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Abstract In most practical applications, studying the
asymptotic stability of equilibrium points of a system
is of utmost importance. Furthermore, in many cases,
the response is restricted to only a sector of the state
space. For example, positive systems that are common
in chemical processes have nonnegative state variables.
For such systems, stability analysis of the system using
Lyapunov stability is not advised, since this stability is
defined for all the points within a neighborhood of the
equilibrium point. In this paper, a new notion of stabil-
ity, called corner stability, is defined as more suitable
for studying asymptotic stability of equilibrium points
in such systems. In order to derive sufficient condi-
tions of corner stability, a theorem is stated and proven
in this paper, and corner stability of three case studies
is analyzed and verified.
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1 Introduction

There are various definitions for stability of a dynam-
ical system. In order to study a history of these defini-
tions, one may refer to reference [1]. We may refer to
Poincaré stability (or orbital stability) [2], Zhukovsky
stability [3], Lyapunov stability [4], and asymptotic
stability [4] as common definitions for the stability
of the solution for a dynamical system. Definitions of
Poincaré, Zhukovsky, and Lyapunov are equal when
analyzing the stability of an equilibrium point. Lya-
punov is often chosen to evaluate stability for an equi-
librium point among these three definitions. An equi-
librium point of a dynamical system is stable in the
sense of Lyapunov if all solutions starting at nearby
points stay nearby; otherwise, it is unstable. In many
practical applications, the stability in the sense of Lya-
punov is not sufficient, and convergence to the equi-
librium point, not demonstrated by Lyapunov stability,
is important; this type of equilibrium point is called
asymptotically stable. The basic method to guarantee
asymptotic stability is Lyapunov’s direct method [4].
In this method, in order to guarantee asymptotic sta-
bility of equilibrium point for an autonomous system,
the goal is to obtain a positive definite function whose
derivative with respect to time is negative definite. In
this method, in fact, the problem of asymptotic stability
of the equilibrium point is converted to finding a Lya-
punov function. Based on Lyapunov theorem, various
theorems are generalized with respect to the different
approaches such as relaxing the negative definite con-
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dition of the first derivative of a Lyapunov function,
using a vector function instead of a scalar function as
a Lyapunov function, and applying higher-order deriv-
atives of a Lyapunov function candidate. Briefly, we
review the striking results in each of these approaches
in the following paragraphs.

LaSalle [5] simplified the conditions of the Lya-
punov theorem for asymptotic stability of an autono-
mous system’s equilibrium point by use of invariant
sets. In [6], the negative definite condition for the deriv-
ative of the function with respect to time is substituted
with two conditions, namely derivative of the func-
tion should be negative semi-definite with respect to
time, and furthermore, there should exist a T > 0
where for all t ≥ t0, we have

∫ t+T
t V̇ (x(τ ), τ )dτ ≤

−α(‖x(t)‖) < 0, in which α is a positive monotonic
function on R

+ and satisfies α(0) = 0. In [7], it is
shown that only the second condition given in [6], con-
sidering that the function α is in the class of K , can
replace the negative definite condition of the deriva-
tive function. Furthermore, in reference [8], it is shown
that if the second condition in reference [6] is held for
a strictly increasing series of time, then it can replace
the negative definite condition of the derivative of Lya-
punov function for uniform asymptotic stability proof.

Vector Lyapunov function is introduced in [9] which
extends the Lyapunov second method for the systems
with higher dimensions. In fact, in this method instead
of finding a Lyapunov function for the whole system,
it is tried to find a decrescent and at least positive semi-
definite function in form of Vi (x, t) which for ki > 0
makes the function V = ∑m

i=1 ki Vi , to become posi-
tive definite. Then, Vi is a candidate Lyapunov func-
tion of the corresponding subsystem, and function V
may be nominated as the Lyapunov function for the
whole system [10]. By using the generalized compar-
ison lemma, defined in [11], references [11,12] have
used vector Lyapunov function in a different way. They
obtain a relation between the solutions of the vector
inequality V̇ ≤ g(V (x, t)) and that of U̇ = g(U (x, t))
with V,U ∈ R

m . They have shown that if function
g : R

m −→ R
m is in class of W and for the initial

condition we have: V (x0, t0) = U (t0), then we will
have: Vi (x, t) ≤ Ui (t). Now, if the equilibrium point
is asymptotically stable for the system U̇ = g(U (x, t)),
then that equilibrium point will be asymptotically sta-
ble for the system in which vector function V is con-
sidered for the stability proof. In this method, negative
definiteness of V̇i (x, t) is not required.

Higher-order derivative of a function is used for
asymptotic stability proof of a system. For autonomous
systems, reference [13] substituted negative definite
condition for V̇ (x) with condition a2(dV̈ /dt)(x) +
a1V̈ (x)+ V̇ (x) < 0, for all x �= 0, where a1, a2 ≥ 0.
In reference [14], the negative definite condition for
function V̇ is substituted with negative definite condi-
tion for min{V̇ (x), hV̈ (x)}, in which h > 0 in some
regions around the origin. In reference [13], also it is
shown that this condition is held only if V̇ (x) is negative
definite, and therefore, this condition is useless (origin
is considered as the equilibrium point). Reference [15]
used the inequality V (m) ≤ gm(V, V̇ , . . . , V (m−1), t)
and compared it with auxiliary system of u(m) =
gm(u, u̇, . . . , u(m−1), t) and showed that if the equilib-
rium point of auxiliary system with the vector field of
class W is asymptotic stable, then the equilibrium point
of described system with x(t) is asymptotic stable.

In reference [16], which has the combination of
above approaches, it is shown that if there exists vector
V with decrescent Vi and a positive definite V1 which
satisfies inequality A(m×m)V̇ ≤ [V2, V3, . . . , Vm −
ϕ(‖x‖)]T , in which A = [ai j ] is a lower triangular
matrix with aii > 0 and ai> j ≥ 0, then asymptotic
stability of the system is guaranteed (function ϕ is in
class of K ).

Recently, the dynamical Lyapunov functions were
introduced in the reference [17] which has a different
approach from above. Dynamical Lyapunov functions
are defined as pair (Dτ , V ) in which Dτ is the ordinary
differential equation ξ̇ = τ(x, ξ) with ξ(t) ∈ R

n and
V is a Lyapunov function for an extended system in
form of [ẋ ξ̇ ]T = [ f (x) τ (x, ξ)]T . Stability proof of
the system by using dynamical Lyapunov functions is
related to finding the solution, ξ(x), of the equation
∂ξ
∂x f (x) = τ(x, ξ(x)).

In part of references, instead of developing Lya-
punov’s theorem, efforts have been made to provide
methods to obtain a function that satisfies the condi-
tions of Lyapunov’s theorem. In reference [18], a Lya-
punov function is constructed by backward integration
of the composite system trajectory. In reference [19],
search for Lyapunov function and its generation, based
on the sum of squares (SOS) decomposition, are algo-
rithmically formulated for a class of nonlinear dynam-
ical systems.

All the above-mentioned references are concerned
with establishing the stability or asymptotic stability
of an equilibrium point. There are also instability theo-
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rems for establishing that an equilibrium point is unsta-
ble. The most powerful of these theorems is Chetaev’s
theorem [20]. There are other instability theorems that
were proved before Chetaev’s theorem, but they are
corollaries of the theorem such as Lyapunov’s insta-
bility theorems. Now, consider that one may want to
study asymptotic stability of the equilibrium point of an
autonomous system, which its responses are restricted
to only a sector of the state space, as an example
consider positive system1 [21,22] that are common in
chemical and biological processes [23]. For this pur-
pose, it is sufficient and sometimes necessary (refer to
Example 1) that the asymptotic stability definition is
restricted to the sector that states are restricted to it.
On the other hand, most of the previous works on the
stability analysis of such systems are restricted homo-
geneous [24–26] or linear analysis [27]. Furthermore,
for many practical systems, we may encounter physical
limitations for existence of solution in a sector of state
space. Therefore, it is necessary to develop a sufficient
conditions similar to that of the Lyapunov theorem to
deal with such systems. This task is accomplished for
the first time in this paper.

2 Corner stability

Consider an autonomous system

ẋ = f (x) (1)

where f : D → R
n is a locally Lipschitz map from

a domain D ⊂ R
n into R

n . Suppose xe ∈ D is an
equilibrium point of (1); that is, f (xe) = 0. For con-
venience, we state the definition of corner stability and
theorems for the case when the equilibrium point is at
the origin of R

n ; that is, xe = 0. There is no loss of
generality in doing so because any equilibrium point
can be shifted to the origin via a change in variables.
Suppose xe �= 0 and consider the change in variables
y = x − xe. The derivative of y is given by

ẏ = ẋ = f (x) = f (y + xe)
def= g(y), where g(0) = 0.

In the new variable y, the system has equilibrium at the
origin. Therefore, without loss of generality, we will

1 A positive system is a system in which all of states are non-
negative for all t ≥ 0. Some of practical systems like absolute
temperature control, liquid level control in tanks, density control
of substances in chemical processes etc. are in positive systems
class.

V1(x) = 0

V2(x) = 0

V̇1(x) = 0

V̇2(x) = 0

x = r3

Ω4

V1(x) = 0

x = r1

Ω1

V̇1(x) = 0

x = r1

Ω2

V2(x) = 0

x = r2

Ω3

0 0

0 0

Fig. 1 Geometric representation of sets in the theorem condi-
tions

always assume that f (x) satisfies f (0) = 0 and study
the corner stability of the origin x = 0.

Definition 1 Equilibrium point on the origin of (1) is
called corner stable, if domain ω ⊂ D can be found
where the origin is a boundary point for this domain
and also the set Ω = ω ∪ {0} form a positive invariant
set, where each solution x(t) in the set of Ω satisfy2

∀ε > 0, ∃δ > 0 : ‖x(t0)‖ < δ(ε) ⇒
‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0, and lim

t−→∞‖x(t)‖ = 0.

(2)

Theorem 1 [20] Let W be a compact subset of D, x0 ∈
W , and suppose it is known that every solution of such
system (1) with the initial condition x(t0) = x0 lies
entirely in W . Then, there exist a unique solution that
is defined for all t ≥ t0.

Theorem 2 Consider the autonomous system defined
by Eq. (1). Now assume that there exist functions V1 :
D → R and V2:D → R with continuous partial first
order derivatives, that satisfy the following conditions.

2 ‖ · ‖ Indicates norm.
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Then, there exist a region Ω ⊂ D in which the corner
stability is guaranteed.

Conditions

1. There exist a domain Ω1 ⊂ D where3

∀x ∈Ω1 ⇒ V1(x) > 0,

Ω1 ⊂ B(r1, 0) ⊂ D, r1>0,

and furthermore, for the boundary ofΩ1, we have4

∀x ∈ ∂Ω1 ⇒ V1(x) = 0 ∨ ‖x‖ = r1,

0 ∈ ∂Ω1, ∂Ω1 ∩ B(r1, 0) �= ∅. (3)

2. There exist a domain Ω2 ⊂ Ω1 where

∀x ∈ Ω2 ⇒ V̇1(x) < 0,

and furthermore, for the boundary of Ω2, we have

∀x ∈ ∂Ω2 ⇒ V̇1(x) = 0 ∨ ‖x‖ = r1,

0 ∈ ∂Ω2, ∂Ω2 ∩ B(r1, 0) = ∅,
H = {

x ∈ ∂Ω2 \ {0} : V̇1(x) = 0
}
,

[H ∩Ω2] ⊂ Ω1.

(4)

3. There exist a domain Ω3 ⊂ Ω2 where

∀x ∈ Ω3 ⇒ V2(x) > 0, Ω3 ⊂ B(r2, 0), r2 > 0,

and furthermore, for the boundary of Ω3, we have

∀x ∈ ∂Ω3 ⇒ V2(x) = 0 ∨ ‖x‖ = r2, r2 < r1,

0 ∈ ∂Ω3, ∂Ω3 ∩ B(r2, 0) �= ∅,
Ω3 \ {0} ⊂ Ω2.

(5)

4. There exist a domain of Ω4 ⊂ Ω3 where

∀x ∈ [Ω3 \Ω4]o ⇒ V̇2(x) > 0,

Ω4 ⊂ B(r3, 0), r3 > 0,
(6)

3 B(r, 0) = {x ∈ R
n : ‖x‖ < r}.

4 ∂Ω1, Ω
o
1 and Ω1 are boundary, interior and closure of Ω1,

respectively.

and furthermore, for the boundary of Ω4, we have

∀x ∈ ∂Ω4 ⇒ V̇2 = 0 ∨ ‖x‖ = r3, r3 < r2,

0 ∈ ∂Ω4, ∂Ω4 ∩ B(r3, 0) �= ∅,
[Ω4 \ {0}] ⊂ Ω3. (7)

Refer to Fig. 1

Proof we define domain Ωε
3 as follows:

Ωε
3 = Ω3 ∩ B(ε, 0), 0 < ε < r3, (8)

and define domain πρ as follows:

πρ = {
x ∈ Ωε

3 : V1(x) < ρ
}
, ρ > 0. (9)

since V1(x) is continuous and domain πρ remains non-
empty for all ε ∈ (0, r3); therefore, we have

0 ∈ ∂πρ (10)

and ρ satisfies the following inequality

0 < ρ < ρm (11)

where ρm calculated as follows:

ρm = min
x∈L

V1(x), L = {
x ∈ ∂Ωε

3 : ‖x‖ = ε
}
. (12)

As L is a compact set and function V1(x) is contin-
uous on L , therefore, function V1(x) will have a min-
imum on L . Also according to Eqs. (4) and (7), we
have L ⊂ Ω1. Therefore, V1(x) is positive on L; hence
ρm > 0. Now we may prove that L ∩ ∂πρ = ∅. For
closure πρ , we have

πρ = [
Ωε

3 ∩ {x ∈ Ω1 : 0 < V1(x) < ρ}]

⊂
[
Ω
ε

3 ∩ {
x ∈ Ω1 : 0 ≤ V1(x) ≤ ρ

}]
.

(13)

Therefore, for the right hand of Eq. (13), we have

[
Ω
ε

3 ∩ {
x ∈ Ω1 : 0 ≤ V1(x) ≤ ρ

}]

⊂
{

x ∈ Ωε

3 : 0 ≤ V1(x) ≤ ρ
}
.

We use a contradiction argument. Suppose L ∩ ∂πρ �=
∅. In this case, there exists a point p0 ∈ L which is a
member of ∂πρ . According to Eq. (12) for the point p0
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0 < ρ < ρm

V2(x) = 0

V1(x) = 0

V1(x) = ρ

x = ε

πρ

ρ > ρm

V2(x) = 0

V1(x) = 0

V1(x) = ρ

x = ε

πρ0 0

Fig. 2 Geometric representation of set πρ

on L , we have V1(p0) ≥ ρm , and also for p0 ∈ ∂πρ , we
have 0 ≤ V1(p0) ≤ ρ that as ρ < ρm ; therefore, this
is a contradiction and L ∩ ∂πρ = ∅ (Fig. 2). Domain
Ωε

4 is defined as follows

Ωε
4 = Ω4 ∩ B(ε, 0) (14)

and domain of ψρ is defined as follows:

ψρ = {
x ∈ Ωε

4 : V1(x) < ρ
}
, ρ > 0. (15)

Because V1(x) is continuous and domain ψρ remains
nonempty for all ε ∈ (0, r3); therefore, we have

0 ∈ ∂ψρ
and furthermore, as Ωε

4 ⊂ Ωε
3 and according to the

Eqs. (9) and (15), it is concluded that ψρ ⊂ πρ .
Now we may prove that [πρ \ ψρ] ⊂ [Ω3 \ Ω4].

According to Eqs. (8) and (9), we have: [πρ\ψρ] ⊂ Ω3.
Therefore, it is sufficient to show that: [πρ \ψρ]∩Ω4 =
∅. Assume that p0 ∈ [πψ \ ψρ] which means p0 ∈ πρ
and p0 /∈ ψρ . According to Eq. (15) we have p0 /∈ Ω4.
Therefore, we will have

[
πρ \ ψρ

] ⊂ [Ω3 \Ω4] . (16)

For domain πρ , we have

∀ ∈ ∂πρ ⇒ V2(x) = 0 ∨ V1(x) = ρ, 0 ∈ ∂πρ.
(17)

According to Eqs. (7) and (14), it is concluded that
[Ωε

4 \ {0}] ⊂ [Ω4 \ {0}] ⊂ Ω3. Hence, we have

∀x ∈ ∂ψρ \ {0} ⇒ V1(x) �= 0. (18)

V̇2(x) = 0

V̇2(x) = 0

V2(x) = 0

V2(x) = 0

[πρ\ψρ]

[πρ\ψρ]

V1(x) = ρψρ0

Fig. 3 Geometric representation of set ψρ

For domain ψρ , we have

∀x ∈ ∂ψρ ⇒ V1(x) = ρ ∨ V̇2(x) = 0, 0 ∈ ∂ψρ,
(19)

and for the domain πρ , it can be written

πρ = ψρ ∪ [
πρ \ ψρ

]
.

According to Eqs. (17) and (18), boundary of πρ
defined by V2(x) = 0 is a part of boundary of [πρ \ψρ]
(Fig. 3).

Now consider the solution x(t), in the time interval
[t0, T ), is inside πρ . According to Eq. (9), we have

∀x ∈ πρ ⇒ V1(x) > 0, V̇1 < 0,

and therefore, we have

V1(x(t)) = V1(x(t0))+
∫ t∈[t0,T )

t0
V̇1(x(τ ))dτ

⇒ V1(x(t)) ≤ V1(x(t0)) < ρ. (20)

From Eq. (20), it is concluded that the solution x(t)
does not leave the domain πρ which its boundaries are
specified with V1(x) = ρ. According to Eq. (19), if
solution x(t) leaves domain ofπρ specified by V2(x) =
0, then it will cross region [πρ \ψρ]. According to the
Eqs. (6) and (16) for the region [πρ \ ψρ], we have

∀x ∈ [
πρ \ ψρ

]o ⇒ V2(x) > 0, V̇2 > 0. (21)

Therefore, for the solution x(t) in time interval [t0, T )
to remain inside [πρ \ ψρ], we have

V2(x(t)) = V2(x(t0))+
∫ t∈[t0,T1)

t0
V̇2(x(τ ))dτ

⇒ V2(x(t)) ≥ V2(x(t0)) > 0. (22)
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From Eq. (22), it is concluded that the solution x(t)
cannot leave domain of πρ specified by V2(x) = 0.
Therefore, according to Eq. (21), the solution x(t)with
the initial condition of x(t0) ∈ πρ remains inside of
domain πρ for all the times t ≥ t0. According to the-
orem (1) and considering πρ ⊂ B(ε, 0) ⊂ D, unique-
ness of the solution x(t) is guaranteed. Now according
to the fact that by choosing an optional ε in the interval
0 < ε < r3, the set πρ is obtained and by choosing δ
as follows:

δm = min
x∈L

‖x‖, L = {
x ∈ πρ : V1(x) = ρ

}

⇒ δ < δm,

and furthermore, with the notice that: πρ∩ B(δ, 0) �= ∅
(and because 0 ∈ ∂πρ), the following inequality is
proven.

∀ε > 0, ∃δ > 0 : ‖x(t0)‖ < δ(ε) ⇒ ‖x(t)‖ < ε,

t ≥ t0 ≥ 0

Now there is only required to prove that

∀x(t0) ∈ πρ ⇒ lim
t→∞‖x‖ = 0.

Now we should show that by increasing t to infinity,
V1(x(t)) tends to zero because V1(x(t)) is monotoni-
cally decreasing on πρ and its lower bound is zero. In
other words,

V1(x(t)) → σ ≥ 0 as t → ∞, σ < ρ.

By using the following contradiction argument, we
prove that σ = 0.

Suppose that σ �= 0, then we have V1(x(t)) → σ >

0 which shows that the solution x(t) with initial con-
dition x(t0) ∈ [πρ \ πσ ] for the time interval [t0,∞)is
outside πσ ⊂ πρ . Now calculate α as follows:

α = min
x∈L

(−V̇1(x)),

L = {
x ∈ πρ : σ ≤ V1(x) ≤ ρ

}
.

According to [πρ \ {0}] ⊂ Ω1 and 0 /∈ L , if there
exist an α, then α > 0. There exist some values for α
because the set L is a compact and function V̇1(x) is
continuous on it. If x(t) in the time interval of [t0,∞)

stays inside πρ \ πσ , then we will have

V1(x(t)) = V1(x(t0))+
∫ t

t0
V̇1(x(τ ))dτ

≤ V1(x(t0))− α(t − t0), t ≥ t0. (23)

According to inequality (23) and V1(x(t)) > 0, we
should have

t <
V1(x(t0))

α
+ t0. (24)

The inequality (24) is in contradiction with the assump-
tion that the solution x(t) in the time interval [t0,∞)

is inside the πρ \ πσ . Therefore, σ = 0 and the proof
is complete.

3 Case studies

Example 1 Consider a system described by the follow-
ing equations.

[
ẋ1

ẋ2

]

=
[−x2

1
−x2

]

(25)

According to Chetaev’s theorem by using V = x1 for
the region {x ∈ R

2 : x1 < 0}, the instability of origin
can be proved.

V = x1 ⇒ V̇ = −x2
1 (26)

Now, suppose the variable x1 is the density of a chemi-
cal substance, in which, x1 will always be nonnegative.
Therefore, considering instability of the origin based
on Chetaev’s theorem with using V = x1, it is not
true.

The corner stability of origin is studied by using
functions V1(x) and V2(x) stated in the Eq. (27) con-
taining parameters a and b consequently.

V1 = x1 + ax2
2 , V2 = −x2

2 − bx4
1 (27)

The derivative of these functions with respect to time
is as follows:

V̇1 = −x2
1 − 2ax2

2 , V̇2 = 2x2
2 + 4bx5

1 .

The functions V1(x) and V2(x) satisfy the conditions
of the theorem by considering a = −0.4 and b = −4.
Therefore, there is Ω ⊂ B(0.4, 0) with a boundary
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Fig. 4 Geometric representation of sets in the Example 1
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Fig. 5 Phase portrait of a system described by the Eq. (25)

defined by the relation (28) that satisfies corner stability
conditions as illustrated in Fig. 4.

∀x ∈ ∂Ω : V1(x) = 0.24 ∨ V2(x) = 0 (28)

Phase portrait of this system is shown in Fig. 5 to illus-
trate the corner stability of the equilibrium point.

Example 2 Consider a system described by the follow-
ing equations.

[
ẋ1

ẋ2

]

=
[

x2 − (x2 + 1)x1

0.2[−x2 + (x2 + 0.5)x1]
]

(29)

This system describes enzyme kinetics. The behavior
of this system is studied in [28,29], and estimation of
its slow manifold is presented by the following set.

Mslow =
{

(x1, x2) ∈ R
2 : x1 = x2

x2 + 1
+ 0.1x2

(x2 + 1)4

}

Consider function V (x) and its derivative with respect
to time based on the following equations.

V = −(x2 − ax1)(x2 − bx3
1), a, b = cte,

V̇ = 1

10

[
ax2

1 − (2 + 12a)x1x2 + (4 + 10a)x2
2

− (4 + 10a)x1x2
2 + 2ax2

1 x2 + (b + 40ab)x4
1

− (32b + 40ab)x3
1 x2 + 30bx2

1 x2
2

+ (2b + 40ab)x4
1 x2 − 30bx3

1 x2
2

]
(30)

Now functions V1(x) and V2(x) for studying the corner
stability of origin are obtained by the equations

V1 = V |a=20, b=0.2,

V2 = −V̇ |a=5, b=0.5 . (31)

Derivative of function V1(x) with respect to time can
be easily calculated from Eq. (30), and the derivative
of function V2(x) with respect to time is calculated by
substituting values of a and b in the Eq. (32).

V̇2 = −1

50

[
−(1 + 16a)x2

1 + (16 + 92a)x1x2

− (18 + 80a)x2
2

+ ax3
1 − (6 + 54a)x2

1 x2+(46+170a)x1x2
2

− (20 + 50a)x3
2 − (36b + 820ab)x4

1

+ (2a + 562b + 1440ab)x3
1 x2

+ (20 + 50a + 300b)x1x3
2

− (8 + 40a + 840ab + 600ab)x2
1 x2

2

+ (b + 20ab)x5
1 − (124b + 1680ab)x4

1 x2

+ (1090b + 1400ab)x3
1 x2

2 − 750bx2
1 x3

2

+ (40ab+2b)x5
1 x2 − (100b+800ab)x4

1 x2
2

+ 450bx3
1 x3

2

]
(32)

Therefore, there is Ω ⊂ B(1, 0) with a boundary
defined by the relation (33) that satisfies corner sta-
bility conditions as illustrated in Fig. 6.

∀x ∈ ∂Ω : V1(x) = 6.11 ∨ V2(x) = 0 (33)

Phase portrait of this system is shown in Fig. 7 to illus-
trate the corner stability of the equilibrium point.

Example 3 The following example constructed by
Vinograd shows that the combination of Lyapunov
instability and attractivity can be realized even in an
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Fig. 6 Geometric representation of the sets in Example 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

Fig. 7 Phase portrait of a system described by the Eq. (29)

autonomous system of equations of second order [30].
Let

ẋ1 = x2
1

(
x2 − x1 + x5

2

)

(
x2

1 + x2
2

) (
1 + (

x2
1 + x2

2

)2
) ,

ẋ2 = x2
2 (x2 − 2x1)

(
x2

1 + x2
2

) (
1 + (

x2
1 + x2

2

)2
) . (34)

The right sides are defined to be zero for x1 = x2 =
0. Then, the Lipschitz condition is satisfied. Consider
function V (x) and its derivative with respect to time
based on the following equations.

V = −(x2 − cx1)(x2 − dx2
1 ), c, d = cte,

V̇ =
{

1
(x2

1+x2
2 )(1+(x2

1+x2
2 )

2)
w(x), for x �= 0

0, for x = 0
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Fig. 8 Geometric representation of the sets in Example 3

w = −cx3
1 x2 + (4 + c)x1x3

2 − cx2
1 x2

2 − 2x4
2

+ 3cdx5
1 + dx2

1 x3
2 − (2d + 3cd)x4

1 x2

+ cx6
2 + 2dx1x6

2 − 3cdx2
1 x5

2 (35)

Now, functions V1(x) and V2(x) for studying the corner
stability of origin are obtained by the equations

V1 = V |c=2, d=0.1,

V2 = −w |c=1.5, d=0.2 .
(36)

Derivative of function V1(x)with respect to time can be
calculated from Eq. (35), and the derivative of function
V2(x)with respect to time is calculated by substituting
values of a and b in the Eq. (37).

V̇2 =
{

1
(x2

1+x2
2 )(1+(x2

1+x2
2 )

2)
u(x), for x �= 0

0, for x = 0

u = 28x1x5
2 + 3cx1x5

2 − (20 + 7c)x2
1 x4

2 − 4x3
1 x3

2

+ cx4
1 x2

2 +3cx5
1 x2−8x6

2 −15cdx7
1 +8dx6

1 x2

+ 27cdx6
1 x2 − (4d + 6cd)x5

1 x2
2

− (4d + 3cd)x4
1 x3

2

− 4dx3
1 x4

2 + 3dx2
1 x5

2 − 3cx2
1 x6

2 − 14cx1x7
2

+ (4+7c)x8
2 +21cdx4

1 x5
2 +(12cd−10d)x3

1 x6
2

− (22d+15cd)x2
1 x7

2 +14dx1x8
2 −6cdx1x10

2

+ 2dx11
2 (37)

Therefore, there is Ω ⊂ B(1.2, 0) with a boundary
defined by the relation (38) that satisfy corner stability
conditions as illustrated in Fig. 8.

∀x ∈ ∂Ω : V1(x) = 0.4 ∨ V2(x) = 0 (38)
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Fig. 9 Phase portrait of a system described by the Eq. (34)

Phase portrait of this system is shown in Fig. 9 to illus-
trate the corner stability of the equilibrium point.

4 Conclusion

In this study, corner stability has been defined. This
kind of stability is a valid replacement for stability
assessment of equilibrium point of systems in which
their response is limited to a region of state space such
as positive systems. Furthermore, a theorem for corner
stability is stated and proved in this paper, which pro-
vides the sufficient conditions for such stability. Finally,
corner stability of equilibrium point of three case stud-
ies has been analyzed, and the results are verified by
their phase portraits.
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