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Visual Servoing is generally contained of control and feature tracking. Study of
previous methods shows that no attempt has been made to optimize these two parts
together. In kernel based visual servoing method, the main objective is to combine
and optimize these two parts together and to make an entire control loop. This main
target is accomplished by using Lyapanov theory. A Lyapanov candidate function is
formed based on kernel definition such that the Lyapanov stability can be verified.
The implementation is done in four degrees of freedom and Fourier transform is used
for decomposition of the rotation and scale directions from 2D translation. In the
present study, a new method in scale and rotation correction is presented. Log-Polar
Transform is used instead of Fourier transform for these two degrees of freedom.
Tracking in four degrees of freedom is synthesized to show the visual tracking of an
unmarked object. Comparison between Log-Polar transform and Fourier transform
shows the advantages of the presented method. KBVS based on Log-Polar transform

proposed in this paper, because of its robustness, speed and featureless properties.

1. Introduction

Visual servoing is commonly used for utilizing visual
feedbacks to control a robot [1]. Visual servoing (VS)
involves moving either a camera or the camera’s visual
target. The main purpose of VS is to track an object in an
unknown environment and to converge the target image
to a known desired image. In general, visual servoing
consists of two parts: feature tracking and control; in
addition, these two parts usually work separately in the
close-loop system which uses the vision as the underlying
parcel of the loop. VS is usually done without tracking
and control optimization. When the robot or object
moves, features that are extracted from the image are used
as the feedback signal, and control sequence is generated
based on these features. Therefore, the problem can be
divided into two sub-problems. By this separation, tuning
the whole system together is almost impossible. Kernel
Based Visual Servoing (KBVS) is presented in this paper
to optimize the VS method and to solve the two sub-
problems together. The presented method has some
superiorities over previous methods such as position-

* Corresponding author, Tel: +982188469084

based and image-based visual servoing [2], [3], 2 1/2 D
visual servoing [4] and other advanced methods [5], [6].
In all featureless methods the computational factors
decrease because of using all features in the image
without shrinking the image into limited extracted
features. Extracting features from an image usually
requires more computation and also decreases the speed
of convergence. KBVS uses the image signal or other
transformed image directly to optimize the close-loop
system. Spatial kernel-based tracking algorithm [7], [8],
[9], [10] is used in this method for designing the feedback
controller. The stability of control loop is proven by
Lyapunov theory.

Tracking based on kernel is used in [11], [12], [13] for the
first time. The most important part in KBVS is designing
the kernel function which tunes the performance of
control and tracking part. These functions have been
defined based on spatial weighted average of the image or
transformed image. Therefore, the minimal error of kernel
function is used for optimization during the tracking.
Swensen and Kallem rendered some kernels for 2D
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translation in x-y directions in [12], and also did some
experiments on the group of rotations. In [13] Kallem and
Dewan proposed a new kernel in depth and roll motions,
a Gaussian kernel for depth and a rotationally asymmetric
kernel for roll and synthesized them in one kernel. In [11]
Swensen and Kallem also analyzed the domain of
attraction for some selected kernels through a comparison
study. They designated the domain of attraction by
acquiring larger area in which the Lyapunov function is
positive and its time derivative is negative definite.

In this paper KBVS implementation in four degrees of
freedom is presented based on image, Fourier and Log-
Polar transform traits. Previous work on 2D translation is
first explained, the method for translation along and
rotation about the z-axis are then elaborated by using
Fourier transform. Besides the innovative method based
on Log-Polar transform is presented in two degrees of
freedom and full tracking in four degrees of freedom has
been implemented. Furthermore, convergence toward the
goal position is analyzed by Lyapunov theory.
Experimental results verify suitable performance of the
proposed method implemented on four degrees of
freedom. Numerical results verify the preference of Log-
Polar transform that is presented in this paper in
comparison with that of Fourier transform in rotation and
scale directions.

2. Background Material

2.1. Kernel-based Visual
Transform

In this section, KBVS method is explained. First, tracking
in 2D translation parallel to the image plane are
demonstrated (x,y) which is used for full tracking
demonstration. Then, translation along the optical axis (z)
and roll about the camera optical axis (0) have been
introduced based on the Fourier transform.

Some assumptions are required in implementation of
KBVS. First of all, the camera-robot configurations are
assumed as an eye-in-hand configuration. Therefore, it
requires fast image processing methods. Besides, a
kinematic motion model has been considered for the robot
and the joint velocity can be achieved as the control input.
Furthermore the camera optical axis is perpendicular to
the image plane. Final assumption is that the image scene
is continuous and infinite, and also the illumination of the
image scene is constant across the image frames.
Variation in the illumination of image is considered as the
noise signal.

Consider a signal S(w,t) that is the image intensity for
each pixel during the time growth. The image at each
frame is considered similar to this signal. Kernel
projection value is defined as a function of time, called
kernel-projected  measurement (KPM) or kernel
measurement [12]. It can be expressed as follows:

Servoing using Fourier

S(1) = [}K(w)S(w, t)dw. )

In which, KER™Y is the kernel function. Indeed, the
image signal S(w,t) is associated with the 2D translation,
scale or rotation in the image which are time variants.
WER? is the spatial index parameter for each image
captured by the camera. When the camera moves, the
amount of the kernel measurement is changed because
S(.,t) varies. Assume that Sy is the goal value for S and &g
is the goal value for &. The objective of KBVS is to drive
the robot to the goal position or to force £E=&. In this
section, previous work on 2D translation is first
explained, on the basis of which the proposed method for
other degrees of motion is then elaborated.
Implementation of 2D translation is used for full tracking
purpose in order to compare between the proposed
method and previous method in other degrees of freedom.

2.2. Translation Parallel to the Image Plane

Assume that the robot moves parallel to a plane,
therefore, we have only a 2D translation motion. In this
case, the dynamic model for the robot can be expressed as
follows:

g=u. @)
Where g=[x,y]"€R? is the position of the end effector and
ueR”2 is the robot control input for each degree of
freedom. It is important that the control input is the
velocity of end effector. As mentioned above, the purpose
of KBVS is to drive & toward &. Without loss of
generality, let us assume that the goal position is & which
the position of the end effector is x=0, y=0. Therefore, the
fundamental point is to acquire a control law which drives
[x(t),y(t)] toward [0,0]. Due to the fact that the distance
between the image plane and the target scene is unit,
therefore, the motion is in a way that they are parallel and
it is correct to say that S(w,q(t))=So (w-q(t)). Change the
coordinate variables by w = w —q(t), then (1) can be

written as

St) = [IKW)Syv —q(t))dw
=[IK W +q(t))Syw )dw.

It can be concluded that there is no difference between the
case where the kernel is fixed and the image moves or the
case where the image is fixed and the kernel moves in the
reverse direction. This fact can be used where we need to
differentiate & It should be noted that kernel is
differentiable but the image signal is not differentiable in
some cases.

A Lyapunov function is defined based on KPM error to
generate a control law that drives the robot toward the
goal position. Hence, a Lyapunov function candidate may
be defined as follows:

@)
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=24

Using the chain rule, the time derivative of the Lyapunov
function may be derived by:

. T o _ T oS
V=(£- —==(-%) —«
(€ —-<p) ot 0 aq

= (E-&y) (1K'W)S W )dw u.
Where

()

oK (w) 2

K'(w) = eR™

(6)
The following control law ensures that the time derivative
of Lyapunov function becomes negative definite.
u = —(VK(W)S(w, q(t)dw)(& - &p), @)
In which,
oK (w

- (W) c Rn><2.

ow (8)
And furthermore, the time derivative of Lyapunov
function is expressed as:

= ‘H(J |VKW)S (W, q())dw)(& - éZO)HZ' 9)

VK

2.3. Translation along the optical axis using Fourier
Transform

Fourier transform is one of the useful tools in image
processing methods which can separate the translation
from scale and rotation in image. After applying this
transformation on an image, any variations in the
translation changes to conversions in the phase of image
Fourier transform. Moreover any changes in the scale and
rotation are transformed into changes in the magnitude of
the image Fourier transform.

In translation along the optical axis the dynamic model
for the robot can be expressed as follows:

Z=U. (10)
Without loss of generality, let us assume that 10 is the
image signal at z=0. Based on this assumption the
following equations may be written:

I(w,2z) = I (w/z) (11)

2 2
F(v,2)=1z Fo(zv),v eR (12)
KPM is defined by equation (13), and the Lyapunov
function candidate can be defined as given in (14). By
choosing the control input as (15), time derivative of
Lyapunov function becomes negative definite.

E(t) = [IK(V)F(v, 2)dv (13)

2
-

(14)

u= (v VKW, 2)dv)(E - &). as)

2.4. Rotation about the optical axis using Fourier
Transform

As mentioned in section (2.3) Fourier transform will
individuate translation in x and y directions from scale
and rotation. For rotation about the optical axis the
magnitude of Fourier transform is used as the designated
signal similar to the scale correction. In this case the
dynamic model for the robot can be written as follows:

g =u. (16)
Assume that lo is the signal image at the goal position
(6=0). Therefore I is a rotated version of Ip and can be
written as:

I(w,0) = |0(R0W)

In which,

cosé  sind

R0 =| _sino coso
sin@ cos (18)
Based on (17) the magnitude of Fourier transform for the

rotated image is:
F(v,0) = Fy(Ryv), v € R?

a7

(19)
The Lyapunov function candidate is defined similar to
that of translation along the optical axis. By choosing the
control input as (20), time derivative of Lyapunov
function becomes negative definite.

U= —(v" IVKW)F (v, O)dv)(& - &y).
Where:

0 1
J = R(A2) = [_1 0}
(21)

In this paper, the proposed method based on Fourier
transform is implemented and the results are shown in the
experiment section. Then tracking based on Log-Polar
transform is elaborated in the next sections. Numerical
results is illustrated in the experimental results for
comparison between Fourier transform and Log-Polar
transform for V'S purpose.

(20)

3. Kernel-Based Visual Servoing using Log-Polar
Transform

Log-Polar transform (LPT) is a useful tool in image
processing because of its properties, particularly its
rotation and scale invariance property [16-18]. In this
paper Log-Polar transform is used to modify rotation and
scale based on one single kernel function. In the
following section we introduce Log-Polar transform and
its main properties then explain the presented method
based on Log-Polar transform.
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3.1. Log-Polar Transform

Log-Polar Transform is based on the human visual
system. Transformation of retinal image into its cortical
projection can be modeled by LPT [14]. It is mostly
utilizable in image registration and object recognition.
Indeed this mapping is non uniform. Therefore, LPT is a
nonlinear sampling method that registers an image from
Cartesian space to the polar space. In other words, LPT is
a 2D conformal transformation which transform
[X,y]=[o,a] around the assigned center [xc,Yc]. Therefore,
LPT can transform an image from Cartesian space to the
polar space as I(x,y)=ILP(¢,a). The mathematical
formulation of LPT is as follows [15].

9 =10, 1oy (= )2 + (v - o) 22)
0= tan_l(—y —Je )
X — X¢ 23)

in which, (Xc,Yc) is the center pixel of the main image in
Cartesian coordinate, (x,y) illustrates sampling pixel in
the main image and (¢,0) denotes the log-radius and the
angular position in Log-Polar coordinates. As shown in
the formulation of LPT and in the Fig. 1, it is obvious that
the radius of this transform treats exponentially by
increasing distance from the origin. As a result, angular
motion through this transformation remains constant from
Cartesian coordinate to the polar coordinate. [15]. Hence,
points near the origin are oversampled and by increasing
distance from the origin they will be undersampled.

(b)
Fig.1: LPT mapping: (a) a paradigm in Cartesian Coordinates, (b)
the result by applying Log-Polar Transform in radius and angular
direction.

3.2. Extract Rotation and Scale using Log-Polar
Transform

In this section we introduce our method which simplify
the definition of kernel and convert all degrees of
freedom into 2D translation. As shown in Fig. 1, the main
property of LPT is that rotation and scale in Cartesian
space is turned in shifting along the angular and radial
axes in the polar coordinate, respectively. This can be
proven based on LPT formulation as follows. Assume
that I(x,y) is the main image and L(X,y") is the
transformed image of I(x,y) that is rotated o degrees and
scaled by size of a [15]. Therefore,

xX'"| _|acosa —asina | X
y' asinad acosa |y
X' =ax cosa —ay sina,y' =ax sina +ay cosa
(24)
Consider that F(p,0) is the main image in Log-Polar

coordinate and G(¢',0") is the rotated and scaled version
of it. Based on (24) we have:

, [ron2 n2
@ :Iogbase (X) +(y)

[.2.2 2
= Iogbase a‘r- = (p+logbase(a) (25)
And also:

6 = tan_l(i)
XI

=0+a (26)
Therefore based on (25) and (26) it is realizable that
rotation and scale in the Cartesian space are transformed
into the displacement along the radial and angular axes in
the polar space.

In this paper LPT is applied on the main image and the
transformed image is used for rotation and scale
correction. Furthermore, for detecting movement in radial
and angular directions edge detection is applied on
transformed image. Furthermore, the edges are used for
tracking by using kernel based visual servoing method.
Therefore, the previous kernel function in x-y direction
can be used for this modification and it does not require
any new design for the kernel.

4. Asymptotic Stability

Up to here we have assumed a Lyapunov function
candidate that is positive definite and designed a control
input that just makes the derivative of Lyapunov function
negative semi-definite. Asymptotic stability requires
negative definiteness of V "along the traversed trajectory.
Without loss of generality we assume that qo=0 is the goal
position. Therefore, our aim is to show that V is positive
definite and V'~ is negative definite along the traversed
trajectory. To achieve that, use Taylor expansion of &(t)
about &o.
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0
£= ¢+ g +0(e?)
o (27)
2
&—&p = Ja(t) +0(a™) (28)

In equation (28) J is Jacobian matrix that may be defined
as follows:
¢
J = — = [[VK(W)S(w, q(t))dw
aq (29)
In (27) O(g?) is higher order derivative terms of g. By
assuming a small neighborhood around the goal position,
higher order derivatives can be neglected from the Taylor,
and therefore, by using equation (28) Lyapunov function
and its derivative may be written as follows.

1
v :5(5—509 P(£-&)

1
=40 37 P +0@°) (30)
0=3"p3 (31)
/ = —q®)QQ" q(t) + 0(q>) (32)

In equation (31) P is a nxn matrix that is positive definite.
According to (30) and (32) if Jacobian matrix JER™® (in
which n is the number of kernels and p is the dimension
of q(t)) is a full column rank, then Q is a full rank matrix
with pxp dimension. By this assumption, it can be
concluded that V is positive definite and V' is negative
definite in a small neighborhood around the goal position,
and furthermore, they are zero at final destination point.
By this assumption asymptotic stability is proven just in a
small neighborhood around the goal position. In other
cases the higher order in (32) can not be neglected and
asymptotical stability is not proven. Experimental results
verify asymptotic stability behavior near the goal
position. The proposed method is not robust enough
against measurement noise therefore in some experiments
the uniformly ultimately bounded (UUB) stability could
be achieved instead of asymptotic stability.

5. Experimental Results

5.1. System Setup and Implementation Issues

The hardware setup is composed of a PC equipped with a
Pentium IV (1.8 GHz) processor and a 512 MB of Ram.

Furthermore, the camera is made by Unibrain Company
with 30 frames per seconds’ rate and a wide lens with 2.1
mm focal length. A 5DOF robot was used to generate the
relative cyclic trajectory in the experiments. This robot is
a Mitsubishi manipulator model RV-2AJ. Software was
implemented in visual studio by using Open CV library
which includes image processing algorithms. The robot
configuration is shown in Fig.2.

All control inputs are velocities at the end effector level.
By using the robot Jacobian matrix at velocity level all
control inputs are transformed to joint velocities.

Manipulator

End effector
Fig.2: The robot that we used in our experiments, RV2AJ model

For the industrial robots, the control input is not usually
executable at the level of joint velocity and the control of
the robot is only accessible through the position loop.
Furthermore, the robot velocity shall be zero at the start
and stop of each motion. Accordingly, the desired
velocity that is generated by kernel method can not be
directly executed. Consequently, the set of desired
velocities are transformed to the desired positions by
integration in the appropriate time interval. The time
interval shall be carefully selected to have a smooth and
continuous motion at the outset. Singularity avoidance
and joint velocity limitations are considered for
implementation based on motion planner that is formerly
presented in[19].

5.2. Implementation of 2D Translation in X and Y
Directions

According to the 2.2 the control input is computed based
on the kernel function. Kernel functions are usually
chosen based on the type of experiments [12], [13]. For
2D Translation kernel functions are designed as follows:

(0%,
20')%

1
Kx(vV) = (—=—)e
V2rzoy 33)
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20'32/

1
Ky (V) = ((——
y() (Tﬂay)e o

In which, the parameters are set to px=py=-100, 6x=0,=70,
while (wi,wo) is the image index. In Fig.3 three random
initials for 2D translation are tested. Suitable convergence
toward the goal is shown in this figure, while the mean

position errors of x and y are mentioned in Table 1.
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Fig.3: Three experiment results in x-y directions. a) Performance in
x axis. b) Performance in y axis, c) convergence of KPM for 2d
translation

5.3. Implementation in four degrees of freedom by
using FFT

For implementation of KBVS, full tracking in four
degrees of freedom is required. Combination of four
degrees of freedom requires decomposition of 2D
translation from scale and rotation. As mentioned Fourier
transform is used for this purpose. Therefore, scale and
rotation compensation is done by the magnitude of
Fourier transform, and then the image signal is used for
tracking in 2D motion.

In this section, some experiments have been conducted to
validate the KBVS by using Fourier transform according
to the 2-3 and 2-4. We have done some experiments to
show the features of Fourier transform in KBVS method.
For illustration, some tests in scale and rotation directions
and the combination in four degrees of freedom have
been designed as follows:

1. Translation along and rotation about the optical axis by
computing Fourier transform.

2. Decomposition of 2D Translation from rotation and
scale corrections using the magnitude of Fourier
transform.

3. Combination of 3D translation (x,y,z) plus roll motion
about the optical axis by Fourier transforms.

5.3.1. Depth and Roll Motion Using FFT

Kernel functions for scale and rotation are selected,
respectively, as follows:

—(1/8)M2

K,(v)=¢e (35)

—(U/8)VZ2  —(18)V3
KH(V):e 1ie 2 (36)

In Fig. 4 five random initials for scale are tested. Suitable
convergence toward the goal is shown in this figure,
while the mean position errors of scale test are mentioned
in Table 2. Fig. 5 shows the five random initials to the
goal position for rotation test. Suitable convergence
toward the goal is shown in this figure, while the mean
position error of 0 is mentioned in Table 2. It is obvious
in these figures that the performance of kernel based
visual servoing system is quite suitable for different initial
conditions. In order to verify similar results a compound
motion in all degrees of freedom is considered in the next
experiments.

\
\

10 20 30 40 50 60 70
Number of frames
(a)
500 ¢

400 —

300

norm(ZR)
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Fig.4: Five experiment results in z directions. a) Performance in z
axis. b) Convergence of KPM for z axis using FFT

5.3.2. Decomposition of 2D Translation from rotation
and scale corrections
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As mentioned before, for 2D translation the image
intensity is used directly but for scale and rotation the
magnitude of FFT is required. The purpose of this section
is to illustrate the effectiveness of FFT in the
decomposition of scale and rotation from 2D translation.
Note that in both experiments the magnitude of FFT is
independent from 2D translation, and therefore, in these
experiments the 2D translation error will not be directly
compensated.
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Fig.5: Five experiment results in rotation about z axis a)
performance about 0. b) Convergence of KPM for 6 using FFT
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Fig. 6 illustrates the first experiment where the robot has
performed an x-y-z motion. As it is seen in the final
picture of this experiment by using FFT of the images in
the kernels, the z motion is compensated, but the x and y
remains unchanged. Similarly, Fig. 7 illustrates the
experiment result for a 3D motion in which in addition to
X-y motion rotation along z axis is considered. The same
decoupling in motion is clearly observed in the final
picture of the target, in which the rotation is compensated
for, while the x-y translation is not compensated.
Consequently magnitude of FFT is an effective tool to
decompose z and 0 motions from 2D translation.
Therefore, it could be used for KBVS purposes.

5.3.3. 3D Translation + Roll Motion using FFT

For the final experiment we have considered a full 4D
motion, in which the 2D translation in x and y motion is
performed in addition to a translation along and a rotation
about z axis. In order to perform a full visual servoing
motion, first the scale and rotation is compensated by
using FFT in the kernels, and then the 2D translation is

performed. Fig. 8 illustrates the performance of this
experiment, in which the disparity between the final and
the goal positions are very small and hard to be observed
in this figure. This result verifies the effectiveness of the
decomposition method based on FFT image intensity. To
verify the result quantitatively, Fig. 9 and Fig. 10 are
given. Fig. 9 illustrates KPM for 2D translation, rotation
and scale, while Fig. 10 demonstrates the position error
norms in all four degrees of freedom. As it is shown in
these figures, the tracking errors in all 4 degrees of
freedom are relatively small, and remain in suitable range.
Relative comparison shows similar and better
performance in translational motion compared to that of

rotational performance.
2D W 1 W X W

w
g .

I W W W X W

3“
o
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Fig.6: Example images in a real environment. (a). Goal image. (b).
initial image with 2D translation and scale. (c). Final image with

scale compensation.
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Fig.7: Example images in a real environment. (a). Goal image. (b).
initial image with 2D translation and rotation. (c). Final image with
rotation compensation.
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Fig.8: Example images of a 4DOF trial in a real environment. The
goal, initial, final and disparity image.
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a). Convergence in KPM for X-Y. b). Convergence in KPM for Z.
c). Convergence in KPM for R.

5.4. Implementation in four degrees of freedom by
using LPT

In this section we try to implement the new KBVS
method based on Log-Polar transform to illustrate its
superiority to the Fourier transform. For this purpose two
tests have been designed and implemented on the robot as
follows:

1. Depth and roll compensation by computing Log-Polar
transform.

2. Combination of 3D translation (X,y,z) plus roll motion
about the optical axis by Log-Polar transforms.

The mean position errors of scale and rotation tests are
mentioned in Table 2 for more details.

5.4.1. Depth and Roll Motion by using LPT

In this part some experiments have been done on a real
object, which is a canister lid in a black background.
Some experiments have been performed on random initial
position around the goal image.

As mentioned LPT converts an image from Cartesian
space to the Polar space. By this transform rotation and
scale in Cartesian space convert to the 2D translation in
the polar space along the polar axes. Therefore, the 2D
translation kernel function can be used in this part.
Besides it should be considered that r is the log-radius in
the Log-Polar coordinates which treats exponentially by
increasing distance from the origin. Therefore, applying
2D translation kernel in this case terminates to
unfavorable results. To remedy this problem inverse of
the logarithm function is used in KPM, and since the
exponential function tends to infinity a tunable parameter
a is also considered. Eventually kernel functions are
selected as follows:

T

1 2

Kz (W, wy) = (m)e @o7) (37)
z

(38)

In (37) and (38) K; and K, are KPM for rotation and scale
respectively, px=py,=-100 and oy=cy=70. These values
have been tuned during the experiments. Other
parameters that are tuned for the experiments are
controller gains and also a parameter in (37).

Firstly, we consider some initial position in which just the
scale translation along the optical axis is performed. Five
random initials have been considered and results are
shown in Fig. 11. Suitable convergence toward the goal is
shown in this figure, while the mean position error of
scale test is mentioned in Table 2. Besides we consider
rotation about the optical axis and performed for five
random initials positions. Results are shown in Fig. 12.
Suitable convergence toward the goal has been also
observed in this figure, while the mean position error of
scale test is mentioned in Table 2. Results in Table 2
show the advantages of using LPT in comparison with
FFT. As it is reported in this table, mean position errors
significantly decrease using Log-Polar transform.

One of the most important features of using Log-Polar
Transform is the combination of scale and rotation
correction. As mentioned before, this feature increases the
speed of convergence in compared with using Fourier
transform. In Fig. 13 three random initials are considered
while suitable convergence toward the goal is shown in
Fig. 14. It shows correction in roll and depth motion
simultaneously for a real object.
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Fig.11: Five experiment results in z directions. a) Performance in z
axis. b) Convergence of KPM for z axis using LPT
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Fig.12: Five experiment results in rotation about z axis a)
performance about 0. b) Convergence of KPM for 0 using LPT

One of the most important features of using Log-Polar
Transform is the combination of scale and rotation
correction. As mentioned before, this feature increases the
speed of convergence in compared with using Fourier
transform. In Fig. 13 three random initials are considered
while suitable convergence toward the goal is shown in
Fig. 14. It shows correction in roll and depth motion
simultaneously for a real object.
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Fig.13: Three experiment results in z and 0 directions. a)
Performance in z axis. b) Performance in 0 axis. ¢) Convergence of
KPM for z-0 using LPT

In this part we try to apply full visual tracking in 3D
translation and roll motion by Log-Polar transform. For
this purpose the 2D translation has been corrected first.
This has been done by finding the contour in the image,
approximating its center and shifting it to the center of the
goal image. By this means, this image can be used as the
new goal image for 2D translation correction. The error
threshold can be tuned in addition to the previous tunable
parameters to achieve the desired performance. Then the
main goal image is considered as the target image and roll
and scale correction is performed. Fig. 15 shows the
flowchart of sequences performed for visual tracking
based on LPT. In Fig. 16 a random initial motion is
considered for converging toward the goal image that
shown in the Fig. 17.a. It is obvious that based on the
error of 2D correction total error could be declined.
Furthermore, the error bound could be decreased by
improving edge detection algorithm and tuning other
parameters.

© @

Fig.14: Example images in a real environment. Goal image, initial

image, final image and the disparity between initial and final image
in rotation and scale correction. LPT
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Fig.17: Example images of a 4DOF trial in a real environment. (a).
Goal image. (b). Initial image. (c). Final image. (d). Disparity
between initial and final image in combination of 3D + roll motion.

Table 1. Results for KBVS method in 2D translation

10 trials with random initial osition error
positions P
mean position error of x (cm) 0.0205
mean position error of y (cm) 0.1202

Table 2. Comparison of Fourier transform and Log-Polar
transform in KBVS

10 trials with random initial positions position error

mean position error of z (cm)-FFT 0.5158
mean position error of 0 (degrees)-FFT 0.2405

mean position error of z (cm)-LPT 0.0263
mean position error of 0 (degrees)-LPT 0.0698

6. Conclusions

Kernel based visual servoing is a method in which
tracking is performed based on the KPM as the feedback
signal which is a weighted sum of the image. KBVS is a
featureless tracking method without the need to separate
tracking and control parts. Based on the KPM, a
Lyapanov function is given to verify asymptotic stability
of this method. Consequently the convergence of leading
an eye-in-hand robot to the goal position without any
feature tracking is verified in experiments. In this paper it
is proposed to use Fourier transform to decompose 2d
translational motion from the motion along, and rotation
about the z-axis. Experimental results verify effectiveness
of the proposed method in such decomposition. This idea
enables KBVS methods to be concurrently implemented
for four degrees of freedom. In the experiments, first the
translation along and the rotation about the z axis is
compensated by using FFT of image intensity, while at
the same time the other 2 degrees of translation are
compensated for with the ordinary kernel functions.
Besides Log-Polar transform has been introduced to
increase the accuracy and speed of convergence. This
purpose is done by converting the rotation and scale
directions from Cartesian space to the 2D translation in
the polar space. Besides compensation in rotation and
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scale directions can be done simultaneously with one
kernel function. Final experimental results verify suitable
tracking performance for tracking an unmarked, and non
ideal object in a real environment. Comparison between
FFT and LPT shows the superiority of LPT performance
in KBVS method.
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