,), are weighted Wlth a continuous and differentiable
function, K, =[K,, K ] The kernel-measurement in the
X — y-directions is deﬁned as follows

&, = ijy(w)I(w, q,)dw (2)

where the image signal I € R? is related to the spatial index
® € R? and the Cartesian position, ¢,,. To define the goal
kernel-measurement, § , the goal image is taken when the
target is placed at the centre of the image frame. By
comparison of &, and £, , we may command the motion
of the end-effector in a l"yiorlzontal space. When the target
tracking is completed, we would have approximately ¢,
equal to q.,- The image signal in each position is
dependent to ‘the goal signal I, and can be written as (3).
Changing the position of the object in the image is similar
to the condition where all pixels of the goal image signal,
Iy, are moved, but remember that the robot vision is stationary

I(wa qu) = IO(w - qu) (3)

Through a change of variable in the spatial index, o, as
@ = o — ¢, the kernel-measurement can be written as (4).
This formulation is useful in the controller synthesis

§xy = ijy(w)IO(w - qu) do
“4)
= ijy(‘_o + qu)IO(a)) dw

In the goal position (qu ), the kernel measurement is

&, = &,- The kernel functions are selected as Gaussian
type formulated in (5), and they are independent from each
other. This makes the derivative with respect to x or y of
K, as a diagonal matrix, and hence the controllers in the
x — y-plane will be independent. The mean value of y, =, =

—100, and the standard deviation of o,=0,=70 are
selected as proposed in [3]
I e ((@-mr)na)
K w) = e w1 —y)")/20%
() rmo
PR B (e v S
w) = 4 y
Y \/27T0'y

Fig. 2 visualises the kernel functions’ behaviour in the x- and
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Fig. 2 Kernel functions in
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y-directions. In this figure, the width and the height axes are
related to the dimensions of the image matrix, in which x
denotes the width and y denotes the height of the image
signal. The values of K, and K, are given in two subfigures,
respectively. The initial condition for integration is
considered in the corner of the image plane denoted by
[width, height, amplitude] = [0, 0, 0].

2.2 Kernel-measurement in the z-direction

For vertical motion of the end-effector, image scaling is the only
criteria to guide the end-effector to translate in the z-direction.
Thus, the z-axis is assumed to be parallel to the camera’s
optical axis. Therefore the magnitude of Fourier transform
(FT) is used as an appropriate signal for weighting the image.
The characteristic of FT decouples scaling from traversal
motions. Rotation and scaling appear in the FT as variations
in the magnitude, and translation in the image is seen as the
change of phase in the FT. In the vertical direction, the
change of configuration is given as follows

i=u, ©
where u, is the corresponding control input. Let £y and Fiy denote
the goal image and the goal magnitude of FT, respectively.
Other positions of the camera are the scaling format of £
according to the following equation

W)

The magnitudes of FT at the goal Fy, and other positions F are
related by (8) and v € R? is the spatial index of FT

I(w,z) =

F(v, z) = zF y(2v) ®)

The kernel-measurement in the z-direction is defined as (9).
By positioning the end-effector of the robot at a specific
height, the goal kernel-measurement, & , is derived. The
end-effector of the robot is controlled by comparing & (the
kernel-measurement in each position) and &,

&= [KZ(V)F (v, 2)dv )

Through a change of variable in the spatial index v as v = zv,
the depth kernel-measurement may be written as (10).
This formulation is directly used in the control signal.
By derivation of the kernel-measurement with respect to time,
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Fig. 3 Kernel function in the z-direction

the FT of the image will not be changed and this fact simplifies
the controller design

£ = j ZK. G)Fo(v) dv (10)

Gaussian kernel function in the z-direction is selected as the
proposed in [3], denoted by (11). The performance of this
function is shown in Fig. 3

K.(v) = e /90N (11)

The magnitude of the FT matrix has the same dimension as the
image matrix. In the depth motion, most of the information is
located at the corners of FT matrix. The FT magnitude in
different positions of a square object is shown in Fig. 4. The
black areas have zero value and the white areas have a value
of one. When the end-effector of the robot is located higher
than the normal condition, the object will be seen smaller and
more pixels in the corner of FT matrix will have ones
compared with the normal condition. However, in the
opposite side, when the robot end-effector is moved closer to
the object, the FT matrix will have less white pixels than the
normal condition. Hence, the way in which K, magnifies such
comers is reasonable. If the target object is symmetrical, the
FT of the image will be equal at each corner of the matrix;
however, weighting one of these corners will be sufficient.
For different shapes of the target object, we can use a
uniform function and it is better to increase the standard
deviation of Gaussian function to attenuate the sharpness of
weighted corner.

2.3 Kernel-measurement in the 0 orientation

To orient properly, the rotation of the camera about the z-axis
(optical axis) is considered. Image rotation is detected through

the magnitude of FT. Hence, the robot dynamics is according
to

0=u, (12)

where u, is the control input. Let &y and F; denote the image
and the magnitude of FT at the goal, where 8=0 (the goal
position of the end-effector). At any orientation of the
camera, the image signal I is the scaled format of I as the
following equation

I(w, 6) = I(Ryw) (13)
cos 6 sin 6
Ry = (—sin 0 cos 0)

The magnitudes of FT at the goal, F;, and other positions, F,
are related by (14) and v € R? is the spatial index of FT

F(v, 6) = Fo(Ryv) (14)

The kernel-measurement in 6 orientation is defined as (15). By
positioning the end-effector of the robot at 6=0, the goal
kernel-measurement &, = j KyW)Fy(v, 6)dv is derived. The
end-effector of the robot is controlled by comparing &, (the
kernel-measurement in each orientation) and §90

&= JKO(V, OF (v, 6)dv
= jKo(R(,T))FO(T)) dv (15)

where TJ:Rgv. The Gaussian kernel function in the 6
dimension is selected as the following equation [3]

Ky(v) = e/ =178 (16)

The performance of rotational kernel function is depicted in
Fig. 5. The axes of Fig. 5 are like the z-direction. One of the
properties of FT is that the Fourier of a vertical column of
the image matrix is a horizontal row; a vertical line maps
into a horizontal line and vice versa. The number of lines is
proportional to the sides of the object. By rotating the object,
these lines will rotated with respect to the rotation of object.
The magnitude of FT of the image is weighted in one
corner and in two side planes (width and height axes). The
magnitude of FT of a square object in various rotations is
shown in Fig. 6. This object is rotated from 0° to 90°. It is
obvious that a square object has the same pattern after 90°
rotation. In Fig. 6, two rotating lines correspond to the sides

a

Fig. 4 Magnitude of Fourier in the z-direction

a Greater object
b Normal object
¢ Smaller object
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of the square object and at each position they are
perpendicular to each other. By rotating the target object,
such lines will rotate with respect to the corners of the
matrix. To determine the rotation, two sides are used for
weighting, and the performance of the kernel function
seems logical. Moreover, the rotation is studied at a specific
height, and information in the corner of image in the
vertical axis will be constant (the amount of intensities of
pixels will not change).

3 Sliding mode control

SMC is widely used in the control of non-linear uncertain
systems. SMC has some interesting and important
characteristics which may not be achieved via other methods.
When a system is at a sliding surface, the order of the system
is reduced according to the order of the sliding surface and
the resulting system is robust against variations of parameters
and disturbances. In this method, it is not necessary to have a
precise system model and the control algorithm is easily
implementable. All these properties make SMC an ideal
candidate to control a non-linear system. In such cases, a
sliding surface is defined for the system, and the goal is to
enforce states of the system in a finite amount of time on the
sliding manifold, and to be maintained on it for future times.
In general, controlling first-order systems is much simpler
than higher order systems. Transforming a higher order
system to a first-order one may be realised by defining a
first-order sliding surface. For some class of systems, the
SMC approach stabilises the system and provides a uniform
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performance in the presence of uncertainty. The desired
control process is to conciliate between the performance of
tracking and the uncertainty of parameters [29].

In most VS works, a PD type sliding surface is selected,
and in most cases, the system dynamics is used to design
the sliding mode controller. The main contribution of this
paper is to integrate SMC with kernel-measurement and to
use the simplified system dynamics to design the controller.
The details of the proposed approach are given as follows.

3.1 Controller design

In sliding mode, the dynamic behaviour of a system is defined
by a sliding surface. Here, the error of kernel-measurement is
used to define the desired sliding surface and to generate the
control signal. The main goal is to track an object, either
stationary or moving. Definition of the sliding surface is
performed prior to the design of the controller. Since our
system kinematics is modelled in the velocity layer, we
need to produce a control signal that also has this nature.
Moreover, the type of kernel-measurement is important in
defining the suitable sliding surface. Based on these two
features, the sliding surface is proposed as PI type in (17)
that stabilises the KBVS system. Pl-type selection is one
of the possible structures for our proposed system and other
designs with more effective surfaces may also be
considered with other considerations

S=(1+ Aj)eg = elw) + )tjeg((u) dw 17

A, 0 0 O
N = 0 A 0 0
0 0 A O
0 0 0 A
where e; is the difference between the desired

kernel-measurement, & = [, &, &, 590]T and the current
kernel-measurement, £=[&,, &, &, &', Furthermore, this
surface is a four-tuple vector S=[S,, S, 3., Sg]T. The
controller shall be designed in such a way that all the
trajectories of the system converge to the sliding manifold
S = e§+)\fe§ = 0. The rate of convergence of the state
trajectories, A, has to be tuned at each direction, while A;>0.
When the tracking error approaches zero, the sliding surface
will also converge to zero. To obtain the control signal one
may find the derivative of (17) as follows

. ds .
S=E=e§+)te§=§+)te§(w) (18)

To compute the derivative of the sliding surface, it is necessary
to calculate the derivative of kernel-measurement with respect to
the position of the robot end-effector, as derived in (19), where
J is the kernel-measurement Jacobian matrix, which maps the
task space of the robot into the kernel-measurement space

. 3§
=S5 —Jg 19
3 aqq q (19)
J. 0 0 0
0 J 0 0
— y
=10 0 J. 0
0 0 0 J,
313
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The only varying signal in the kemel-measurement is the
captured image. Derivation of the image is complex and it
takes a lot of time. Hence, by changing the variable in (4),
(10) and (15), the derivation may be converted to the kernel
functions. The Jacobian at each dimension is determined by
(20), while after these derivations the variables are rolled back
to the original ones

= = [k e, nde
J = (wZ - /"Ly)K Vi d
y__y Tx y(w) (w: t) w

r

1
J =— Z||v||KZ(v)F(v, z)dv

Irr 1 —(1/82 —a2]"
JO:_jZ[v—l’ v_2][vle (/)1,vze (/)2] F(v, 0)dv

(20

In (19), ¢ is equal to the control signal, #, which is a four tuple
vector as u = [uy, u,, i, ug]". By substituting (19) in (18), § is
obtained as follows

S=E&+Ae,=Ju+ NE— &) @1

The control signal as (22) is obtained from S. The first term in
the control signal states that the ideal condition is § = .§ = 0,
meaning that the trajectories of system shall lie on the sliding
surface. A second switching term (Csgn(sS)) is added to the u
expression to force the current trajectory to stay on the sliding
surface. In other words, when the object moves, the
conditions drift from § =8 = 0, and the proposed algorithm
is able to return the robot end-effector to the desired manifold.
In (22), the parameter C at each direction is selected with
respect to the change of kernel-measurement at the
corresponding direction. Furthermore, to guarantee the
stability of the system, the sign of C is set

¢ =AM (£ &) + Csgn(S) (22)
cC, 0 0 0
0 C 0 0
— y
=10 o C. 0
0 0 0 C

0

3.2 Stability analysis

In the SMC approach, the candidate Lyapunov function is
considered as ¥'=1/28S", which is a 4 x 4 positive definite
matrix, and in the whole space V>0 and F(0)=0. To
deduce the type of stability, one needs to analyse the
derivative of the Lyapunov function as (23). The variation
of V is related to the Jacobian matrix and the absolute
value of sliding surface

. T .

V=58 =SUq+AME- &)

V =8(CJsgn(S))" = ISy, JC (23)
To have a stable algorithm, ¥ must be negative definite.

We know that the image signal in both the spatial and the
frequency domains is positive. To determine the sign of the
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Jacobian matrix, we need to study the derivative of kernel
function with respect to the end-effector position 0K(-)/dq;
as given in the following equation

31;5) _ (o ;2 ) K.()
algy(.) - (w2;§ 0 (24)
B0 ko

The mean value of the Gaussian function in the x- and
y-directions are negative, the kernel functions are positive,
and w;, o, € R*. As a result, dK(-)/ox and AK(-)/dy will
remain negative. In the z and 6 dimensions, the respective
kernel functions are positive, and v, v, € R*. Hence, 0K
(-)/0z and 0K(-)/06 will remain negative. In light of this
discussion, to have a stable algorithm (V < O), we need to
set the parameter C as strictly positive at each direction, to
assure the asymptotic stability of the algorithm. Notice that
this analysis provides only local asymptotic stability and it
is limited to the reachable workspace of the robot.

In theory, the assurance of asymptotic stability will result in
zero tracking error on the sliding surface. However, in
practice, a stop condition, Ty is set for each direction, such
that if the absolute value of the tracking error is smaller
than T, the robot will not be commanded further and will
stop. In such case, the derivative of the Lyapunov function
will be smaller than a specific limit (V <|T 1|JC). At the
same time, the kernel-measurement Jacobian is negative for
each dimension. Therefore the value of |T;lJC is a lower
bound for negative V. T constraint the stability to the
uniformly-ultimate bounded (UUB) type [19]. In the UUB
type, when the absolute value of the tracking error is
greater than Ty V is negative definite and will provide
decreasing |S| into the set 7;. However, in the set 7;, the
control signal is zero. Hence, the negative definiteness of V'
cannot be guaranteed in the set 7j. It is definitely very
difficult to quantitatively determine the set 77 because of
the integral term in the PI sliding surface, referred to in (17).

4 Experimental results

Fig. 7 shows the components of an experimental setup where the
robot is a 5 DOF RV-2AJ industrial manipulator, augmented
with one DOF linear gantry and made by Mitsubishi
Company. A camera is mounted on the manipulator
end-effector from Unibrain Company. The camera captures

Camera

m &w Systems'
(ARAS)

Manipulator

Fig. 7 Experimental setup configuration
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images with a resolution of 320 x 240 pixels. Movement is
detected based on 30 frames per second. The focal length of
the installed wide lens is 2.1 mm. For the normal distance
between the camera and the object in the goal pose, each pixel
is approximately 1.8 mm. To program the robot, a Pentium IV
PC with 1.84 GHz CPU and 1 GB RAM is used. The actual
algorithm is developed on Microsoft Visual Studio 2008
environment utilising OpenCV library.

4.1 Considerations

In the implementation of the proposed controllers, several
assumptions are made as follows. Note that the spatial
indices of the image as @ and v are all defined in the
continuous time domain, but in the experiments they are
applied as the discrete time variables. The image captured
from the camera is finitely saved as 320 x 240 pixels, hence
the kernel functions have to be selected finitely as we
considered in [3]. Therefore, the continuous integral
operator will change to the equivalent discrete summation
operator, according to the following equation

{=K(o)(w, gdo~ ) Kol(o,q (25

The major consideration we observe in selecting the target
object and the background of workspace is that both need to
be planar in shape. This is because of the limitations of
Gaussian kernel functions in (5), (11) and (16), and also the
wide angle of the camera lens. A wide lens distorts the
location of pixels near the edges of the frame so that straight
lines farther from the centre of the lens are bent more than
those closer to centre. This phenomenon is referred to as the
barrel effect [30]. To have a natural representation of the
object from the camera image, it iS necessary to remove
radial distortion. Theoretically, such elimination is possible,
but in practice, elimination introduces errors which
propagate to the kernel projection process output. Hence, the
values have uncertainties resulting in inaccurately locating
the end effector of the robot. The object background in the
image will also contribute to more uncertainty in
positioning. In the case of using non-planar objects, this
mentioned problem is magnified. Therefore, by using a
planar object and a planar background, the errors
significantly decrease. We use a white object with a black
background to have a better contrast of the object in the
image. When the captured image is transformed to a
grey-scale image, variations of light can be sensed due to
the noise produced by artificial lighting of the environment.
To minimise the effect of image noise, we use a threshold
while other methods are also applicable to reduce the noise.
The original grey-scale image pixel values are in the range
between 0 and 255. Suppose that we want to discriminate
the object boundary from the image by rejecting pixels
below the value of 7, as the threshold level. The problem
with choosing a suitable value of 7 is that for large values
of 7, some information in the image will be lost and for
small values of 7, some white points in the image will
remain as noise. The extra white pixels will hinder the
kernel measurement calculation and hence, the command
signal will have errors. In [31], different ways to select T is
proposed, but we obtained the value of T empirically. This
way, we obtain a black and a white image of our target object.

The number of motion variables is equivalent to the DOF
of the system. Each DOF has a corresponding kernel
function, each of which contributes to the control of system
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motion. The only proposed kernel-based approach with K=
K., K, K., Ky] is capable of tracking the object in four
dimensions. Our industrial robot can move in 5 DOFs. The
fifth DOF is the tilt of the end-effector around the y-axis.
To control the tilt of the robot’s end effector, it is necessary
to have a kernel function which can model the tilting
moves. Thus, the tracking of the object is highly dependent
on the limitations of kernel function. Note that the
behaviour of K;s is defined at the end of Sections 2.1-2.3,
which show how the tracking of the object is related in the
appropriate dimension from the image pixel intensities.

As mentioned before, the FT of the image is invariant to any
translational motion. We expect the kernel-measurement in
one dimension to be independent from the kernel
measurement in other dimensions. However, because of the
type of kernel function, the extracted value of one
dimension is sensitive to the change of other dimensional
positions. Therefore, we consider priority in commanding
the robot end effector. Since the FT of the image is invariant
to the translational motion, first the z-direction motion is
commanded. However, due to the fact that the wvertical
variations are seen in the corner of FT magnitude matrix, we
cannot simultaneously compensate for both depth and roll.
Hence, the second correction is in the @ orientation. Finally,
tracking in the x-y plane is performed.

In the following subsections, the performance of KBSMVS
is verified in several experiments. The target object is
stationary in all trials and the goal is to set the visual hand
regulation. There is no specific recommendation for how to
define the controller parameters. Hence, we conducted
several experiments to obtain the best values of control
signals as in (22). Finally, from all the experiments C and A
for each dimension are adjusted empirically as C,=C,=C.
=Cp=1,A,=A,=1,A,=20 and Ap=3.5.

4.2 x-—vy Translational motion

In this case, we aim to analyse the performance of the
proposed algorithm in the x-y directions for a stationary
object. The robot will stop when the kernel-measurement
error reaches 1.24% of & in the x-direction and 8.74%
of § in the y-direction. T?ns experiment is repeated eight
times with random initial conditions. In Fig. 8 (first
column), the trial results are depicted and the initial
conditions are highlighted with a circle. The initial
conditions stand for the distance between the initial pose
and the goal pose. The statistical ranges of these
conditions are summarised in Table 1. One of the
experiments is represented by a solid line. The 2-Norm of
kernel-measurement error is also illustrated in Fig. 8a.
Based on the results in Fig. 84, the mean value and the
standard deviation of the final pose errors are obtained in
Table 1. To demonstrate the stability in the x-y plane, V
is shown in Fig. 8. To neatly verify the results, only the
highlighted initial condition (solid line), the sliding
surface and the derivative of the Lyapunov function are
shown in Figs. 8g and j. The kernel measurement error
causes the sliding surface to start with a non-zero value.
The control signal forces S, and e; to decrease to zero.
The performance of ¥ is related to Sxy and J,, per (23)
In both directions, ¥ is negatwe and UUB stability is
apparent. The three images in Fig. 8m show the goal
view, the initial picture and the final positional error of
the highlighted trial; that is, the right picture shows the
convergence to the desired condition as &, — &, .
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Fig. 8 Independent motions

a, d, g, j, m (First column) 2D KBSMVS experiments

b, e, h, k, n (Second column) Depth KBSMVS experiments

¢, f, i, I, o (Third column) Roll KBSMVS experiments
The trial shown by a solid line is explored in more detail in other figures
a, b, ¢ (First row) Kernel measurement errors

d, e, f(Second row) Position errors
g h, i (Third row) Sliding surface

J, k [ (Forth row) Derivative of Lyapunov function
m, n, o (Fifth row) For the same trial displayed in the solid line, the images represent: (from left to right) the image at the goal location, the initial location and the

difference between the goal and the final image

4.3 Depth translational motion

In this case, the robot is allowed to translate vertically along
the camera’s optical axis. Here, the correction in the depth
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motion is seen as the image magnification. We conducted
eight trials with random initial positions with a mean initial
distance of 72 mm and a standard deviation of 40 mm. The
trials were stopped when the tracking error was 4.77% of
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Table 1 Initial and final position errors for 2D experiments
Pose error Initial condition Final error
Mean Std. Mean Std.
€y, mm 29.9 18.2 25 1.9
e, mm 44.4 35.3 2.3 1.7

&.,- As per Fig. 8e, the robot tracks the target with the mean
position error of 5.4 mm and the standard deviation of 2.8
mm. e, e, and S, in Figs. 8b, e and 4 have the same
performance and sign because of the Gaussian kernel
function. The empty space, where the sliding surfaces do
not converge to zero, is due to set 7; mentioned in Section
2.2. The same analysis, such as the 2D case, can be
considered for V" and the type of stability.

4.4 0-orientation motion

In this case, the robot is allowed to rotate about the camera’s
optical axis. Analogous to the depth case, the magnitude of
FT shows the correction in the roll motion. We conducted
eight trials with random initial positions. In these
experiments, the mean initial rotation is 45 with the
standard deviation of 24.49". The trial is stopped when the
tracking error is below 8.11 with respect to &, . In Fig. 8,
the orientation converged to the target with a mean
rotational error of 1.22" and a standard deviation of 0.72".
For a square-shaped object, & will have the same pattern
after 90°. The symmetric point for &, is in 45°, and after
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Fig. 9 4D experiment

a, b Kernel measurement errors

¢, d Position errors

e, f Sliding surface

g, h Derivative of Lyapunov function

@_(mm)

f g
i

www.ietdl.org

this point a return in the respective curve can be seen in
Fig. 8c. Hence, the initial conditions are considered
between 0° and 90°. e, and Sy have same performance and
sign because of the Gaussian kernel function in Figs. 8¢
and i. The empty space, where the sliding surfaces do not
converge to zero, is due to set 7; mentioned in Section 2.2.
The same results, as in previous cases, may be inferred for
V' and the type of stability.

4.5 4D motion

In this section, the robot is allowed to move simultaneously in
all three translational DOFs and one rotational DOF. The
purpose of these experiments is to show how the tracking is
performed in 4D motion. According to Section 4.1, firstly,
depth is corrected, secondly, roll and finally, the 2D
translational motion is performed. The robot will stop when
the tracking error reaches 2.48% in the x-direction, 17.48%
in the y-direction, 4.77% in the z-direction and 10.83% in
the O-orientation of &. This experiment is also repeated
eight times with random initial conditions that are
highlighted with circles in Fig. 9. Fig. 9i shows different
situations of objects for one of these eight trials.

With respect to the tracking error as shown in Fig. 9a, S, is
moved from a definite distance and the control signal tries to
decrease the depth error to the stop criteria. Furthermore, Sy
is shown in Fig. 95 which shows a similar pattern, and then
for S, this process is repeated until the tracking error reaches
the desired threshold. In states where the sliding surfaces are
zero or constant, the robot is not moving in the corresponding
direction. When the object is located near the edge of the
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i Three images are shown for the trial represented by the solid line (from left to right) the image at the goal location, the initial location and the difference between

the goal and the final image
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Table 2 Initial conditions and position errors in 4D case

Pose error Initial condition Final error
Mean Std. Mean Std.

&, mm 45.0 12.3 3.1 3.1

e, mm 41.3 10.9 8.5 9.4

e, mm 44.6 0.3 13.3 4.0

€y, deg. 25 12.91 1.26 0.62

camera view field, the correct information of the object
cannot be received because of the wide angle of the lens
(see Section 4.1). Hence, after some end -effector
manoeuvres in 4D space, the algorithm can again correct
the depth or the roll motion.

The variations of e, , in Fig. 9b, are due to the type of
kernel-function. Owing to these variations, we cannot
choose a more delicate stop condition. e, does not change
its sign, therefore the control signal cannot reverse the
rotation of the end effector. In case an appropriate stop
condition is not chosen, the robot will not stop near 0, and
would rotate another spin of 90" with the objective of
tracking a square object. As the variations of e, are too
much, there is a chance of sticking to the stop condition in
return. However, if this unpleasant condition happens again,
the robot will not stop and might even enter into the
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Fig. 10 4D motion experiments for a cup

a, b Position errors
¢, d Kernel-measurement errors

singularity position after spinning the whole 360"
Therefore, we have to moderate the roll stop condition. In
adhering to this policy, the roll kernel-measurement error is
not that critical, since the experiments verify that the robot
is able to track the target with acceptable accuracy. Based
on the results of Figs. 9¢ and d, the mean value and the
standard deviation of tracking error for these experiments
are summarised in Table 2.

Moreover, V' and the sliding surface in the 3D and roll
dimension are shown in Figs. 9g and % and Figs. 9e and f,
respectively. The initial and final conditions are highlighted
with circles and squares, respectively. Before any move,
zero value can be seen at each direction. After that, based
on the integral term, the sliding surface varies, and because
of the stop condition the tracking error will converge to set
Ti. V is negative in all directions, and because of the stop
condition, the UUB stability can be observed.

To verify the robustness of the algorithm to the shape of
objects, different shapes of target object were examined,
and the results of one of these objects (a cup) in all possible
directions are shown in Fig. 10. We notice a problem in the
Gaussian kernel-measurement of &, for different objects. Ky
in (16) is dependent to the object shape. For example, we
expect that a rectangular object will have the same
kernel-measurement after 180° of rotation. However, & will
have the same performance after 90" as a square-shaped
object. This shows that K, in (16) cannot be used for
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Number of Frame
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MNumber of Frame

d

e For the trial represented by the solid line, three images are shown: (from left to right) the image at the goal location, the initial location and the difference between

the goal and the final image
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different objects with respect to € and tracking of the object is
performed only within limited ranges. We plan to develop
more elaborate function for such tasks in future.

Fig. 10 shows four trials with different initial conditions
highlighted with circles for a cup object. One of the four
trials is illustrated with solid lines, and three images of the
tracking object are shown in Fig. 10f. The 3D plot of
tracking error [x, y, z] in Fig. 10a is not as smooth as the
square object, because the cup is not a planar object and
tracking in the depth motion is performed in several tries
(see Section 4.1). Owing to the wide lens, the centre picture
of Fig. 10e does not represent the final cup image to
resemble the goal image as shown in Fig. 10e (left picture).
The pattern of FT magnitude for the cup is not same as the
square object. Therefore, the tracking range is limited
because of restrictions of Ky in (16). Fig. 105 shows that ey
is larger than a simple square object, and also it can be seen
in the right picture of Fig. 10e.

4.6 Comparison of KBVS and KBSMVS methods

In this section, KBVS and KBSMVS methods are compared.
The initial condition of the target object is considered in 4
DOF. For better comparison, the initial and stop conditions

5

e, (mm)
|
(4]

o (=]

L E_

I.‘ [

v !

11

\

b

e el

=100 l

100 .

ey{mm} -100 -50

e, (mm)

Fig. 11 Comparison between KBVS and KBSMVS experiments
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are selected to be the same as each other. Two cases for this
section are considered for positioning the target object in an
initial pose. In the first case (case 1), the target object is
located near the goal pose as shown in Fig. 1le. In the
second case (case 2), the target object is located far from the
goal pose as shown in Fig. 11f.

The position errors are graphed in Figs. 11c and d, and the
numerical results are summarised in Table 3 for all
directions. The initial conditions are highlighted with
circles in Fig. 11. In case 1, the final pose errors in the x-,
y- and 6-dimensions for both methods have approximately
equal values, while e, in the KBVS method is 6.1 mm
more than e, in the KBSMVS method. In case 2, the final
pose errors in the y-direction are equal; e, of KBSMVS
is 1.1 mm more than e, of KBVS, while e, and ¢y of
KBVS are, respectively, 5.2 and 6.1 mm more than e,
and ep of KBSMVS. In general, the accuracy of the
KBSMVS method is better than the KBVS method. In
the KBVS method, it takes more iterations to track the
object. This is proportional to the number of frames in
Figs. 11b and d. In both methods, first the z-direction is
corrected, but at the end, some variations in the x-y-
directions and the @-orientation of kernel-measurement
error are observed.
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e, f Four images are shown: (from left to right) the image at the goal location, the initial location, the difference between the goal and the final image of KBVS
method and the difference between the goal and the final image of KBSMVS method for (e) case 1 and (f) case 2
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Table 3 Comparison between our proposed method and KBVS method

Method €pose €, mm e, mm e, mm ey, deg.

KBSMVS case 1 0.4 4.0 0.4 0.18
case 2 1.3 0.9 0.8 1.76

KBVS case 1 0.9 4.0 6.5 0.23
case 2 0.2 0.9 6.0 2.37

As another experiment, we place the target near the edge of
the work space to investigate whether KBVS can work in larger
work spaces or not. It is verified that both methods have good
performance for small workspaces, but KBSMVS performs
significantly better for larger regions. This outperformance is
attributed to the design of the control signal, which is
different in each method. The appearance of the Jacobian
kernel-measurement matrix in each control signal is quite
different. In the KBVS method, the Jacobian matrix is used
directly, while in our method the inverse Jacobian matrix is
used. When we placed the target object in the large region of
the visual workspace, the amplitude of control signal in the
KBVS method was calculated to be larger than KBSMVS.
This causes the robot not to track the object successfully in
the KBVS method. Therefore, the visibility of the target
object might be undesirably diminished. This result in large
movement of the robot interferes with the singularity
avoidance routine, meaning that the produced joint pose will
have notable errors.

5 Conclusions

In this paper, we introduced a sliding mode controller design in
KBVS. Through binding kernel-measurement to the SMC, our
configured system will outperform the conventional KBVS
system. Comparison between KBVS and the proposed
method for different initial conditions shows that for small
movements, both methods track the object accurately, while
in large motions, only the proposed method is able to track
with our acceptable accuracy. Via SMC, it is possible to tune
all DOFs of the robot simultaneously. However, the type of
kernel-functions has limited tuning capabilities. For further
work, it is proposed to eliminate such limitations to increase
the performance of controllers’ type. With respect to the
analysis of 4D motion experiments for a cup, the performance
of the present roll kernel function is very sensitive to the
shape of the object. This shortcoming diminishes the
rotational tracking performance within limited degrees. Thus,
it is necessary to develop a function for such functionality.
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