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Abstract 

The performance of visual servoing systems can be enhanced through nonlinear controllers. In 

this paper, a sliding mode control is employed for such purpose. The controller design is based on 

the outputs of a pose estimator which is implemented on the scheme of the position-based visual 

servoing (PBVS) approach. Accordingly, a robust estimator based on unscented Kalman observer 

cascading with Kalman filter is used to estimate the position, velocity and acceleration of the 

target. Therefore, a PD-type sliding surface is selected as a suitable manifold. The combination of 

the estimator and nonlinear controller provides a robust and stable structure in PBVS approach. 

The stability analysis is verified through Lyapunov theory. The performance of the proposed 

algorithm is verified experimentally through an industrial visual servoing system. 

Keywords: Nonlinear controller, Position-based visual servoing, Unscented Kalman filter, PD-

type sliding surface, Lyapunov theory. 

I. INTRODUCTION 

Visual servoing (VS) is applied for tracking the movement of any specific objects based on a 

vision input. Different research fields, like robotics, image processing, and control are applied to 

achieve VS. It has wide applications in robotics and Mechatronic systems like medical robotics, 

planetary robotics and especially their extensive application in industrial robots, [1], [2]. The 

respective control loop in VS has different architectures such as look-and-move structure and per 

Weiss structure [3]. Look-and-move structure has an internal feedback controller, as being used in 

many industrial robots. Such setups may accept Cartesian velocity or incremental position 

commands and permits to simplify the design of control signal [3].  
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There are three main approaches in VS [4], position based visual servoing (PBVS) [5], image 

based visual servoing (IBVS) [6], and “2&1/2 D” visual servoing [7], where PVBS is the most 

frequently used methods [5]. In PBVS, the control signal is produced based on the estimation of 

position and orientation (pose) of the target with respect to the camera. The accuracy of the 

estimated pose is directly related to the measurement noise and the camera calibration [ 8]. 

Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) has been developed to deal 

with the pose estimation in the noisy and uncertain situations. The aforementioned estimators 

have shown to be quite effective in practice [9,10,11]. In order to include the velocity and 

acceleration of the target, the appropriate dynamic model for the relative motion between the 

camera and the target is necessary. Conventional models are applied based on the constant 

velocity or the acceleration model which assumes invariable relative velocity or acceleration at 

each sample time [1].  

After estimating the pose of the target object, the main goal in VS problem is to enhance the 

performance of tracking via a controller. Since the system in hand (a robot) has nonlinear 

dynamics, a nonlinear controller has to be designed for this purpose. For such a design, we use 

sliding mode control (SMC) in order to achieve the robust performance in the noisy environment 

as in the industrial environments. Generally, in many forms of VS the path planning and 

controlling the end effector of robot are performed separately. By using SMC approach, the 

aforementioned tasks can be combined together. The combination helps to tune the whole control 

system together. In SMC, all states of the system are enforced to converge toward a desired 

sliding surface within a finite time and to stay on this manifold for all further times. In present 

paper, we define a PD-type sliding mode surface to generate a desired path. The novelty of such 

selection is the employment of the estimated position, velocity and acceleration of the target for 

defining the sliding manifold. The estimated values are obtained from a UKF cascade structure 

that authors recently proposed in [11]. The information of the estimated model and the 

observation inherits uncertainties, which can be directly considered in the proposed controller. 

The stability of the closed-loop system is proved by Lyapunov theory. As the target object is 

dynamically changing (in contrast to the pre-planned path), the sliding surface is adapted to the 

varying positions in the present case. 

So far, various types of SMC have been used for VS system in [12,13,14]. Usually, based on 

the nonlinear dynamics model of the system, SMC is designed. To the best knowledge of the 



authors, the stability analysis of the closed-loop system with the combination of the pose 

estimator in the uncertain and noisy situations has not been focused significantly. SMC for PBVS 

problem has been introduced theoretically for a 6 DOF robot manipulator in [15]. The desired 

path is defined in which errors are bounded, and the target visibility is guaranteed. In [16], a 

sliding surface is designed with the consideration of uncertainties in the nonlinear dynamics of the 

robot. The proposed algorithm in [16], used dynamics of robot that is too complex to implement 

on industrial robots. In our case, PD-type sliding surface is developed for a five degrees of 

freedom robot manipulator, with PBVS approach. The existence of the internal feedback 

controller on the industrial robot manipulator makes the controller design simpler, since the robot 

accepts the position command in the task space. Through the internal loop, a simplified motion 

kinematics model can be used for the industrial robot, where the controller inputs are the joint 

velocity signal. To produce the control signal, the information of the pose estimator is used as the 

sliding manifold’s input. Finally, the tracking performance of the adapted control scheme on the 

industrial robot is verified experimentally. 

II. THEORETICAL BACKGROUND 

In this section, first experimental setup that has been used for VS purpose is presented. Then, 

the formulation of UKO+KF pose estimators is reviewed. Furthermore, practical implementation 

issues of applying control outputs to an industrial manipulator are described. 

A.  Experimental Setup 

The experimental hardware setup, which is shown in Fig. 1, consists of a 5-DOF RV-2AJ robot 

manipulator produced by Mitsubishi Co. augmented with a one degree of freedom linear gantry. 

This robot has five degrees of freedom motion, with one degree of redundancy, but the orientation 

of the wrist about the tool axis is not presented in the structure. Additionally a PC equipped with a 

Pentium IV (1.84 GHz) processor and a 1 GB of RAM is utilized as the processor. A camera is 

attached on the end effector of the manipulator, which is a Unibrain Co. product with 30fs frame 

rate and a wide lens with 2.1 mm focal length. Since we need a real-time setup, OPENCV Library 

is used in the Visual Studio environment. 



B. Feature Extraction and Pose Estimation 

In the conventional pose estimation, the relative pose of the object with respect to the camera 

frame in 3D coordinates is calculated. To perform this calculation, some specified points as 

feature points attached to the target object in 2D coordinates of the image are needed. In Fig. 2, 

the projections of feature points are illustrated in the image frame which denoted by ( ), im
i i ip u v= ; 

1, ,i n= … . The feature points in the object frame can be expressed as ( ),  ,o o o o
i i i ip x y z= ; 

1, 2, ,i n= … ,   3n ≥ ; and represented in the camera frame by ( ),  ,c c c c
i i i ip x y z= . The relationship 

between c
ip  and o

ip  can be defined as the following equation 

( ), , .  c o
i ip R roll pitch yaw p T= +  (1) 

in which, roll, pitch and yaw are the orientation Euler angles and the translation are represented 

by vector [ ]    TT X Y Z= . 

 

 
Fig. 1: Experimental setup 



 
Fig. 2: Camera, object and image frames 

Using a pin-hole camera model, the relationship between
im
ip and

c
ip can be formulated as follows  
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 (2) 

In this equation, f  is the focal length and xP , yP  are inter-pixel spacing parameters along iu  and 

iv . By folding the 3n equations (1) into the camera model (2), a set of 2n nonlinear equations is 

achieved. In order to solve this set of nonlinear equations and achieve a unique solution, at least 3 

non-aligned points on the object are required [17]. There are several researches that apply EKF 

and UKF for pose estimation [ 18, 19]. Recently, [9] proposed EKF in addition to KF that 

guarantees its convergence; however, in [11] it is shown that the performance of this method is 

directly dependent to the initial condition, and therefore, the employment of UKF instead of EKF 

leads to better performance. Due to the promising features of this estimator, this technique is used 

as the pose estimator engine in this paper. In this estimator, the nonlinear-uncertain estimation 

problem is decomposed into a nonlinear-certain observation in addition to a linear-uncertain 

estimation problem. The first part is handled using the unscented Kalman observer (UKO) and the 

second part is accomplished by a Kalman filter (KF). The pose estimator is fed to a robust and fast 

modified principal component analysis (PCA) based feature extractor proposed in [11]. This 

robust method is used in this article to estimate the target pose in an uncertain and noisy 

environment. 
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C.  Singularity Avoidance  

After estimating the desired dynamic parameter of target, these parameters have to be 

converted to the joint space of the robot manipulator. Since there is no prior knowledge on the 

desired trajectory, and the robot is a five degrees-of-freedom manipulator, it may encounter 

singular configurations within its prescribed trajectory. To remedy this issue, inverse kinematic of 

the manipulator is solved in a real-time routine to generate a singular free motion with the 

consideration of the joint limits for the robot. A practical motion planner which is proposed by the 

authors in [20] is fully elaborated. The applied method shows a well performance, when there is 

no prior information about the via-points and the final destination of the desired trajectory.  

Fig. 3 represents the complete loop of the visual servoing system. An image is captured by the 

camera applied as the input of the “Feature Extractor” block. After estimating the target pose by 

UKO+KF, the relative pose is commanded to the SMC as a desired position.  

 

Fig. 3: The complete VS loop 

III. DESIGN OF SMC FOR PBVS SYSTEM 

The whole process of the VS loop is demonstrated in Fig. 4. In the first step, an image is 

captured by a camera. Then the desired features are extracted from the mentioned image. After 

that the position, velocity and acceleration of the object are estimated by UKO+KF estimator.  

Error which is defined as the relative pose is applied as the input to the sliding surface. Then 

control signal (in velocity level) is produced via SMC, which is proportional to each degree-of-

freedom (DOF) of the robot. According to singularity avoidance, such signals are employed to 

solve the inverse kinematics problem in order to calculate the angle of each joint.  In final step, 

the outcome signal is commanded the internal controller of our industrial robot. Note that, 

because of the internal controller, we can assume the controller as a prefect tracker. The whole 

process is repeated until the target object is tracked perfectly.  



 
Fig. 4: Block diagram of the overall process 

Traditionally, a visual servoing system includes the feature tracking and the feedback 

controlling as two separate processes. This separation limits tuning of the whole system 

performance. In present paper, we propose to use SMC to perform VS for mentioned tasks. The 

path planning is accomplished using the sliding mode surface, and the performance is preserved 

by the sliding mode control output. The stability of the whole control system is proved by 

Lyapunov theory. Moreover, the robust behavior of SMC against the estimation noise provides a 

suitable tracking performance for the whole visual servoing systems. 

A. Controller Design 

In this approach, instead of using the dynamics of the system, we have used the estimated 

values from UKO+KF and their corresponding desired values to define the sliding mode surface. 

The main purpose is tracking a specific object, whether the object is moving or not. According to 

section II-A, by substituting the equations (1) into the pin-hole camera model (2), a set of 

nonlinear equations is obtained as (3). These nonlinear equations show the relation between “the 

relative pose of the target object with respect to the end-effector (camera) frame in the 3D 

coordinates” and “the feature points attached to the target object in 2D coordinate of the image 

frame”.  
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By considering a constant velocity model that assumes invariable relative velocity of the target 

object with respect to the end-effector at each sample time, we may reach the following model for 

the relative pose of the object with respect to the end-effector: 

( )
1k k k

k K k

W AW
P G W

µ
δ

−= +

= +
 (4) 

where ,   , ,   , ,   , ,   , ,   , ,  
T

W X X Y Y Z Z roll roll pitch pitch yaw yaw =  

 

   , and A is a block diagonal 

matrix with 
1
0 1

T 
 
 

 blocks. kµ  and kδ  are the model uncertainty and the measurement noise, 

respectively, and they are expressed by a zero mean Gaussian noise. kP  is a vector of the 

normalized coordinates of the feature points in the image plane.  

iu  and iv  (for at least 3 non-aligned feature points which are attached to the target object) are 

calculated by Eq. (2). These points are fed into a UKO to estimate the vector W . The estimation 

process is explained in [21]. According to the proposed structure in [9, 11], the pose vector is 

estimated by UKO in an iterative loop with the desired stop condition. Here, the estimated 

velocity is zero, since the same input is used in several epochs. Moreover, utilizing only one set of 

input data causes an inaccurate estimation. To overcome such problem, and to estimate the 

velocity and acceleration of the object, the UKO output is fed to a linear Kalman filter. Then by 

changing the output and considering a constant acceleration model that assumes invariable 

relative acceleration at each sample time, we may reach the following linear model: 

1      
        

k

k k k

o k k

V BV v
P CV η

−= +
= +

 (5) 

where     ,   ,   ,   ,   ,   ,   ,   ,   , , , , ,   ,   ,   ,   ,  V X X X Y Y Y Z Z Z roll roll roll pitch pitch pitch yaw yaw yaw =  
  

 

   

    the 

state vector that shows the relative motion parameters between the camera and the target object. 



B  is a block diagonal matrix with 

21 0.5
0 1
0 0 1

T T
T

 
 
 
  

 blocks. 
koP is the pose vector with 6 

translational and rotational elements as X , Y , Z , roll, pitch and yaw. kη  and kv  are the model 

uncertainty and the measurement noise vectors, respectively. kv is related to the static pose 

estimator precision. C  is a 6 18×  matrix with the following format: 

1 4 3
0ij

j i
c

otherwise
= −

= 


 (6) 

Having the mentioned linear model and the desired accuracy of the initial estimation, the KF 

method is implemented by the recursive formulation to estimate the pose, velocity and 

acceleration of the target object with respect to the end-effector. After the estimation process, we 

can define the desired sliding surface. Let us define the following PD-type sliding surface: 

dS e e e
dt

λ λ = + = + 
 

  (7) 

in which, e  is the relative pose of estimated position of target with respect to position of the end-

effector. And, λ  is the positive constant which specifies the rate of convergence toward the 

sliding mode manifold. The sliding surface vector in (7) is a five tuple           
T

x y z A BS s s s s s =    

which contains the manifold motion variable in ,  , x y z  directions and orientation about the 𝑧 and 

𝑦 axis of the robot base coordinate, called in here A , and B  orientations, respectively. Based on 

the relative pose, the state vector is converged toward the sliding surface. Then the state shall 

smoothly slide on the surface to reach the target state. Because of the movement of the target, the 

trajectory path is dynamically changing. Therefore, the position of the current state may diverge 

from the sliding surface. Hence, the process has to be executed iteratively with a short refreshing 

period to adapt to the varying positions. There are two approaches to define the required control 

signal.  

The first control design is proposed as follows: 

( ) ( )1
e ev t sgn Sβ− = −  (8) 

in which, ( )tβ  is a varying time coefficient which will be discussed in the next section. ( )sgn ⋅  

denotes the signum function.  



The second control signal design is proposed as follows: 

( )2 1
e e desev v ksgn Sλ−
− = − + −  (9) 

in which, k  is the positive constants. e is the acceleration error between the end-effector and the 

goal. And, desv  is the desired velocity of the object. 

The first design consists of only a switching term while in the second design, a linearizing term 

is added to the switching term to ensure the sliding condition [22]. 

B. Stability Analysis  

In the design of the control laws, the sliding condition of the manifold is equal to 0e eλ+ = , 

that constrains the motion of the system. Choosing 0λ >  guarantees that all the states of the 

system tend to zero as time tends to infinity. The rate of the convergence can be controlled by the 

choice of λ . The following derivative equation is needed to obtain the control signal: 

( )1
e e desS e e e v vλ λ −= + = + − 

  (10) 

Where e  represents the difference between the velocity of the end-effector and the target. 

Furthermore, e ev −  is the end effector velocity, which has been used as the control signal in the 

practical implementation. 

The stability analysis of this algorithm is based on Lyapunov direct method. Consider the 

following positive definite Lyapunov function candidate 1
2

TV S S= . To show the stability of this 

algorithm, the derivative of the Lyapunov function candidate has to be negative. To provide these 

circumstances, the control signal has to be limited by a specified function. This function is subject 

to the robot velocity constraints and the amplitude of the estimation noise. The following 

inequality can be specified from (8). Function ( )tϕ  will satisfy the following inequality [23].  

( )dese v tλ ϕ
λ ∞

−
≤



 (11) 

Based on the upper bound of the control signal, the derivative of the Lyapunov function 

candidate S  is determined by  

( ) 1
des e eV SS S e v S vλ λ −= = − +

  (12) 



( ) 1
e eV S t Svλ ϕ λ −≤ +  (13) 

By folding the first control signal equation (8) into (12) the following inequality can be 

obtained for the derivate of Lyapunov function candidate, 

( ) ( ) ( )( )V S t S t sgn Sλ ϕ λ β≤ + −  (14) 

With the consideration of ( ) ( ) 0t tβ ϕ β≥ + , the derivative of the Lyapunov function will be 

semi-negative definite (obviously, 0V =  when 0S = ). 

0V Sλβ≤ −  (15) 

Therefore, the trajectory reaches the manifold 0S =  in the finite time and, once on the 

manifold, it cannot leave it, as forced by the condition (15).  

The same procedure can be done for the second controller design. Combining (9) and (12) we 

have,  

( ) ( )( )1
des desV S e v S e v ksgn Sλ λ λ−= − + − + −



   

V k Sλ= −   
(16) 

In this approach, asymptotic stability is verified by (16) because the derivate of the Lyapunov 

function candidate is negative definite.   

There are some factors to select one of the controllers’ designs in our practical implementation. 

The second control design has a linearizing term in contrast to the first control design. The 

analysis of the second design can be failed owing to the accuracy estimations in observations, in 

the presence of uncertainties. On the other hand, the first design permits to presume uncertainties 

in more suitable condition for VS problem. In the first design, ( )tβ  is directly determined the 

control signal limitations, while in the second design the estimated values from UKO+KF affected 

such a limitation. Moreover, the command of the robot might be greater than the legal bound of 

the control signal. Therefore, the first control design is selected for the practical implementation. 

C. Modified Controller Design 

SMC has encountered some limitations in practice, especially the chattering [22]. The most 

conventional modification used to limit the chattering is the boundary layer approach [22, 23]. To 



attenuate chattering, the signum function can be replaced by a high-slope saturation function. The 

control law is altered as 

( ) ( )1 /e ev t sat sβ ε− = −  (17) 

where ( )sat ⋅  is the saturation function and ε  is a positive constant. A suitable approximation 

requires the use of small ε . For the stability analysis, a similar analysis can be performed when 

S ε≥ , and the derivatives of the Lyapunov function satisfies the inequality 0V Sλβ≤ − . 

Therefore, whenever S ε≥ , ( )S t  will be decreasing, until it reaches the set { S ε≤ } in a finite 

time and remains inside thereafter. Inside the boundary layer where S ε≤ , we cannot have 

asymptotic stability and only uniformly ultimately bounded (UUB) stability with an ultimate 

bound can be obtained. The ultimate bound can be reduced by decreasing the depth of the 

boundary layer [22].   

D. Controller Parameters Selection 

According to the constraints of our experimental our VS system, the controller parameters are 

tuned to the selections shown in Table 1. First, based on the tradeoff between 𝑒̇ and 𝑒 from eq. (7) 

the rate of convergence ( λ ) is selected. Then from eq. (11), with respect to the maximum 

acceleration of the robot, and the maximum velocity of the goal object, function ( )tϕ  is chosen. 

According to the accuracy of the tracking error, 0β  is selected. The width of the boundary layer 

(ε ) is tuned in order to reduce the oscillations of the control signal. 

 

 

Table 1. THE CONTROLLER PARAMETERS 

Type of 
switching 
function 

    

Signum 0.1 0.05 1 - 

Saturation 0.1 0.13 1 

 
 
 



IV. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed algorithm is verified through a few 

experiments. In the first experiment, efficiency of visual regulation with two different type of 

switching functions in SMC technique is performed. Second experiment verifies the overall 

performance of the servoing system.  

A. Experiment I 

Visual regulation is performed in this experiment. The pose of the end effector should be 

regulated accordingly for any arbitrary fixed pose of the object. The desired sliding mode 

manifold is produced based on the error between the estimated pose of the target with respect to 

the pose of the end effector. The main behavior of the control signal depends on the type of the 

switching function. Two different types of functions, signum and saturation, are employed. To 

analyze the behavior of these regulations, the initial pose of robot is reset to the same pose for 

each round of the experiment.  

  
          (a)            (b) 

Fig. 5: Sliding surface with sign function in a: X  direction, b: A  orientation 
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           (a)            (b) 

Fig. 6: Control signal with sign function in a: X  direction, b: A  orientation 

  
           (a)            (b) 

Fig. 7: Derivative of Lyapunov function with sign function in a: X  direction, b: A  orientation 

The results of the sliding surface, the control signal (velocity signal) and the derivative of the 

Lyapunov function in the X  direction and A  orientation are shown in Fig. 5, Fig. 6 and Fig. 7 for 

signum function, respectively. The X direction and A  orientation are selected as the 

representatives of translation and orientation respectively, to keep the number of illustrated 

figures at a managing level. As it can be seen in Fig. 5(part a), the trajectory lies on the sliding 

surface in the X  direction and converges toward zero (in 0.2 second). The trajectories and the 

resulting sliding variables reach zero, which indicate that the error of the relative pose tend to zero 

in 0.8 second and lie on it after the object has been tracked. This issue can be seen in Fig. 6, too. 

The velocity in the X  direction is produced as -0.15 cm per second during the first 0.2 second 

and after the tracking error tends to zero. The oscillations are due to the chattering; however, the 

variations remain around zero. This indicates that the controllers have suitably commanded the 

robot to stay on the sliding surface. As the object has no rotational motion, the control signal and 

the sliding surface in the A  orientation are dithering around zero as Fig. 5 and Fig. 6 (part b). Fig. 

7 shows that the derivative of the Lyapunov function is always negative which verifies the 

stability of this algorithm in practice. 

In our case, the oscillations cannot significantly harm the mechanical parts of robot, since they 

are attenuated through the implemented filters in the inner structure of the robot. In practice, the 

chattering phenomenon is not desirable. To have a better performance in controlling the robot, we 

replaced the signum function by the saturation function. The results of this case for the sliding 
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surface, the control signal and the derivative of the Lyapunov function in the X  direction and A  

orientation are shown in Fig. 8, Fig. 9 and Fig. 10 respectively. The trajectories and the resulting 

sliding variable reach the desired condition about 0.2 second, however, between 0.2 and 0.5 

seconds the tracking errors are not exactly zero, and they are restricted in a bounded region. This 

is in the complete agreement of the stability analysis that guarantees only UUB condition on the 

tracking errors. In Fig. 9, the same behavior can be seen in the control signal, too. The signal is 

produced in the X  direction as -0.22 cm per second and after that, this signal reaches zero in 0.15 

second. This signal is not smooth, but the oscillations are significantly reduced.  Since the object 

has no rotational motion, the control signal and the sliding surface are reached zero in 0.15 second. 

Fig. 10, illustrates the derivative of the Lyapunov function which is negative during the end 

effector movement. This verifies the overall stability of this algorithm. 

 
 

           (a)            (b) 

Fig. 8: Sliding surface with sat function in a: X  direction, b: A  orientation 

 
 

         (a)      (b) 

Fig. 9: Control signal with sat function in a: X  direction, b: A  orientation 
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        (a)        (b) 

Fig. 10: Derivative of Lyapunov function with sat function in a: X  direction, b: A  orientation 
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Table 2. THE Obtained relative position from UKO estimator  

Position/ 
Orientation 

Initial Real 
Value 

Initial Estimated 
Value 

Final Estimated 
Value 

(cm)  9 9.03 0.25 
(cm)  6.5 -6.59 -0.24 
(cm) 28 27.78 18.10 
(deg) -25 -23.91 1.00 
(deg) 0 2.02 0.81 

 
 



 
(c) 

  
(d) (e) 

Fig. 11: UKO+KF estimation of motion in a: X  direction, b: Y direction, c: Z  direction, d: A  orientation, e: B  

orientation 

The results of regulating the robot pose from an initial relative pose to the desired position is 

numerically summarized in Table 2. The estimated values which are shown in Table 2 are from 

UKO+KF estimator. The “Initial Estimated Value” refers to the relative pose before the end 

effector movement. The “Final Estimated Value” denotes the relative pose after movement. 

Before performing experiment I, the “Initial Real Value” is set manually. By comparing the 

estimated and the real pose of the target object from this experiment and experiment II in [11], the 

nonlinear controller increases the performance of VS system (i.e. the “Final Estimated Value” for 

the pose of the object is close to the desired pose). The desired pose difference between the end 

effector and the target object is zero in the X , Y directions and A , B  orientations, but the 

distance is 18cm in the Z  direction (for safety). By assuming stop condition in our algorithm, we 

prevent the small movement of robot because of the measurement noise around the desired pose. 
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Thus, for the “Final Estimated Value”, we will not have exactly zero. The numerical results 

signify the effectiveness of the suitable applied estimator in the visual regulation methodology.  

B. Experiment II 

The evaluation of the overall performance of the proposed visual servoing technique is the aim 

of experiment II, which is done through designing a few independent motions of the object. For 

this purpose, the object is moved in the X , Y , Z , A  and B  directions. According to the 

previous experiment, a saturation type SMC with the width of ε  is considered for experiment II. 

In order to comprehend the experiment better, the estimated relative pose of the target object 

with respect to the camera frame has been shown in the Fig. 11 for all directions, during the object 

movement. To show the tracking errors performance, Fig. 12, depicts the sliding mode surface 

only in the Y  direction and B  orientation as samples. Fig. 11 shows that when the object moves 

in any directions, the errors with respect to this motion will rapidly grow, and therefore, the 

corresponding sliding surface will grow. Then the proposed controller algorithm commands the 

end effector to move toward the target. For example, focus on the estimated relative poses in the 

X  direction of Fig. 11 (part a) after about 6 seconds, the object started to move to approximately 

-6cm. Proportional to this movement the sliding surface in the X  direction is generated, and the 

controller compensates these errors after approximately 4 seconds, which will decrease to zero. 

Similar analysis can be observed for B  orientation, as well. Fig. 11 (part e) and Fig. 12 show that 

at 25 seconds the object starts to rotate around Y  axis by about 22 degrees, the estimator detects 

this rotation. Consequently, the controller rotates the end effector and the errors decrease down to 

zero. The dash line shows the desired relative pose in each direction, that the robot manipulator is 

able to keep the desired relative distance. Table 3, shows the performance of the end effector 

movement, numerically.  

 

 

Table 3. Performance of Tracking in Visual Servoing Experiment  

Position/ 
Orientation 

Initial Time of 
Movement (sec) 

Time of 
Tracking (sec) 

Compensated Relative 
Distance (cm) 

(cm)  6 10 -6.0 
(cm)  10 14 +6.0 
(cm) 16 19 -5.0 
(deg) 19 24 +16.89 & -27.75 
(deg) 25 30 22 

 



 

  
          (a)     (b) 

Fig. 12: Sliding surface in a: Y direction, b: B orientation 

  
          (a)          (b) 

Fig. 13: Derivative of Lyapunov function in a: Y  direction, b: B  orientation 

To analyze the stability of visual servoing for the moving object, consider Fig. 13 that depicts 

the derivatives of the Lyapunov function which is a suitable measure for the proposed controller 

strategy. The sliding surfaces in Fig. 12 and the derivative of the Lyapunov functions in Fig. 13 

show non smooth movement. At first glance, the jitters in the plots seem to be non smooth 

movement, but if the plot is suitably magnified at the vicinity of jitters, it can be seen that the 

signal is really smooth. This fact was shown in experiment I, and the performance is smooth and 

proper. Note that, as the target is moved by human, the recorded trajectory includes minute 

oscillations and vibrations which stems from the human hand motions. For the detail examination 

of the overall performance of the VS system a video clip is given in: 

 http://saba.kntu.ac.ir/eecd/aras/movies/SMC-Vservo.mpg.   
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V. CONCLUSIONS 

In this paper, we present a sliding mode controller in PBVS approach to control and path-plan 

an Industrial robot manipulator. By combining two mentioned tasks through SMC technique we 

can have a unified approach to tune the whole control system in all DOF of robot manipulator. In 

the proposed approach, the position, velocity and acceleration of the target object are estimated 

through a robust estimator (UKO+KF). The estimated values are applied to define a PD-type 

sliding mode surface. Then a stable and robust SMC is employed to produce a suitable control 

signal to move the robot toward the desired target. In order to select the controller parameters, we 

have considered some practical limitations and error bounds, which assume minimization of the 

relative pose in each DOF of the robot manipulator in hand. In experiments, we have observed 

that the proposed structure is performing well in a noisy background. It may be concluded that, 

this technique can be used for the industrial implementation of a visual servoing system. The idea 

of using SMC can be extended for IBVS approach. The stability analysis of this algorithm can be 

investigated under uncertainties, and as a result controller parameters can be tuned with specific 

objectives in future work.  
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Fig. 2: Camera, object and image frames 
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Fig. 3: The complete VS loop 
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Fig. 4: Block diagram of the overall process 
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Fig. 5(a): Sliding surface in X direction 
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Fig. 5 (b): Sliding surface in A direction 
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Fig. 6(a): Control signal in X direction 
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Fig. 6(b): Control signal in A direction 
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Fig. 7(a): Derivative of Lyapunov function in X 

direction 
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direction 
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Fig. 8(a): Sliding surface in X direction 
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Fig. 8(b): Sliding surface in A direction 
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Fig. 9(a): Control signal in X direction 
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          Fig. 9(b): Control signal in A direction 
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Fig. 10(a): Derivative of Lyapunov function in X 

direction 
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Fig. 10(b): Derivative of Lyapunov function in A 

direction 
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Fig. 11 (a): Estimated Pose in X direction 
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Fig. 11 (c): Estimated Pose in Z direction 
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Fig. 11(d): Estimated Pose in A direction 
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Fig. 11(e): Estimated Pose in B direction 
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Fig. 12(a): Sliding surface in Y direction 
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          Fig. 12(b): Sliding surface in B direction 
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   Fig. 13(a): Derivative of Lyapunov function in Y 

direction 
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Fig. 13(b): Derivative of Lyapunov function in B 

direction 
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List of the Table Captions 

TABLE 1. THE CONTROLLER PARAMETERS 
Type of 

switching 
function 

ϕ  
0β  λ  ε  

Signum 0.1 0.05 1 - 

Saturation 0.1 0.13 1 

0.5

0.38
x y z

A B

ε ε ε

ε ε

= = =

= =
 

 
TABLE 2. THE OBTAINED RELATIVE POSITION FROM UKO ESTIMATOR  

Position/ 
Orientation 

Initial Real 
Value 

Initial Estimated 
Value 

Final Estimated 
Value 

X (cm)  9 9.03 0.25 
Y (cm)  6.5 -6.59 -0.24 
Z (cm) 28 27.78 18.10 
A (deg) -25 -23.91 1.00 
B (deg) 0 2.02 0.81 

 
 

TABLE 3. PERFORMANCE OF TRACKING IN VISUAL SERVOING EXPERIMENT  

Position/ 
Orientation 

Initial Time of 
Movement (sec) 

Time of 
Tracking (sec) 

Compensated Relative 
Distance (cm) 

X (cm)  6 10 -6.0 
Y (cm)  10 14 +6.0 
Z (cm) 16 19 -5.0 
A (deg) 19 24 +16.89 & -27.75 
B (deg) 25 30 22 
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