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ABSTRACT

Time delays are encountered in many physical systems, and they usually threaten the stability
and performance of closed-loop systems. The problem of determining all stabilising proportional-
integral-derivative (PID) controllers for systems with perturbed delays is less investigated in the liter-
ature. In this study, the Rekasius substitution is employed to transform the system parameters to a
new space. Then, the singular frequency (SF) method is revised for the Rekasius transformed system.
A novel technique is presented to compute the ranges of time delay for which stable PID controller
exists. This stability range cannot be readily computed from the previous methods. Finally, it is shown
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that similar to the original SF method, finite numbers of singular frequencies are sufficient to compute
the stable regions in the space of time delay and controller coefficients.

1. Introduction

Time delays are either intrinsic parts of the system
dynamics or introduced to the system due to the delays
in measurement or actuation. They usually lead to insta-
bility and poor performance and difficulties in tuning of
the controller coefficients. Different tools are developed
to compute the stability margins of time delays. Among
them are the linear matrix inequality (LMI) methods
(Chen, Gu, & Nett, 1994; Gu, Kharitonov, & Chen, 2003;
Nguyen, Ishihara, Krishnakumar, & Bakhtiari-Nejad,
2009) and the frequency-based methods (Almodaresi &
Bozorg, 2009; Gu, Niculescu, & Chen, 2005; Sipahi &
Olgac, 2005). The LMI methods compute conservative
margins for delays, while the frequency-based approaches
are less flexible for more complicated cases of multi-
ple input multiple output systems with uncertain mod-
els and external disturbances. For controller design, iter-
ative algorithms are suggested to produce some delay-
dependent LMIs in Du, Lam, and Shu (2010). Different
frequency-based approaches are also taken to define the
set of all stabilising PID controllers for processes with
fixed time delays, namely the D-decomposition method
(Saadaoui, Elmadssia, & Benrejeb, 2008) and the param-
eter space method (Hohenbichler & Ackermann, 2003),
which both graphically present the set of all stabilising
PID controllers for processes with fixed time delays. The
singular frequency (SF) method (Bajcinca, 2001, 2006;
Hohenbichler, 2009) formulates the stability boundary
crossings, as a matrix rank deficiency problem. Another

widely applied approach to design PID controllers for
time-delay systems is the extension of the Hermit-Biehler
theorem for quasi-polynomials (Ou, Zhang, & Yu, 2009).
This theorem proves the interlacing property of roots
of the real and imaginary parts of a stable polynomial.
A couple of works have also employed the Nyquist plot
properties to compute the delay stability margins for the
second-order and all-pole delay systems (Lee, Wang, &
Xiang, 2010; Xiang, Wang, Lu, Nguyen, & Lee, 2007). The
Lambert W function is used in Yi, Nelson, and Ulsoy
(2007) to compute an analytical solution for delay dif-
ferential equations. However, numerical computations
are required in some stages of the algorithm. A certain
value is assigned to the time delay. The PI controller is
computed for first-ordered delay systems by Yi, Nelson,
and Ulsoy (2013) combining the latter method with the
pole-placement technique. An eigenvalue-based method
is also employed by Michiels and VyhliDal (2005) and
Michiels, Vyhlidal, and Zitek (2010) to stabilise delay
equations with certain time delays. However, the effect of
the small delay perturbations is investigated on the stabil-
ity. An uncertainty delay range is considered by Emami
and Watkins (2009) to present a graphical method for
computing all robust stabilising controllers. Again, the
delay is assumed a fixed value, the mean of the uncer-
tainty range. Also, the controller coefficients and a robust
performance parameter are swept in this method.

In practice, for many time-delayed systems, delays
are uncertain but bounded in defined ranges. For such
systems, assuming fixed delays leads to design of fragile
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controllers. This is illustrated in Almodaresi and Bozorg
(2015) by showing the high sensitivity of the stability
of time-delay systems to small values of delay perturba-
tion. Few methods are so far presented to determine the
stable regions in the space of the uncertain delay and
the controller coefficients. Among them are the works
of Almodaresi and Bozorg (2014, 2015) which deal with
the special cases of first- and second-order delay sys-
tems. The phase conditions of the open loop transfer
functions are employed in Almodaresi and Bozorg (2014)
to compute the maximum allowable delay for which
some stable gain exists. Also, Nyquist plot properties are
used in Almodaresi and Bozorg (2015) to compute the
regions in the plane of the uncertain delay and the PI
controller coefficients, inside which stable gain intervals
exist. Both approaches are applicable just for the first-
and the second-order plants containing delays. However,
the uncertain delay and controller coefficients are not
required to be swept to plot the stability boundaries in
Almodaresi and Bozorg (2015).

Time delay is considered a fixed value in previous
works when computing the stabilising range of PID con-
troller coefficients. In this paper, we aim to consider the
delay as an uncertain parameter and compute the stable
domain in the space of k; — kp — 7, while calculating the
maximum allowable delay for which a stable PID con-
troller exists. In the next section, the fundamental results
of the SF method are presented (Bajcinca, 2001). This
method is employed by Hohenbichler (2009) to com-
pute the stable regions in the space of PID coefficients,
for systems with fixed delays. An inequality constraint is
used in Hohenbichler (2009) as a stability condition to
compute the allowable k,-intervals. However, if delay is
assumed uncertain, both sides of the inequality will be
nonlinearly dependent on the time delay. This introduces
complexities to this problem and requires additional
numerical computations and tackling of convergence
problems.

The most important contribution of this paper is to
present an analytic technique for computing the exact
delay range in which a stabilising PID controller exists.
This technique is based on transforming the system
equations by the Rekasius substitution to a new set of
equations that can be handled more conveniently. To
achieve this, the SF method is modified and new results
are obtained for the transformed system. After comput-
ing the stabilisable delay range, the SF method is used to
plot the stability range in the plane of K;—Kp, by sweep-
ing the delay in the computed range. It is also shown that
the singular frequencies of the Rekasius transformed sys-
tem (RTS), which are computed from two generator func-
tions, do not interlace before a certain frequency. It is also
proved that the intersections of the singular lines with the

Y(s)

U(s C(s) F(s,7)

Figure 1. Block diagram of a time-delay system.

k;-axis, follow a special trend, which can be used to com-
pute the stability boundaries.

The rest of the paper is organised as follows. In Sec-
tion 2, the existing SF results for the time-delay systems
with fixed delays are explained. Section 3 introduces the
uncertainty in the time delay and extends the results of
Section 2 to this case. The problem of drawing the stabil-
ity boundaries in the space of the PID controller coeffi-
cients and the uncertain delay is addressed in this section.
First, the framework of the SF method is revised for the
RTS. Then, a technique is presented to compute the delay
stability interval. Singular frequencies, singular lines and
crossing direction concepts are computed for the RTS. A
practical case study is presented in Section 4 to demon-
strate the implementation of the proposed method.

2. Asingular frequency method

Consider the block diagram of a time-delay plant
F (s,7) =N (s)e "/R(s) , (1)

in which N(s) and R(s) are polynomials of degrees m
and r, respectively, where m < r. Also, C (s) = k;/s +
ky + kps is a PID controller as in Figure 1, where kj, k,,
and kp are the controller coefficients. The characteristic
equation is

P (s,T)=D(s) + (k; + kps + szz) N@Gs)e ™, (2)

where D (s) = sR(s).

Assume N (s)=ay +---+aus", a, #*0 and
D (s)=by +---+b, 15" +s". Obviously, by = 0.
This system is retarded, if g > 2 and is neutral, if g = 2.
The characteristic equation (2) has an infinite number
of roots due to the exponential delay term. All of these
roots must be located in the left half-plane (LHP) to
ensure the stability. The controller coeflicients where the
roots of Equation (2) cross the stability boundary are
the root crossing boundaries. To compute the crossing
boundaries, where the roots of Equation (2) cross the
imaginary axis, s = jw is substituted in Equation (2).
Then, by decomposing the characteristic equation into
the real and imaginary parts, two equations are obtained
(Hohenbichler, 2009),



ki — kp 0* = 1 (@) cos (Tw) — y2 (w)sin (tTw) ,
(3-a)

ky = [y1 (w) sin (tw) + y, (@) cos (ta))] Jo =y W),
(3-b)

in which,

1 (@) = (Nr (@) Dy (@)
+N; (@) D; (0))/ (N:(@)* + Ni(w)?)
»2 (@) = (Ni (@) D; (0)
— N, (@) D; (@))/ (Ny(@)* + Ni(@)*),  (4)

where N,(w), N;(w), D,(w) and D;(w) are the real
and imaginary parts of N(jw) and D(jw), respectively.
Equation (3-a) is independent of k, and Equation (3-b) is
independent of k; and kp. For a defined value of 7 and k,,
Hohenbichler (2009) computes the singular frequencies
Wy, W, ... by solving y (w) =k, from Equation (3-b).
y(w) is called the generator function and it is shown that
the sign of the derivative of this function change alter-
nately at the singular frequencies, i.e.

n|:8y (a))|wi:| # sgn [lem}, i=1,2,...

w w

ad 0
sgn y (@) w | = sgn y (@) los |[» i=1,2, ...
oo oo

(5)

The singular lines, which form the root crossing
boundaries, are then obtained in the k; — kp plane,
by substituting the computed singular frequencies in
Equation (3-a). It is also shown that, although an infi-
nite number of singular frequencies is computed from
Equation (3-b), a finite number of the frequencies need
to be considered to compute the singular lines that form
the stability crossing boundaries. This claim is proved by
showing that from a certain frequency onward, singular
frequencies interlace with an interval of 7w /7. Let us call
this frequency, the periodicity frequency.

To account for the changes in the number of unstable
roots of the characteristic equation on the two sides of
a singular line, the concept of root crossing direction is
introduced. This sign change or the crossing direction is
investigated in Bajcinca (2001, 2006) and Hohenbichler
(2009).

3. Uncertain time delay

In this section, the SF method is extended for the case of
systems with uncertain delays. The main problem caused
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by assuming delay uncertainty in Equation (3) is that the
singular frequencies and the periodicity frequency will
depend nonlinearly on the value of the delay, resulting in a
set of nonlinear equations. To compute the stable regions
in the space of k; — kp — 7, first one needs to compute the
stable range of delay and to evaluate the relation between
the delay and the periodicity frequency. In this paper,
the Rekasius substitution is employed as an assistant tool
to evaluate these. First, the characteristic equation is put
into a matrix form using the Rekasius substitution. Unlike
the SF method, in which one generator function (3-b) is
computed, here two generator functions are derived to
compute the singular frequencies for the RTS. The com-
puted singular frequencies are obtained as functions of
the delay. It is shown that the singular frequencies of the
two functions do not necessarily interlace. However, we
will prove that they interlace from a certain frequency
(periodicity frequency) onward. Based on this result, a
method is presented to compute the maximum delay for
which stable PID controllers exist. Then, by computing
two sets of singular lines from singular frequencies, the
features of the resulting singular lines are investigated.
The singular lines are evaluated in the kp — k; plane and
the root crossing direction is computed for each singu-
lar line. By sweeping 7 in the stable delay interval, stable
regions in the k; — kp — 7 space are calculated.

3.1 Singular frequency method for RTS

If the exponential delay term in Equation (2) is substi-
tuted by a bilinear rational function of a new parameter
T (Rekasius, 1980),

e =010-Ts)/(1+Ts), s= jo, (6)

in which,

SERS

T = [tan_l(Ta))+k7t],k=1,2,..., (7)

the characteristic equation of the RTS is obtained as

P (s,T)=D(s) (1 + Ts)
+ (ki + kps + kps®) N (s) (1 — Ts) . (8)

When Equation (7) holds, the roots of Equations (8)
and (2) are identical. Define P’ (jw,T) =H(w, T) +
jG(w, T). Putting P (jw, T) = 0 in a matrix equation
form leads to

H(w,T)] 1 —o? [ Kk 0
Gon]=renils T[]+ [k

+B (0, T) =0, )
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where
[ Ni(®w)+ TwN; ToN, () — N; ()
Ale )= [Nz- (@) = ToN, (@) N; (@) + ToN; <w>] ’
(10)
_ [ Dy (w) = TwD; (w)
B (0, T)= |:Di (w) + TwD, (w):| ' (

Since A(w, T) is a nonsingular matrix, define h(w, T)
and g(w, T) as

ho,T)] o |H(,T)
[g(w, TJ =A@, ) [G(w, T)] (12)

Then,
h (0, T) =k —kpo* +p; (0, T) =0, (13)

g (, T)=kyw+p; (0, T) =0, (14)

[Ar (@) (1 = T?0?) +24; (0) Tw|

P D = T @ (Ut Tet]

(15)
_ [FAi(@) (1 = T?0?) 424, (0) Tw]

P2 (1) = Ay @ 0+ T2
(16)
Ar (@) = N; (@) Dy (w) + Ni () D; (w), (17)
Ai (w) = N; (w) Dy (®) — N; (@) Di (0) , (18)
An (@) =N} () + N7 (). (19)

Equations (13) and (14) are functions of w and T, while
Equation (3) is a function of @ and . The parameters set,
where h (w, T) = g (w, T) = 0, is the same set for which
P (jw, T) = 0. For a fixed k,, the frequencies that satisfy
Equation (14) define the singular frequencies. By substi-
tuting these frequencies into Equation (13), singular lines
(stability crossing boundaries) are derived.

3.2 Singular frequencies of generator functions

In this subsection, it is shown that the singular frequen-
cies of the RTS system in Equation (9) are obtained
from two generator functions, while these frequencies are
computed from the generator function (3-b) in the SF
method. Solving Equation (14) for T, two solutions are
computed:

T (@) = [~4 @) + i @] foan @), ©0)

100

T
50

25.5

25
T

24.5

24

0 0.1 0.2 0.3 0.4 o 0.5 0.6 0.7 0.8

Figure 2. (a) The diagrams f; (@) and £, (w) for k = 0, , 5. (b) Fre-
quency roots of f; (w) = 25 and £, (w) = 25. The curve &(7) is
introduced in the subsection ‘stable delay interval’

T, () =[—A, (@) — Vi (a))] Jous (@) (21)

where

u (@) = Ay @) (A0 @) ~ Ke?Ay @), (22)
U (w) =ky, wAy (0) +A; (), (23)
in which Ap(w) = |D(jw)* and A,(w), A;(w) and

AN(w) are defined, respectively, in Equations (18) and
(19). Substituting T; (w) and T>(w) for T in Equation (7),

T=f1 (0) =2 [tan™" (0. T} ()) + kr ],
k=1,2,..., (24)
T=f, (0) =£ [tan™" (0. T5 (w)) + kr ],

k=1,2,..., (25

are, respectively, computed. By putting the imaginary
part of P(jw, T) in Equation (8) equal to 0, two gener-
ator functions of singular frequencies as f;(w) = 7 and
f2(w) = t are obtained. By solving them, two sets of
frequencies are obtained, respectively, denoted by 2 =
{w1, ...} and Q" = {w], &), ...}. Now, it is shown
through an example that the singular frequencies w €
and o' € Q' do not necessarily interlace. The diagrams
fi(w) and f,(w) are plotted in Figure 2(a), for p(s, ) in
Equation (2) such that

N (s) : = —0.2679 (1 — 41.6667s) ,
D (s) : = s(279.03s" — 2.9781s + 1) . (26)



Figure 2(b) shows the singular frequencies for a fixed
delay value 7 = 255 as

Q = {0.0207, 0.0898,0.1033, 0.374, 0.6266, .. .},

Q' ={0.2598, 0.5069, 0.7568,1.007, 1.2583, ...} .
(27)

From Figure 2(b), it is obvious that the singular fre-
quencies do not interlace. Furthermore, the sign of the
derivative of their generator functions do not interlace,
i.e., sgn(d fi(w)/dw), w € Qand sgn(d fr(w)/dw ), w’ €
2’ do not change alternately. This is the counterpart of
the interlacing property of the derivative sign of the gen-
erator function y(®) in the SF method, which was shown
in Equation (5). Although the frequencies of the sets 2
and €’ do not necessarily interlace, they interlace from a
certain frequency onward with a periodicity of 7 /7. This
concept, which is shown via the curve @ (7) on Figure 2,
will be discussed later.

Definition 1: Define

(m+n) /2if m + neven

F:{(m+n—1)/2ifm+nodd - (29

where m and n are, respectively, the degrees of N(s) and
R(s). Also, define the following conditions:

C.1:(a, >0&reven) or (a,, <0&rodd), (29)
C.2:(ay >0&rodd) or (a,, < 0&reven), (30)

where a,, is the coefficient of s in N (s).

Proposition 1: For a large enough value | € N, the sin-
gular frequencies w; € Qand o € ', j=11+1,...
interlace with the periodicity of 7w /7.

Proof: By substituting Equations (20) and (21), respec-
tively, into Equations (24) and (25), the following equa-
tions are obtained:

e (@) = cos (tw/2) (,/u1 (@) — A, (w))

— sin (%) u (w) =0, (31)

¢ (@) = cos (tw/2) (‘/u1 () + A, (w))
+ sin (tw/2) u; (w) = 0 (32)

The roots of e(w) and €’ (w), respectively, define the SF
sets Q and ©'. Obviously, these sets depend on the delay
value. Denote the roots of the dominant terms of e(w)
and €' (w) by @™ and »'®. It can be easily checked that,
for high frequencies, the root chains of e(w) and ¢’ (w)
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lie on the roots of sin (tw/2) = 0 and cos (tw/2) = 0,
respectively, if m and » are even numbers and Condition
C.1 in Equation (29) is satisfied, or if m and n are odd
numbers and C.2 holds. Hence,

a)°°=2k—n,w/°°=2k—n+z. (33)
T T T
For the case that m and » are even numbers and C.2
holds or m and n are odd numbers and C.1 holds, > =
2k /Tt 4+ 7/t and '™ = 2km /T are obtained. The root
chains of e(w) and ¢ (@) ultimately lie on the roots of

tan (tw/2) = —1, (34)
tan (tw/2) =1, (35)

respectively, if m and n are, respectively, even and odd
numbers and C.1 holds or if m and » are, respectively,
odd and even numbers and C.2 holds. In this case, ®*° =
2km/t — /2t and '™ =2km/t + /2t hold. For
the case that m and n are, respectively, even and odd num-
bers and C.2 holds or m and # are, respectively, odd and
even numbers and C.1 holds, ™ = kx /t + 7 /2t and
'™ = 2km /T — 7w /27 are obtained.

For all above cases, |0 — '®| = 7/t holds. There-
fore, a large enough value I € N exists such that

Ha)j—w;Jrj‘ —JT/'L" <eg/t,ekl, j=L1+1,...,

(36)
where j is an integer number. Obviously,  depends on the
small value €. Hence, the proposition is proved.

The above proof indicates that the root chains of e(w)
and € (w) ultimately lie on the roots of two sinusoidal
functions with a phase difference of 7 /2. Hence, [ is a
finite number depending on ¢.

Remark 1: Note that the indices of w; and a);ﬂT in
Equation (36) are not necessarily identical. For instance,
the singular frequencies (27) tend to the periodic-
ity of m/t with precision ¢ = 0.2 for the sequence
W)y, ws, W}, W, Wy, . .., which are the frequencies w; € €,
wj_3 € ' for j > 5 (Figure 2).

Definition 2: The high singular frequencies are the fre-
quencies w; € £ and a);ﬂfe Q, j=L14+1,..., je
Z, such that Equation (36) holds. Also, define the period-
icity frequency

® = max {a)l, a);+j} , (37)

such that the singular frequencies larger than that, inter-
lace with the periodicity of 7 /7.
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Using the above results, a method is presented in the
next subsection to compute the stable delay interval.

3.3 Stable delay intervals

In this subsection, a new method is presented to com-
pute the delay interval for which stabilising PID con-
trollers exist. The SF sets Q2 and ', computed, respec-
tively, from Equations (24) and (25), change when the
delay is changed. From Definition 2, all the singular fre-
quencies greater than @ almost reach the periodicity 7 /7.
Obviously, w depends on the delay. Define z(7) as the
number of singular frequencies in the interval (0, @(7)).
A necessary condition for the stability of Equation (2) is
that (Hohenbichler, 2009)

Z (T) > Zmin (7:) ) (38)
Zmin (T)
.|:l+2mR+m1+mo+rem(ma,2)—7?11 c?)(t).r]
= ceil + -1
2 T
(39)

in which, mg and m, are, respectively, the number of

unstable roots and the roots located at the origin, of N(s).

my is the number of roots s = jw; of N(s) withw; # 0. my

of the m;j roots of N (s) possess an odd order and ensure an

existing limit lim |[p(jw, T)/N(jw)|. N(s) and p(s, T)
0= w;

are, respectively, defined in Equations (1) and (2). Also,
rem(m,, 2) denotes the remainder of the division of m,
by 2.

Equation (39) is a necessary condition for the stability.
Hence, it can be used to find a stable k, sweeping interval
when a certain value is assigned to the time delay. How-
ever, assuming the delay to be uncertain, both sides of
the inequality depend on the delay value. Therefore, & (7)
must be evaluated first to compute z,;, (7). Here, a tech-
nique is presented to find & (7).

From Equation (36), there exists a large enough value
I e N, for each known delay 7, such that |w; — a)gﬂfl
equals to (m +¢)/t or (m —¢)/7, ¢ K 1 (Proposition
1). Define ), = o, + for simplicity. Without loss of gen-
erality, assume

w— w, = —¢)/t. (40)

Since w; and w), are the roots of Equations (24) and
(25), respectively, one has

T =2 [tan*1 (w;. Ty (1)) + kn] /oy, (41)

T = 2[tan"! (). T (w])) + k] /o), (42)

where k is an integer number. By substituting t from
Equation (40) into Equations (41) and (42)

Ty (o) = (a+e(0))/(1-aa(w)), (3)

is obtained, where ¢; = tan((7 — ¢£)/2) and o;(w}) =
o) Ty (w),). By substituting e; into Equation (20),

oy (@) = (A @) + Vi @) /uz (@) (44)

holds. Define the right-hand side of Equation (43) as
' (w},). Then, Equation(43) simplifies to

Ay () + ¢ (o)) v (@) =V (1), (45)

by using Equation (44). For a fixed w;,, Equation (45) is
a nonlinear function of w;. Square two sides of Equation
(45) to obtain the linear equation

[A, (@) + ¢ (@) uz (@)] = w1 (@) (46)

Then, w; is computed from the polynomial function
(46) by sweeping w),. Obviously, those pairs of wj,w), are
acceptable which satisfy Equation (45). For each pair of
w,w), T is evaluated from Equation (40). Then, o () is
computed from Equation (37). Now, zpi, (7) is calculated
by substituting @(t) into Equation (39). Also, z(7) is the
number of singular frequencies in the interval (0, ®(7)).
Finally, the stable delays are the delays satisfying Equa-
tion (38). The @(t) diagram is plotted in Figure 2 for the
system of Equation (26). More explanations are provided
at the case study section.

3.4 Singular lines and root crossing direction

In this subsection, the singular lines and the root crossing
directions are investigated for the RTS (8).

Definition 3: Define two sets of singular lines L =
{€1 , €y, ...} and L' ={€}, ¢, ...} computed, respec-
tively, by substituting the singular frequencies of the
sets 2 and Q' into Equation (13). Also, define the k;-
intersection, as the intersection of a singular line with the
ky axis, denoted by k.

Remark 2: The more stable side of a singular line is
defined as its side with less closed-loop poles which is
indicated as the unmarked side in all graphs of this paper.

Lemma 1: The k;-intersections of the singular lines £; €
L and E’j e L, j=1,2,...are, respectively, negative and
positive.



Figure 3. Singular lines and k-intersections on the k, — k, plane.

Proof: From Equation (15), p; (w, T) is rewritten as

A (@) — kf,a)zAN (@)

A, (@) + TwA; (0) + Tw?*k, Ay () ’
(47)

p1 (0, T) =

by using Equations (14) and (16). Also, kK = —p;(w, T)
is obtained from Equation (13). Substitute T; and T,
respectively, from Equations (20) and (21), for T in Equa-
tion (47). Then,

o —f(wj), Cl)jEQ

P (@) @ e

(48)

Assume f(w) # 0, Yo. Since f(w) is positive for all
frequencies, the lemma is proved (Figure 3).

Corollary 1: From Lemma 1, singular lines ¢; € L and

t;el, j=1,2,...are respectively, computed from
K] : k] — kajZ + f ((,()]) = 0, wj € Q, (49)
Ok —kpw? — f (a);) —0, 0, Q. (50
O

In the rest of this subsection, the root crossing direc-
tion is computed for the singular lines (49) and (50).
Assume the singular line in Figure 4 is crossed in the
direction 8k; > 0. The direction of crossing of eigenval-
ues of the system is defined by a root crossing index
(Bajcinca, 2006)

er = sgn [Re (ds/dkp)] |o—jo. (51)

k; t
ok,

>
kp

Figure 4. The root crossing direction for a singular line £.

Ap — K2 Ayw?
PR il LI
An
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Suppose that the singular line is crossed in the direc-
tion 8k; > 0. The system’s eigenvalues cross the imagi-
nary axis towards the right half plane (RHP) if e; = 1 and
towards the LHP ife; = —1. The following theorem com-
putes the root crossing direction of the singular lines of
the RTS (8).

Theorem 1: The root crossing index for the singular lines
(49) and (50) is evaluated from

_ og(w, T) 0g(w, T) 0T (w)
‘4= Sgn( b0 aT  dw > (52)

where g(w, T) is defined in Equation (14), and
T (w) = [tan(tw/2)] /o is computable from Equa-
tion (7).

Proof: Since kp and k, are fixed, P(s, T') is a function
of s, T and k; from Equation (8). Furthermore, since
P (s, T) = 0, the total differential equation dP(s, T) is
equal to 0 (Bajcinca, 2006). Hence,

JapP 0P oT P
—ds+ ——ds+ —dk;=0. (53)

dP =
ds dT 0s okr

From Equation (53),

ds 0P apP n aPoT (54)
dk; — 9k;/ \9s 9T ds )’

holds. By substituting P (jw, T) = G(w, T) + jH(w, T)
ands = jow into Equation (54), e; is computed from Equa-

tions (51) and (54) as

G (@, T) 3G (@, T) 3G (w,T)dT

_ ok ow oT ow
e =580 | 51 (v, T) 0H (0, T) 9H (0, T) 8T

ak; dw 3T dw
(55)

Then, Equation (55) is simplified to

g (.T) , g, T)g)}

ow oT Jw

(56)
by using the relationship (12) between H(w, T), G(w, T)
and h(w,T),g(w,T), where |.| is the determi-
nant function. From Equation (10), |A(w, T)| =
An (0)(1+ T?w?) holds. Since Ay(w) in Equation
(19) is non-negative for all frequencies, Equation (52)
holds.

er = sgn [— |A (w, T)| (

It is proved in Hohenbichler (2009) that for each cer-
tain delay, only the singular lines corresponding to the
singular frequencies smaller than the periodicity fre-
quency are needed to be computed. It is also shown that
the stable region which is a polygon for retarded systems
can be described by the limit of a sequence of polygons for
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Figure 5. The singular lines and their intersections.

neutral systems. Detailed proof can be found in Hohen-
bichler (2009). O

Remark 3: It can be shown that the singular lines of
the RTS, corresponding to the frequencies higher than
the periodicity frequency have some special features. The
more stable side of the singular lines £;, j =1, 1+1,...
points to the side where k; increases. On the one hand, all
singular lines of the set L intersect with the negative k;-
axis (Lemma 1). Therefore, the more stable side of ¢; € L,
j=1,1+1,... always points to the origin (Figure 5). On
the other hand, the kp junctions of singular lines £, j =
I,1+1, ... moveincreasingly to the right half-plane for a
retarded system (Figure 5) and tend to a positive value for
a neutral system (Hohenbichler, 2009). Therefore, the kp
junctions v; € V move outward from the stable polygon

for j=1,1+1,....Similar results are deduced for singu-
lar lines E’]-,j =[,1+1,....Hence, the finite set of singu-
lar lines £; € L,Z’j el,j=1,2,..., 1 —1aresufficient

to be used to compute the stable regions in the kp — k;
plane for each .

A similar concept of periodicity frequency is also
used in Hermite-Biehler technique of Ou et al. (2009).
The roots of the real and the imaginary parts of
the characteristic equation interlace for the frequencies
larger than this frequency. Hence, just the frequencies
smaller than the periodicity frequency are required to be
computed.

Remark 4: The real rootboundaryin k; — kp plane is the
line k; = 0 and its more stable side is described by

k[ > 0, if kp > —bl/ao, ap 75 0, (57)

k; <0, if k, < —bi/ag, ag # 0. (58)

The proofs of Equations (57) and (58) is straight for-
ward by setting the frequency in Equations (13) and (14)
equal to 0 to obtain the real root boundary (RRB) and
using Equation (51) to compute the root crossing direc-
tion.

Algorithm
(1) Computing the stable delay interval:

1.1. Choose a small enough & <« 1. Sweep w), €
[0, 00) to compute w; from the polynomial
function (46). Select the pairs w; and w), that
satisty Equation (45).

1.2. Evaluate t from Equation (40) for each pair
w; and w),, and compute @(7) from Equation
(37).

1.3. Calculate zpi,(7), by substituting w(t) into
Equation (39), and z(t) as the number of sin-
gular frequencies in the interval (0, @(7)).
Then, compare the diagrams z(7) and zy;, (7)
and find the delay interval for which z(7) is
greater than zy, (7). This is the stable delay
interval, inside which Equation (38) is satis-
fied.

(2) Plotting the stable regions in the kp —k; —t
space:

Iterate on 7 to sweep the interval computed in

Step 1, and do the following in each iteration:

2.1. Find the value of I so that Equation (36)
holds. Then, compute the singular frequen-
cies w; and a);, j=1,2,...,1—1 from
Equations (24) and (25).

2.2. Compute the singular lines £; and ¢, j =
1,2,...,1 —1 by substituting the singular
frequencies of Step 4 into Equations (49)
and (50). Then, compute e; corresponding to
each singular line from Equation (52). Mark
the upper or lower side of a singular line if
e = 1 or ey = —1 hold, respectively.

2.3. Mark the upper or lower side of the RRB
(k; = 0), respectively, if Equation (58) or
(57) holds.

2.4. Define the stable regions as the regions sur-
rounded by the unmarked sides of singular
lines and the RRB.

4, Case study

Consider the second-order, unstable, non-minimum
phase time-delay plant of a stirred tank reactor (Rao &
Chidambaram, 2006) in Equation (26). A PID controller
along with a lead/lag controller structure is tuned to sta-
bilise the plant (26) with a fixed delay of 20s. Here, the
controller C(s) is a PID controller with k, = 1 (Figure 1).
The algorithm of Section 4 is used to compute the stable
domain in the kp — k; — 7 space.

Step 1.1: A small value of ¢ = 0.2 is chosen. Then, a);, in
Equation (46) is swept in € [0, 00) to compute w;. The
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wy, w;, pairs are chosen to satisfy Equation (45). For
instance, w; = 0.493 is computed for a);, = 0.376.

Step 1.2: For each computed pair, 7 is evaluated from

Equation (40). For instance, T = 25 corresponds to
(@), ) = (0.376, 0.493). @ corresponding to each
7, equals to max{w;, @} } from Equation (37). In this
case, » (25) = max{0.376, 0.493} = 0.493. Figure 2
shows the @(7) diagram. Note that @ is on the hori-
zontal axis. The number of frequencies at the left-hand
side of this curve is zmin (7). As stated in Remark 1,
the sequence w), ws, W}, wg, @}, ... have the periodic-
ity w /T with precision ¢ = 0.2 for T = 25. These fre-
quencies are at the left-hand side of @ (Equation (25)).

Step 1.3: The values g =2, mrp=1and m;y =m, =

my; = 0 are computed using Equation (26). By sub-
stituting these values and @(tr) in Equation (38),
Zmin (7) = ceil[3/2+ to(r)/m] — 1 is computed.
For instance, zy,i, (25) = ceil[3/2 + 0.493 % 25/ ] —
1 = 5holds. Also, z (25) = 5 is obvious from Figure 2.
Zmin(t) and z(t) are plotted in Figure 6. Obviously,
z(7) exceeds zmin (7) in theinterval T € [0, 25.45], sat-
isfying Equation (38). Hence, T = 25.45 is the max-
imum delay for which stable PID controller exists for
k, = 1.1t can easily be checked that this maximum can
be increased to 7 = 33.35 by decreasing k, to 0.4. The
computed interval is swept to perform Step 2. Con-
sider T = 25 € [0, 25.45]. The periodicity of the high
singular frequencies of Equation (26) for T = 25s is
already investigated in Remark 1.

Step 2.1: From Remark 1, the singular frequencies

{ws, ws ...} € Q and {w), 0}, ...} € Q" in Equation
(27) tend to the periodicity 7/t with precision ¢ =
0.2. Hence, from Equation (27), the singular frequen-
cies greater than 0.374 in the 2 set and greater than
0.2598 in the Q' set, interlace. Hence, the singular fre-
quencies {0.0207, 0.0898, 0.1033, 0.374} in the < set,
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Figure 7. Stable region in k, — k, plane for r = 25s.

D

Figure 8. Stable region in the k, — k; — 7 space.

and {0.2598} in the ' set, are sufficient to be checked
to compute the stable regions.

Step 2.2: The corresponding singular lines ¢4, . . ., £4 and
¢} are computed in the plane of kp — kj, by substi-
tuting the singular frequencies {w, ..., w4} € Qand
{w]} € Q, respectively, into Equations (49) and (50)
(Figure 7). For instance, the SF ¢; is computed as
£y : ky — 0.0004kp + 0.0473 = 0 by substituting w; =
0.0207 in Equation (49). Also, the more stable side
is evaluated from Equation (52). For instance, e = —1
is computed by substituting w; = 0.0207 in Equation
(52).

Step 2.3: The RRB is the line k; = 0, and its marked side
is computed by checking Equations (57) and (58).

Step 2.4: The stable region surrounded by the unmarked
sides is shown in Figure 7. By sweeping 7 in the stable
interval [0, 25.45], the stable region is obtained in the
3D space of kp — k; — t (Figure 8).

5. Conclusion

Several existing tools are used in this paper to compute
an unsolved problem for PID control of time-delay sys-
tems with perturbed delays. A general class of time-delay
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systems with arbitrary orders is considered. The charac-
teristic equations of the system are transformed to a new
space using, the Rekasius substitution. The SF method is
reframed here for the RTS. It is shown that, in this case,
two generator functions are obtained for computing two
sets of singular frequencies. Also, it is proved that the fre-
quencies of two sets interlace with a periodicity of 7 /7 at
high frequencies. Then, two sets of singular line and their
features are extracted from the RTS equations. The singu-
lar frequencies and periodicity frequency are computed
as functions of the uncertain delay. Then, the delay inter-
vals for which stable PID controllers exist, are computed.
An algorithm is presented to determine the maximum
allowable time delay, for which a stabilising PID con-
troller can be found. To the best of authors’ knowledge, no
analytic method is available in the literature, to compute
this delay. All the previous works have assigned certain
values to the time delays to compute the set of all stabilis-
ing controllers. Even when uncertain delay is assumed as
in Emami and Watkins (2009), a mean value in the range
of the uncertainty delay is assumed. This leads to rough
estimation of stabilising controllers. Finally, the stability
regions in the space of delay and controller coefficients are
computed by sweeping the delay in the computed stable
range. The extension of the results to compute the range
of delay and the controller coefficients to satisfy perfor-
mance specifications such as reference input tracking and
disturbance rejection, is an open area for further research.
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