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Visual Servoing is generally contained of control and feature tracking. Study of 

previous methods shows that no attempt has been made to optimize these two parts 

together. In kernel based visual servoing method, the main objective is to combine 

and optimize these two parts together and to make an entire control loop. This main 

target is accomplished by using Lyapanov theory. A Lyapanov candidate function is 

formed based on kernel definition such that the Lyapanov stability can be verified. 

The implementation is done in four degrees of freedom and Fourier transform is used 

for decomposition of the rotation and scale directions from 2D translation. In the 

present study, a new method in scale and rotation correction is presented. Log-Polar 

Transform is used instead of Fourier transform for these two degrees of freedom. 

Tracking in four degrees of freedom is synthesized to show the visual tracking of an 

unmarked object. Comparison between Log-Polar transform and Fourier transform 

shows the advantages of the presented method. KBVS based on Log-Polar transform 

proposed in this paper, because of its robustness, speed and featureless properties. 

Keywords: 

Visual Servoing 

Lyapanov Function 
Log-Polar Transform 

Fourier Transform 

  
 

 

1. Introduction 

Visual servoing is commonly used for utilizing visual 

feedbacks to control a robot [1]. Visual servoing (VS) 

involves moving either a camera or the camera’s visual 

target. The main purpose of VS is to track an object in an 

unknown environment and to converge the target image 

to a known desired image. In general, visual servoing 

consists of two parts: feature tracking and control; in 

addition, these two parts usually work separately in the 

close-loop system which uses the vision as the underlying 

parcel of the loop. VS is usually done without tracking 

and control optimization. When the robot or object 

moves, features that are extracted from the image are used 

as the feedback signal, and control sequence is generated 

based on these features. Therefore, the problem can be 

divided into two sub-problems. By this separation, tuning 

the whole system together is almost impossible. Kernel 

Based Visual Servoing (KBVS) is presented in this paper 

to optimize the VS method and to solve the two sub-

problems together. The presented method has some 

superiorities over previous methods such as position-

based and image-based visual servoing [2], [3], 2 1/2 D 

visual servoing [4] and other advanced methods [5], [6]. 

In all featureless methods the computational factors 

decrease because of using all features in the image 

without shrinking the image into limited extracted 

features. Extracting features from an image usually 

requires more computation and also decreases the speed 

of convergence. KBVS uses the image signal or other 

transformed image directly to optimize the close-loop 

system. Spatial kernel-based tracking algorithm [7], [8], 

[9], [10] is used in this method for designing the feedback 

controller. The stability of control loop is proven by 

Lyapunov theory. 

Tracking based on kernel is used in [11], [12], [13] for the 

first time. The most important part in KBVS is designing 

the kernel function which tunes the performance of 

control and tracking part. These functions have been 

defined based on spatial weighted average of the image or 

transformed image. Therefore, the minimal error of kernel 

function is used for optimization during the tracking. 

Swensen and Kallem rendered some kernels for 2D 
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translation in x-y directions in [12], and also did some 

experiments on the group of rotations. In [13] Kallem and 

Dewan proposed a new kernel in depth and roll motions, 

a Gaussian kernel for depth and a rotationally asymmetric 

kernel for roll and synthesized them in one kernel. In [11] 

Swensen and Kallem also analyzed the domain of 

attraction for some selected kernels through a comparison 

study. They designated the domain of attraction by 

acquiring larger area in which the Lyapunov function is 

positive and its time derivative is negative definite. 

In this paper KBVS implementation in four degrees of 

freedom is presented based on image, Fourier and Log-

Polar transform traits. Previous work on 2D translation is 

first explained, the method for translation along and 

rotation about the z-axis are then elaborated by using 

Fourier transform. Besides the innovative method based 

on Log-Polar transform is presented in two degrees of 

freedom and full tracking in four degrees of freedom has 

been implemented. Furthermore, convergence toward the 

goal position is analyzed by Lyapunov theory. 

Experimental results verify suitable performance of the 

proposed method implemented on four degrees of 

freedom. Numerical results verify the preference of Log-

Polar transform that is presented in this paper in 

comparison with that of Fourier transform in rotation and 

scale directions. 

2. Background Material  

2.1. Kernel-based Visual Servoing using Fourier 

Transform 

In this section, KBVS method is explained. First, tracking 

in 2D translation parallel to the image plane are 

demonstrated (x,y) which is used for full tracking 

demonstration. Then, translation along the optical axis (z) 

and roll about the camera optical axis (θ) have been 

introduced based on the Fourier transform.  

Some assumptions are required in implementation of 

KBVS. First of all, the camera-robot configurations are 

assumed as an eye-in-hand configuration. Therefore, it 

requires fast image processing methods. Besides, a 

kinematic motion model has been considered for the robot 

and the joint velocity can be achieved as the control input. 

Furthermore the camera optical axis is perpendicular to 

the image plane. Final assumption is that the image scene 

is continuous and infinite, and also the illumination of the 

image scene is constant across the image frames. 

Variation in the illumination of image is considered as the 

noise signal.  

Consider a signal S(w,t) that is the image intensity for 

each pixel during the time growth. The image at each 

frame is considered similar to this signal. Kernel 

projection value is defined as a function of time, called 

kernel-projected measurement (KPM) or kernel 

measurement [12]. It can be expressed as follows: 

.),()(=)( dwtwSwKIt 
    (1) 

In which, K∈R(n×1) is the kernel function. Indeed, the 

image signal S(w,t) is associated with the 2D translation, 

scale or rotation in the image which are time variants. 

w∈R2 is the spatial index parameter for each image 

captured by the camera. When the camera moves, the 

amount of the kernel measurement is changed because 

S(.,t) varies. Assume that S0 is the goal value for S and ξ0 

is the goal value for ξ. The objective of KBVS is to drive 

the robot to the goal position or to force ξ⇒ξ0. In this 

section, previous work on 2D translation is first 

explained, on the basis of which the proposed method for 

other degrees of motion is then elaborated. 

Implementation of 2D translation is used for full tracking 

purpose in order to compare between the proposed 

method and previous method in other degrees of freedom. 

2.2. Translation Parallel to the Image Plane 

Assume that the robot moves parallel to a plane, 

therefore, we have only a 2D translation motion. In this 

case, the dynamic model for the robot can be expressed as 

follows:  

.= uq
        (2) 

Where q=[x,y]T∈R2 is the position of the end effector and 

u∈R^2 is the robot control input for each degree of 

freedom. It is important that the control input is the 

velocity of end effector. As mentioned above, the purpose 

of KBVS is to drive ξ toward ξ0. Without loss of 

generality, let us assume that the goal position is ξ0 which 

the position of the end effector is x=0, y=0. Therefore, the 

fundamental point is to acquire a control law which drives 

[x(t),y(t)] toward [0,0]. Due to the fact that the distance 

between the image plane and the target scene is unit, 

therefore, the motion is in a way that they are parallel and 

it is correct to say that S(w,q(t))=S0 (w-q(t)). Change the 

coordinate variables by q(t)w=w  , then (1) can be 

written as   

( ) = ( ) ( ( ))
0

= ( ( )) ( ) .
0

t K w S w q t dwI

K w q t S w dwI

 


   (3) 

It can be concluded that there is no difference between the 

case where the kernel is fixed and the image moves or the 

case where the image is fixed and the kernel moves in the 

reverse direction. This fact can be used where we need to 

differentiate ξ. It should be noted that kernel is 

differentiable but the image signal is not differentiable in 

some cases. 

A Lyapunov function is defined based on KPM error to 

generate a control law that drives the robot toward the 

goal position. Hence, a Lyapunov function candidate may 

be defined as follows: 
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2

02

1
=  V     (4) 

Using the chain rule, the time derivative of the Lyapunov 

function may be derived by:  

t

T
V







 )0(= q

q

T 






 )0(=

= ( ) ( ( ) ( ) ) .
0

T
K w S w dw uI   

   (5) 

Where 

2)(
=)(









n

w

wK
wK R

    

(6) 

The following control law ensures that the time derivative 

of Lyapunov function becomes negative definite. 

),0)())(,()((=   dwtqwSwKIu
 (7) 

In which, 

.
2)(

=








n

w

wK
K R

   (8) 

And furthermore, the time derivative of Lyapunov 

function is expressed as:  

.
2

)
0

)())(,()((=   dwtqwSwKIV
 (9) 

2.3. Translation along the optical axis using Fourier 

Transform 

Fourier transform is one of the useful tools in image 

processing methods which can separate the translation 

from scale and rotation in image. After applying this 

transformation on an image, any variations in the 

translation changes to conversions in the phase of image 

Fourier transform. Moreover any changes in the scale and 

rotation are transformed into changes in the magnitude of 

the image Fourier transform. 

In translation along the optical axis the dynamic model 

for the robot can be expressed as follows:  

.= uz       (10) 

Without loss of generality, let us assume that I0 is the 

image signal at z=0. Based on this assumption the 

following equations may be written: 

)/(0=),( zwIzwI
    (11) 

2
),(

0
2

=),( RvzvFzzvF 
   (12) 

KPM is defined by equation (13), and the Lyapunov 

function candidate can be defined as given in (14). By 

choosing the control input as (15), time derivative of 

Lyapunov function becomes negative definite. 

dvzvFvKIt ),()(=)( 
    (13) 

2

02

1
=  V

     (14) 

).
0

)(),()((=   dvzvFvK
T

vIu
  (15) 

2.4. Rotation about the optical axis using Fourier 

Transform 

As mentioned in section (2.3) Fourier transform will 

individuate translation in x and y directions from scale 

and rotation. For rotation about the optical axis the 

magnitude of Fourier transform is used as the designated 

signal similar to the scale correction. In this case the 

dynamic model for the robot can be written as follows: 

 

.= u       (16) 

Assume that I0 is the signal image at the goal position 

(θ=0). Therefore I is a rotated version of I0 and can be 

written as: 

)(0=),( wRIwI 
    (17) 

In which,  








 


 cossin

sincos
R =

    (18) 

Based on (17) the magnitude of Fourier transform for the 

rotated image is: 

2
),(

0
=),( RvvRFvF 

   (19) 

The Lyapunov function candidate is defined similar to 

that of translation along the optical axis. By choosing the 

control input as (20), time derivative of Lyapunov 

function becomes negative definite. 

).
0

)(),()((=   dvvFvKJ
T

vIu
  (20) 

Where: 








 01

10
=/2)(= RJ

    (21) 

In this paper, the proposed method based on Fourier 

transform is implemented and the results are shown in the 

experiment section. Then tracking based on Log-Polar 

transform is elaborated in the next sections. Numerical 

results is illustrated in the experimental results for 

comparison between Fourier transform and Log-Polar 

transform for VS purpose. 

3. Kernel-Based Visual Servoing using Log-Polar 

Transform 

Log-Polar transform (LPT) is a useful tool in image 

processing because of its properties, particularly its 

rotation and scale invariance property [16-18]. In this 

paper Log-Polar transform is used to modify rotation and 

scale based on one single kernel function. In the 

following section we introduce Log-Polar transform and 

its main properties then explain the presented method 

based on Log-Polar transform.  
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3.1. Log-Polar Transform 

Log-Polar Transform is based on the human visual 

system. Transformation of retinal image into its cortical 

projection can be modeled by LPT [14]. It is mostly 

utilizable in image registration and object recognition. 

Indeed this mapping is non uniform. Therefore, LPT is a 

nonlinear sampling method that registers an image from 

Cartesian space to the polar space. In other words, LPT is 

a 2D conformal transformation which transform 

[x,y]⇒[φ,α] around the assigned center [xc,yc]. Therefore, 

LPT can transform an image from Cartesian space to the 

polar space as I(x,y)⇒ILP(φ,α). The mathematical 

formulation of LPT is as follows [15]. 

2
)(

2
)(= cyycxx

base
log 

  

(22) 

).(
1

=

cxx

cyy
tan






    (23) 

in which, (xc,yc) is the center pixel of the main image in 

Cartesian coordinate, (x,y) illustrates sampling pixel in 

the main image and (φ,θ) denotes the log-radius and the 

angular position in Log-Polar coordinates. As shown in 

the formulation of LPT and in the Fig. 1, it is obvious that 

the radius of this transform treats exponentially by 

increasing distance from the origin. As a result, angular 

motion through this transformation remains constant from 

Cartesian coordinate to the polar coordinate. [15]. Hence, 

points near the origin are oversampled and by increasing 

distance from the origin they will be undersampled. 

 

 

 
Fig.1: LPT mapping: (a) a paradigm in Cartesian Coordinates, (b) 

the result by applying Log-Polar Transform in radius and angular 

direction. 

3.2. Extract Rotation and Scale using Log-Polar 

Transform 

In this section we introduce our method which simplify 

the definition of kernel and convert all degrees of 

freedom into 2D translation. As shown in Fig. 1, the main 

property of LPT is that rotation and scale in Cartesian 

space is turned in shifting along the angular and radial 

axes in the polar coordinate, respectively. This can be 

proven based on LPT formulation as follows. Assume 

that I(x,y) is the main image and L(x',y') is the 

transformed image of I(x,y) that is rotated α degrees and 

scaled by size of a [15]. Therefore, 


















 





y

x

cosasina

sinacosa

y

x





  

  
=

=   , =   x ax cos ay sin y ax sin ay cos     

 (24) 

Consider that F(φ,θ) is the main image in Log-Polar 

coordinate and G(φ',θ') is the rotated and scaled version 

of it. Based on (24) we have: 

2
)(

2
)(= yx

base
log 

)(=
22

= a
base

logra
base

log 
  

(25)

 
And also: 

)(
1

=
x

y
tan






 
 =       (26) 

Therefore based on (25) and (26) it is realizable that 

rotation and scale in the Cartesian space are transformed 

into the displacement along the radial and angular axes in 

the polar space. 

In this paper LPT is applied on the main image and the 

transformed image is used for rotation and scale 

correction. Furthermore, for detecting movement in radial 

and angular directions edge detection is applied on 

transformed image. Furthermore, the edges are used for 

tracking by using kernel based visual servoing method. 

Therefore, the previous kernel function in x-y direction 

can be used for this modification and it does not require 

any new design for the kernel. 

4. Asymptotic Stability 

Up to here we have assumed a Lyapunov function 

candidate that is positive definite and designed a control 

input that just makes the derivative of Lyapunov function 

negative semi-definite. Asymptotic stability requires 

negative definiteness of V ̇ along the traversed trajectory. 

Without loss of generality we assume that q0=0 is the goal 

position. Therefore, our aim is to show that V is positive 

definite and V ̇ is negative definite along the traversed 

trajectory. To achieve that, use Taylor expansion of ξ(t) 

about ξ0. 
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)
2

()(0= qOtq
q










   (27) 

)
2

()(=
0

qOtJq  
    (28) 

In equation (28) J is Jacobian matrix that may be defined 

as follows:  

dwtqwSwKI
q

J ))(,()(== 




   (29) 

In (27) O(q2) is higher order derivative terms of q. By 

assuming a small neighborhood around the goal position, 

higher order derivatives can be neglected from the Taylor, 

and therefore, by using equation (28) Lyapunov function 

and its derivative may be written as follows. 

1
= ( ) ( )

0 0
2

1 3
= ( ) ( ) ( )

2

T
V P

T T
q t J PJq t O q

    


   (30) 

PJ
T

JQ =
     (31) 

)
3

()()(= qOtq
T

QQtqV     (32) 

In equation (31) P is a n×n matrix that is positive definite. 

According to (30) and (32) if Jacobian matrix J∈R(n×p) (in 

which n is the number of kernels and p is the dimension 

of q(t)) is a full column rank, then Q is a full rank matrix 

with p×p dimension. By this assumption, it can be 

concluded that V is positive definite and V ̇ is negative 

definite in a small neighborhood around the goal position, 

and furthermore, they are zero at final destination point. 

By this assumption asymptotic stability is proven just in a 

small neighborhood around the goal position. In other 

cases the higher order in (32) can not be neglected and 

asymptotical stability is not proven. Experimental results 

verify asymptotic stability behavior near the goal 

position. The proposed method is not robust enough 

against measurement noise therefore in some experiments 

the uniformly ultimately bounded (UUB) stability could 

be achieved instead of asymptotic stability. 

 

5. Experimental Results 

5.1. System Setup and Implementation Issues 

The hardware setup is composed of a PC equipped with a 

Pentium IV (1.8 GHz) processor and a 512 MB of Ram. 

Furthermore, the camera is made by Unibrain Company 

with 30 frames per seconds’ rate and a wide lens with 2.1 

mm focal length. A 5DOF robot was used to generate the 

relative cyclic trajectory in the experiments. This robot is 

a Mitsubishi manipulator model RV-2AJ. Software was 

implemented in visual studio by using Open CV library 

which includes image processing algorithms. The robot 

configuration is shown in Fig.2. 

All control inputs are velocities at the end effector level. 

By using the robot Jacobian matrix at velocity level all 

control inputs are transformed to joint velocities. 

 
Fig.2: The robot that we used in our experiments, RV2AJ model 

For the industrial robots, the control input is not usually 

executable at the level of joint velocity and the control of 

the robot is only accessible through the position loop.  

Furthermore, the robot velocity shall be zero at the start 

and stop of each motion. Accordingly, the desired 

velocity that is generated by kernel method can not be 

directly executed. Consequently, the set of desired 

velocities are transformed to the desired positions by 

integration in the appropriate time interval. The time 

interval shall be carefully selected to have a smooth and 

continuous motion at the outset. Singularity avoidance 

and joint velocity limitations are considered for 

implementation based on motion planner that is formerly 

presented in[19]. 

5.2. Implementation of 2D Translation in X and Y 

Directions 

According to the 2.2 the control input is computed based 

on the kernel function. Kernel functions are usually 

chosen based on the type of experiments [12], [13]. For 

2D Translation kernel functions are designed as follows: 

)
22

2)
1

(
(

)
2

1
(=)( x

xw

e

x

vxK









   (33) 
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








  (34) 

In which, the parameters are set to μx=μy=-100, σx=σy=70, 

while (w1,w2) is the image index. In Fig.3 three random 

initials for 2D translation are tested. Suitable convergence 

toward the goal is shown in this figure, while the mean 

position errors of x and y are mentioned in Table 1. 

 
Fig.3: Three experiment results in x-y directions. a) Performance in 

x axis. b) Performance in y axis, c) convergence of KPM for 2d 

translation 

5.3. Implementation in four degrees of freedom by 

using FFT 

For implementation of KBVS, full tracking in four 

degrees of freedom is required. Combination of four 

degrees of freedom requires decomposition of 2D 

translation from scale and rotation. As mentioned Fourier 

transform is used for this purpose. Therefore, scale and 

rotation compensation is done by the magnitude of 

Fourier transform, and then the image signal is used for 

tracking in 2D motion. 

In this section, some experiments have been conducted to 

validate the KBVS by using Fourier transform according 

to the 2-3 and 2-4. We have done some experiments to 

show the features of Fourier transform in KBVS method. 

For illustration, some tests in scale and rotation directions 

and the combination in four degrees of freedom have 

been designed as follows: 

1. Translation along and rotation about the optical axis by 

computing Fourier transform.  

2. Decomposition of 2D Translation from rotation and 

scale corrections using the magnitude of Fourier 

transform.  

3. Combination of 3D translation (x,y,z) plus roll motion 

about the optical axis by Fourier transforms.  

5.3.1. Depth and Roll Motion Using FFT 

Kernel functions for scale and rotation are selected, 

respectively, as follows: 

2
(1/8)

=)(
v

evzK


    (35) 

2
2

(1/8)2
1

(1/8)
=)(

v
e

v
evK






    (36) 

 

In Fig. 4 five random initials for scale are tested. Suitable 

convergence toward the goal is shown in this figure, 

while the mean position errors of scale test are mentioned 

in Table 2. Fig. 5 shows the five random initials to the 

goal position for rotation test. Suitable convergence 

toward the goal is shown in this figure, while the mean 

position error of θ is mentioned in Table 2. It is obvious 

in these figures that the performance of kernel based 

visual servoing system is quite suitable for different initial 

conditions. In order to verify similar results a compound 

motion in all degrees of freedom is considered in the next 

experiments. 

 
Fig.4: Five experiment results in z directions. a) Performance in z 

axis. b) Convergence of KPM for z axis using FFT 

5.3.2. Decomposition of 2D Translation from rotation 

and scale corrections 
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As mentioned before, for 2D translation the image 

intensity is used directly but for scale and rotation the 

magnitude of FFT is required. The purpose of this section 

is to illustrate the effectiveness of FFT in the 

decomposition of scale and rotation from 2D translation. 

Note that in both experiments the magnitude of FFT is 

independent from 2D translation, and therefore, in these 

experiments the 2D translation error will not be directly 

compensated. 

 
Fig.5: Five experiment results in rotation about z axis a) 

performance about θ. b) Convergence of KPM for θ using FFT 

Fig. 6 illustrates the first experiment where the robot has 

performed an x-y-z motion. As it is seen in the final 

picture of this experiment by using FFT of the images in 

the kernels, the z motion is compensated, but the x and y 

remains unchanged. Similarly, Fig. 7 illustrates the 

experiment result for a 3D motion in which in addition to 

x-y motion rotation along z axis is considered. The same 

decoupling in motion is clearly observed in the final 

picture of the target, in which the rotation is compensated 

for, while the x-y translation is not compensated. 

Consequently magnitude of FFT is an effective tool to 

decompose z and θ motions from 2D translation. 

Therefore, it could be used for KBVS purposes. 

5.3.3. 3D Translation + Roll Motion using FFT 

For the final experiment we have considered a full 4D 

motion, in which the 2D translation in x and y motion is 

performed in addition to a translation along and a rotation 

about z axis. In order to perform a full visual servoing 

motion, first the scale and rotation is compensated by 

using FFT in the kernels, and then the 2D translation is 

performed. Fig. 8 illustrates the performance of this 

experiment, in which the disparity between the final and 

the goal positions are very small and hard to be observed 

in this figure. This result verifies the effectiveness of the 

decomposition method based on FFT image intensity. To 

verify the result quantitatively, Fig. 9 and Fig. 10 are 

given. Fig. 9 illustrates KPM for 2D translation, rotation 

and scale, while Fig. 10 demonstrates the position error 

norms in all four degrees of freedom. As it is shown in 

these figures, the tracking errors in all 4 degrees of 

freedom are relatively small, and remain in suitable range. 

Relative comparison shows similar and better 

performance in translational motion compared to that of 

rotational performance. 

 

 
Fig.6: Example images in a real environment. (a). Goal image. (b). 

initial image with 2D translation and scale. (c). Final image with 

scale compensation. 

 

Fig.7: Example images in a real environment. (a). Goal image. (b). 

initial image with 2D translation and rotation. (c). Final image with 

rotation compensation. 

 
Fig.8: Example images of a 4DOF trial in a real environment. The 

goal, initial, final and disparity image. 



International Journal of Robotics, Vol. 4, No. 1, 1-11 (2015) / F. Bakhshande, H. D. Taghirad 

 

 

8 

 

Fig.9: Trial with random initial position, Convergence in X, Y, Z 

and R motions. 

 
Fig.10: Trial showing control to the goal image shown in Figure(8). 

a). Convergence in KPM for X-Y. b). Convergence in KPM for Z. 

c). Convergence in KPM for R. 

5.4. Implementation in four degrees of freedom by 

using LPT 

In this section we try to implement the new KBVS 

method based on Log-Polar transform to illustrate its 

superiority to the Fourier transform. For this purpose two 

tests have been designed and implemented on the robot as 

follows: 

1. Depth and roll compensation by computing Log-Polar 

transform.  

2. Combination of 3D translation (x,y,z) plus roll motion 

about the optical axis by Log-Polar transforms. 

The mean position errors of scale and rotation tests are 

mentioned in Table 2 for more details. 

 

5.4.1. Depth and Roll Motion by using LPT 

In this part some experiments have been done on a real 

object, which is a canister lid in a black background. 

Some experiments have been performed on random initial 

position around the goal image. 

As mentioned LPT converts an image from Cartesian 

space to the Polar space. By this transform rotation and 

scale in Cartesian space convert to the 2D translation in 

the polar space along the polar axes. Therefore, the 2D 

translation kernel function can be used in this part. 

Besides it should be considered that r is the log-radius in 

the Log-Polar coordinates which treats exponentially by 

increasing distance from the origin. Therefore, applying 

2D translation kernel in this case terminates to 

unfavorable results. To remedy this problem inverse of 

the logarithm function is used in KPM, and since the 

exponential function tends to infinity a tunable parameter 

a is also considered. Eventually kernel functions are 

selected as follows: 
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(38) 

 

In (37) and (38) Kz and Kr are KPM for rotation and scale 

respectively, μx=μy=-100 and σx=σy=70. These values 

have been tuned during the experiments. Other 

parameters that are tuned for the experiments are 

controller gains and also a parameter in (37).  

Firstly, we consider some initial position in which just the 

scale translation along the optical axis is performed. Five 

random initials have been considered and results are 

shown in Fig. 11. Suitable convergence toward the goal is 

shown in this figure, while the mean position error of 

scale test is mentioned in Table 2. Besides we consider 

rotation about the optical axis and performed for five 

random initials positions. Results are shown in Fig. 12. 

Suitable convergence toward the goal has been also 

observed in this figure, while the mean position error of 

scale test is mentioned in Table 2. Results in Table 2 

show the advantages of using LPT in comparison with 

FFT. As it is reported in this table, mean position errors 

significantly decrease using Log-Polar transform. 

One of the most important features of using Log-Polar 

Transform is the combination of scale and rotation 

correction. As mentioned before, this feature increases the 

speed of convergence in compared with using Fourier 

transform. In Fig. 13 three random initials are considered 

while suitable convergence toward the goal is shown in 

Fig. 14. It shows correction in roll and depth motion 

simultaneously for a real object. 
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Fig.11: Five experiment results in z directions. a) Performance in z 

axis. b) Convergence of KPM for z axis using LPT 

 
Fig.12: Five experiment results in rotation about z axis a) 

performance about θ. b) Convergence of KPM for θ using LPT 

One of the most important features of using Log-Polar 

Transform is the combination of scale and rotation 

correction. As mentioned before, this feature increases the 

speed of convergence in compared with using Fourier 

transform. In Fig. 13 three random initials are considered 

while suitable convergence toward the goal is shown in 

Fig. 14. It shows correction in roll and depth motion 

simultaneously for a real object. 

 

Fig.13: Three experiment results in z and θ directions. a) 

Performance in z axis. b) Performance in θ axis. c) Convergence of 

KPM for z-θ using LPT 

In this part we try to apply full visual tracking in 3D 

translation and roll motion by Log-Polar transform. For 

this purpose the 2D translation has been corrected first. 

This has been done by finding the contour in the image, 

approximating its center and shifting it to the center of the 

goal image. By this means, this image can be used as the 

new goal image for 2D translation correction. The error 

threshold can be tuned in addition to the previous tunable 

parameters to achieve the desired performance. Then the 

main goal image is considered as the target image and roll 

and scale correction is performed. Fig. 15 shows the 

flowchart of sequences performed for visual tracking 

based on LPT. In Fig. 16 a random initial motion is 

considered for converging toward the goal image that 

shown in the Fig. 17.a. It is obvious that based on the 

error of 2D correction total error could be declined. 

Furthermore, the error bound could be decreased by 

improving edge detection algorithm and tuning other 

parameters. 

 
Fig.14: Example images in a real environment. Goal image, initial 

image, final image and the disparity between initial and final image 

in rotation and scale correction. LPT 
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Fig.15: Algorithm of full tracking based on LPT 

 
Fig.16: Trial with random initial position, Convergence in X, Y, Z 

and θ DOF, Convergence in KPM for z-θ and X-Y 

 
Fig.17: Example images of a 4DOF trial in a real environment. (a). 

Goal image. (b). Initial image. (c). Final image. (d). Disparity 

between initial and final image in combination of 3D + roll motion. 

Table 1. Results for KBVS method in 2D translation 

   10 trials with random initial 

positions 
position error 

mean position error of x (cm) 0.0205 

mean position error of y (cm) 0.1202 

Table 2. Comparison of Fourier transform and Log-Polar 

transform in KBVS 

   10 trials with random initial positions position error 

mean position error of z (cm)-FFT 0.5158 

mean position error of θ (degrees)-FFT 0.2405 

mean position error of z (cm)-LPT 0.0263 

mean position error of θ (degrees)-LPT 0.0698 

6. Conclusions 

Kernel based visual servoing is a method in which 

tracking is performed based on the KPM as the feedback 

signal which is a weighted sum of the image. KBVS is a 

featureless tracking method without the need to separate 

tracking and control parts. Based on the KPM, a 

Lyapanov function is given to verify asymptotic stability 

of this method. Consequently the convergence of leading 

an eye-in-hand robot to the goal position without any 

feature tracking is verified in experiments. In this paper it 

is proposed to use Fourier transform to decompose 2d 

translational motion from the motion along, and rotation 

about the z-axis. Experimental results verify effectiveness 

of the proposed method in such decomposition. This idea 

enables KBVS methods to be concurrently implemented 

for four degrees of freedom. In the experiments, first the 

translation along and the rotation about the z axis is 

compensated by using FFT of image intensity, while at 

the same time the other 2 degrees of translation are 

compensated for with the ordinary kernel functions. 

Besides Log-Polar transform has been introduced to 

increase the accuracy and speed of convergence. This 

purpose is done by converting the rotation and scale 

directions from Cartesian space to the 2D translation in 

the polar space. Besides compensation in rotation and 
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scale directions can be done simultaneously with one 

kernel function. Final experimental results verify suitable 

tracking performance for tracking an unmarked, and non 

ideal object in a real environment. Comparison between 

FFT and LPT shows the superiority of LPT performance 

in KBVS method. 
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