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a b s t r a c t

Point clouds as measurements of 3D sensors have many applications in various fields such as object
modeling, environment mapping and surface representation. Storage and processing of raw point clouds
is time consuming and computationally expensive. In addition, their high dimensionality shall be
considered, which results in the well known curse of dimensionality. Conventional methods either apply
reduction or approximation to the captured point clouds in order to make the data processing tractable.
B-spline curves and surfaces can effectively represent 2D data points and 3D point clouds for most
applications. Since processing all available data for B-spline curve or surface fitting is not efficient, based
on the Group Testing theory an algorithm is developed that finds salient points sequentially. The B-spline
curve or surface models are updated by adding a new salient point to the fitting process iteratively until
the Akaike Information Criterion (AIC) is met. Also, it has been proved that the proposed method finds
a unique solution so as what is defined in the group testing theory. From the experimental results the
applicability and performance improvement of the proposed method in relation to some state-of-the-art
B-spline curve and surface fitting methods, may be concluded.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Since the world is 3D in nature, effective interaction with the
surrounding environment can be achieved by utilization of a 3D
sensor, such as Lidar, 3D laser scanner, Microsoft Kinect or stereo
camera. The sensor measurements are represented by a 3D point
cloud as initial environment representation. 3D mapping [1], ap-
proximate surface fitting [2], object classification [3], loop closure
detection [4] andmobile robot navigation [5] are someapplications
of point clouds. In spite of having rich information content, storing
and processing of 3D point clouds is time consuming and compu-
tationally expensive. In contrast to these discrete representations,
B-spline surfaces are employed in geometric modeling [6] and ter-
rain mapping [7]. Stable and parametric representation of 3D sur-
faces, local modeling capability and affine invariancy are some
advantages of B-spline surfaces. The difficulty of B-spline sur-
face fitting in real-time applications arises when a huge point
cloud is captured from a 3D scanner. Since every measured 3D
point is located on the scanned surface, too much information is
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available for either interpolation or approximation of a B-spline
surface. Furthermore, a large scale data fitting may result in an
ill-conditioned or singular matrix [8]. Therefore, state-of-the-art
B-spline fitting methods are considered in seeking few control
points for representation of acquired point data [9]. For instance,
the B-spline curve and surface fitting method presented in [10],
progressively increases the number of control points as needed.

Most of the conventional B-spline curve or surface fitting
methods, either assume that the knot vector is known a-priori
or generate a set of knot values and then find the final set
of active knots iteratively. Various techniques are proposed for
solving knot placement problem, such as adaptive methods [11],
evolutionary approaches [12] and iterative techniques [10] as
some representatives. In addition to specification of distribution
of knots and their values, the control points shall be determined
to approximate a B-spline curve or surface. Minimization of a
quadratic function [13], iteration and optimization [14] and the
widely used least-square optimization [15] are some state-of-the-
art methods for approximation of control points.

Lack of an appropriate and computationally efficient knot
placement technique, requiring an initial estimate and finding a
locally optimum solution are some problems of the conventional
B-spline curve or surface fitting methods. Furthermore, few
methods are considered in processing just the informative
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captured data for curve or surface fitting [16,17]. In order to
remedy these problems, a group testing basedmethod is proposed
for B-spline curve and surface fitting that approximates amodel by
processing few data points. This method can be employed without
an initial estimation and finds both knot vector and control points
simultaneously by finding the most informative or salient points.

In the emerging field of Group Testing (GT), it has been shown
that few tests are required to identify defective items among a
large number of elements [18]. Based on the GT theory, in this
paper to the best knowledge of the authors, a B-spline curve and
surface fitting algorithm is presented for the first time, where, an
adaptive group testing technique is developed that considers a
captured 3D point cloud as a set of elements with few defective
(salient) ones. Based on the group testing theory, a test is designed
that detects salient points for construction of either a B-spline
curve or surface. In contrast to the state-of-the-art group testing
techniques, the relation of group size to the complexity of tests,
is also considered. At the final stage of the algorithm, a B-spline
surface approximation is derived which can efficiently represent
the captured point cloud. The experimental results on some point
clouds proves the applicability and performance improvement of
the proposed method.

The rest of the paper is as follows. In Section 2, some related
works are reviewed. In Section 3, a brief introduction to B-spline
curves and surfaces and group testing theory is presented. The
proposed method is explained in Section 4. Section 5 is devoted to
the result of experiments and comparison to somepopular B-spline
fitting algorithm. Finally the concluding remarks are presented in
Section 6.

2. Related works

Representation of scanned points by B-spline curves and
surfaces is widely used in various Computer Aided Design
(CAD) and Computer Aided Engineering applications. Several
mathematical techniques are used in problem of B-spline curve
or surface fitting. One category of these methods are the
optimization techniques, where the B-spline fitting is defined as
an optimization problem. B-spline surface fitting as a least square
estimation is presented in [19]. A base surface approximated from
boundary information of measured points. Then the measured
points are projected to the base surface. Using the parameter
values of projected points as the parameters of measured points,
a least square estimation of final B-spline surface model is
achieved. Modeling the curve estimation as a least square
minimization problem, Gauss–Newtonmethod is employed in [15]
for approximation of a set of ordered points by a B-spline curve.

A global particle swarm optimization (PSO) method is
employed in [20] in order to find knot vector required for esti-
mation of a B-spline curve from noisy measured points. A com-
bination of an optimization method and an iterative method is
introduced in [14] for specification of a knot vector, weights and
parametrization of measured unorganized points. Furthermore, a
multi-objective genetic algorithm is employed in [12] for determi-
nation of knot values in the problem of B-spline curve fitting. An
evolutionary optimization scheme is used for local minima avoid-
ance in the knot placement problem. Due to the importance of data
point parametrization, a new algorithm based on the centripetal
method is developed in [21].

A neural network based B-spline surface construction has been
proposed in [22] where an unstructured point set is projected
into R2 by locally linear embedding (LLE) method in order to
generate the parametrization. Then, a neural network is trained
for mapping from the parameter space into the 3D space. Finally,
the surface tessellation is performed by generation of a grid in
the parameter space and using the trained network for mapping
the parameter value to the 3D space coordinates. Since all of the
captured points are not informative for either curve or surface
fitting, a good approximation can be achieved from few dominant
or salient points. However, few methods are introduced to fit a
curve or surface from dominant points. Least squares based curve
fitting from dominant points is presented in [16]. After selection of
dominant points, the parametrization is performed by finding the
parameter values of only dominant points. Finally, a least squares
minimization is performed to achieve a curve approximation from
an ordered list of points. Later, in [17] a surface fitting from
dominant columns is also introduced. In this paper, an adaptive
group testing based method is developed that finds salient points
from the captured point cloud and seeks a B-spline curve or surface
model using the Akaike Information Criterion (AIC) [23].

3. Preliminaries

Representation of measured data by B-spline curves and
surfaces is widely used in Computer Aided Design (CAD) and
Computer Aided Engineering (CAE) applications. Local support
property, accurate modeling of analytic curves and surfaces,
flexibility andprecision are somebenefits of using B-splinemodels.
In this section a brief introduction to B-spline curves and surfaces
and the group testing theory is presented.

3.1. Akaike information criterion (AIC)

In order to have an efficientmodel derived frommeasured data,
a metric for the goodness of model fitting is required. One of the
widely used fitness functions which provides a trade off between
fitting error and model complexity, is the Akaike Information
Criterion (AIC) and defined as

AIC = N ln
1
N


N
i=1

(y(xi)− ŷ(xi))2

+ 2k (1)

where N is the number of samples used for model fitting, y is the
measured value in the parameter variable xi, ŷ is the estimated
function and k is the number ofmodel parameters. Another similar
measure is Bayesian Information criteria (BIC) and is defined as

BIC = N ln
1
N


N
i=1

(y(xi)− ŷ(xi))2

+ k lnN. (2)

Both AIC and BIC have been used as data fitting measures
in the CAD applications such as spline fitting [20,24] or surface
modeling [25]. For the case of B-spline data fitting a particle swarm
optimization based method is proposed in [20] where AIC is used
as the cost function. By minimizing AIC, an optimal B-spline curve
is derived by considering themodel complexity. A similar approach
is proposed in [24] by using genetic algorithm as optimization
method and BIC as cost function. In the field of naval construction,
a surface modeling algorithm is presented in [25] by using AIC for
selection of smoothing kernel bandwidth. Since both AIC and BIC
provide similar results for smooth underlying functions [20], in this
paper AIC is used as model fitting measure.

3.2. B-spline curves and surfaces

Variety of 3D objects and shapes may be represented by
B-spline curves and surfaces, which is a parametric geometric
modeling technique. Both analytic and freeform objects may be
mathematically modeled by B-splines.

A B-spline curve is defined as:

c(u) =
n

i=0

Ni,p(u)pi (3)
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while a B-spline surface is expressed by:

s(u, v) =

n
i=0

m
j=0

Ni,p(u)Nj,q(v)pi,j (4)

where, the control points are expressed by {pi} for curves
and {pi,j} for surfaces. A B-spline surface has m control points
along u direction and n ones along v direction. The degrees of
Ni,p(u),Nj,q(v) B-spline basis functions along parametric variables
u, v is represented by p, q respectively. The basis functions are
defined on the knot vectors

u = {0, . . . , 0  
p+1

, up+1, . . . , ur−p−1, 1, . . . , 1  
p+1

} (5)

v = {0, . . . , 0  
q+1

, vq+1, . . . , vs−q−1, 1, . . . , 1  
q+1

} (6)

where, r = n+p+1 and s = m+q+1. The B-spline basis functions
by the de Boor formula is defined as:

Ni,0(u) =

1 ui ≤ u < ui+1
0 otherwise (7)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u)+

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u). (8)

Various methods and algorithms are available in the literature
for both B-spline surface interpolation and approximation from a
point cloud [26,27,14,28].

In this paper a B-spline curve and surface approximation based
on group testing is presented, in which few data points are used
for either curve or surface construction. Basics of group testing is
briefly reviewed in the next section.

3.3. Group testing

During the World War II, the group testing theory was devel-
oped to reduce the required number of blood tests for detection of
soldiers with Syphilis [29]. Where it was shown that, instead of in-
dividual testing, performing blood tests on a pool of blood samples,
reduces the total number of tests considerably. The group testing
has been used in several applications such as detection of defec-
tive objects in quality control of production lines [30], built-in self
test (BIST) in digital logic systems [31] and sparse signal recovery
[32,33]. In the group testing problem, it is assumed that in a setXof
N elements some are defective, while the other elements are good.
It is preferable to identify the defective items by minimum num-
ber of tests. The tests are performed on subsets called pools, where
the test result is either positive in the case of contaminated set or
negative for a pure set. The group testing problem is expressed by
(d,N)-problem to indicate that d items out of N are defective.

The group testing strategies can be divided into two probabilis-
tic group testing (PGT) or combinatorial group testing (CGT). In the
PGT, it is assumed that the test results obey a known probabilis-
tic distribution, which is usually the binomial probability distribu-
tion [34]. In CGT, it is supposed that number of defective elements
d or an upper bound on it, is known a priori [35]. Based on the test-
ing strategy, a group testing algorithm is called adaptive [36], non-
adaptive [37] ormulti-stage [38]. In the adaptive scenario, the pool
designs are accomplished based on the outcomes of previous tests.
On the other hand, in the non-adaptive group testing algorithms,
all pools can be determinedwithout knowing the result of any test.
The third type of group testing strategies is known asmultistage or
s-stage methods. In each stage, the tests are performed in parallel
such as the non-adaptive case. Finally, the result of each stage is
fed into the next one for further testing and determination of re-
maining defective items. In basic group testing, the upper bound of
Fig. 1. A set of 10 light bulbs with unknown number of defective ones.

Fig. 2. The set of light bulbs. The black painted bulbs are defective ones and the
yellowpainted ones are the good bulbs. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

tests for adaptive methods is O(d log n), while the upper bound of
non-adaptive techniques is O(d2 log n). A 2-stage technique finds d
defects in notmore thanO(d log( n

d )) test. The upper bound of algo-
rithm complexities in basic group testing are derived by assuming
that the cost of testing is independent of group size, which is in
contrast to the considered case here.

In order to have a clear understanding of adaptive group testing,
an example is provided here. A set of light bulbs with unknown
number of defective ones as shown in Fig. 1 is considered. The
doubling technique [31] is employed as an adaptive group testing
for determination of defective light bulbs in this example. In
this technique, disjoint subsets of 1, 2, . . . , 2i are tested until a
contaminated subset is encountered. Therefore, by performing i+1
tests, 1 + 2 + · · · + 2i−1 good items and a contaminated subset
are detected. In the next step, one defective item is detected by
performing a binary search in the contaminated subset by means
of i tests. This process is repeated until all defective items are
determined.

In this example a set of 10 light bulbs with unknown number
of defective items is considered. It is assumed that 2 items are
defective and the remaining ones are good, as shown in Fig. 2. This
information is not known a priori and the final answer is provided
here so one can follow the process of group testing algorithm. In
order to test items, a subset of light bulbs are connected in series
and a voltage is applied to them. A good subset is indicated by lights
being on. In case of a contaminated subset, the lights will be off.

In the first step, i = 0 and 2i
= 1 item is selected from the set

of light bulbs. The leftmost item is picked for testing as shown in
Fig. 3(a). Since the tested light bulb is not defective, the test result
is negative. In the next step, we have i = 1 and 2i

= 2 items
are selected for testing. Connecting the two light bulbs marked in
Fig. 3(b) by a bounding box, results in a negative test result as both
light bulbs are good. In the next step, by setting i = 2, a subset of
si = 4 items are selected. This time, the test result is positive and
all lights are off as depicted in Fig. 3(c). This means that at least
one defective item is present in this subset. By means of a binary
search, one defective item is found in this subset. This set of four
items is divided into two equal size subsets, and each are tested
as shown in Fig. 3(d) and (e) respectively. This process continues
until all defective items are detected. In this example, twodefective
items are found among ten items by performing eight tests. In a
set of large number of items, the group testing is very efficient and
defective items are found by few group tests.

Equipped with the group testing techniques, a B-spline curve
and surface reconstruction algorithm is developed in the next
section that differs from basic group testing methods. In the
proposed method, the cost of test evaluation depends on the pool
size.

4. Proposed method

In this section, a method is developed for determination of
salient points in B-spline curve fitting problem, which is based on
adaptive group testing (see Fig. 4). Then, the idea is extended to the
problem of B-spline surface fitting from salient points.
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(a) In the first step, i = 0, one item is tested. The test result is negative as the
light bulb is not defective.

(b) In the second step, i = 1, two items are tested. The test result is negative as
none of the light bulbs is defective.

(c) In the third step, i = 2, four items are tested. The test result is positive as at
least one of the light bulbs is defective.

(d) In the fourth step, a binary search is performed on the set of 4 items.

(e) In the fifth step, the binary search founds one defective item. (f) In the sixth step, the last item of the contaminated subset is determined.

(g) In the seventh step, the remaining items are divided into subsets starting
from i = 0.

(h) In the last step, i = 1, two items are tested. The test result is negative.

Fig. 3. The process of adaptive group testing for detection of defective light bulbs. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
4.1. B-spline curves

The measured points M = {(yi, xi)|i = 1, . . . ,N} can be
approximately represented by a B-spline curve.

c(u) =
n

i=0

Ni,p(u)pi + e(u) (9)

where, u is the parametric variable, pi are the control points and
e(u) is the error of estimation. The approximation of measured
points is expressed by the continuous curve c(u) with the
parametric variable u ∈ [0, 1].

The most popular B-spline curve estimationmethod is the least
square estimation which is inefficient and unstable in the case of
large number of measurements. Due to the increasing precision of
available sensors, most ofmeasured data are notmuch informative
and a good approximation can be achieved from few salient points.
This problem is rarely considered by authors in the CAD and CAE
communities [16]. In other words, usually a few number of control
points are sufficient for approximation of some measured points,
which may be expressed by

n≪ N. (10)

Since the number of knots is related to the number of control
points, discarding non-informative measured points results in
few active knots and consequently few B-spline basis functions.
Therefore, we are interested in finding only salient points required
for construction of a B-spline model.

The Fourier transformation of a B-spline basis function defined
on a uniform knot vector can be expressed as:

Φ(ω, τ , p) =

eiτω
− 1

iτω

p+1

(11)

where, ω is the frequency, p is a constant value representing
the B-spline basis degree and τ is the maximum interval of the
knot vector. The first zero of the power function is located at 1

τ
frequency, assuming that the parametric variable u varies in the
[0, 1] range. The B-spline basis function may be considered as
a low-pass filter [39,40] as the value of power function decays
outside of the [− 1

τ
, 1

τ
] interval in the frequency domain.

Considering Eq. (9), the approximate representation of mea-
sured data may be expressed by

c(u) ≈
n

i=0

Ni,p(u)pi. (12)

Applying the Fourier transformation results in

Ψ (ω, τ , p) ≈
n

i=0

Φ(ω, τi, p)pi (13)

where, the Fourier transformation ofmeasured data is represented
byΨ (ω, τ , p). Here we define the normalized Fourier transform of
a B-spline basis function as

Φn(ω, τ , p) =
Φ(ω, τ , p)
|Φ(ω, τ , p)|

. (14)

Therefore, the convolution of a B-spline basis function with the
observed data is readily computed by the multiplication of Fourier
transform of measured signal Ψ (ω, τ , p) with the normalized
B-spline basis function Φn(ω, τ , p), where defined in (14) and
shown in Fig. 5. Defining the bandwidth of B-spline basis function
as 1

τ̄
, the result of filtering is a smoothed signal with frequencies

lower than 1
τ̄
for a specific value of τ = τ̄ .

Ψf (ω, τ , p) |τ=τ̄ = Ψ (ω, τ , p)Φn(ω, τ̄ , p)

=

n
i=0

Φ(ω, τi, p)Φn(ω, τ̄ , p)pi

≈

n
i=0

Φ(ω, τi, p)pi |τi≥τ̄ . (15)

Varying the value of τ̄ from the lowest possible frequency to
the highest one, the salient points at each frequency level can
be specified, due to the filtering property of B-spline basis. The
B-spline basis function is defined on a uniform knot vector and
is just employed for detection of salient points by means of
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Fig. 4. The overall process of the proposed method.

Fig. 5. A normalized B-spline basis function.

convolution. The approximated B-spline curve is not restricted to
uniform knot vector.
In order to represent a B-spline curve approximation of N data
points, B-spline basis function of having frequencies from 1 up to
N/2 can be employed for construction of a knot vector, according
to the Shannon sampling theorem. The number of B-spline basis
functions and their bandwidth, are specified by the distribution
of knot vector and the relative distance between knot values.
Therefore, specification of salient data points and their relevant
control points is equivalent to determination of proper knot
values and required B-spline basis functions for approximation of
measured data points by a B-spline curve. In other words, from
salient points, the required control points can be derived.Where, it
specifies proper knot values, and therefore, the set of B-spline basis
functions.

The problem of finding salient points may be modeled as a
combinatorial search in the set of B-spline basis functions, S =
{B | B = 1, 2, . . . , N

2 }, where B is the total bandwidth of the basis
function. This combinatorial search problem can be efficiently
solved by a group testing method. This group testing problem is
expressed byM(d,N) in order to show that the minimum number
of tests required to find d defects in a set of N items. As mentioned
before, in the non-adaptive group testing, all tests are designed
at the same time and can be applied in parallel. However, in
the adaptive case each test is designed after the result of the
previous one is achieved. In this paper, based on the adaptive group
testing an algorithm is developed to determine the basis functions
required for the construction of B-spline curve.

In the development process of a group testing method, the test
function and a pooling design shall be determined. Therefore, we
define the function V(τ̄ ) as

V(τ̄ ) = ∥max
ω
{Ψf (ω, τ , p)|τ=τ̄ }∥

2,
2
N
≤ τ̄ ≤ 1 (16)

where the max operator indicates maximum value which means
that no optimization is performed here.

Since a low-pass filter provides a−3 dB gain attenuation at the
cut-off frequency, samples of Ψf (ω, τ , p) with gain values lower
than 0.707V(τ̄ ) are discarded which means that the frequencies
lower than 1

τ̄
are not present in the measured signal. Remaining

sample points are iteratively checked for saliency by the test
function T which is defined as

T (Pi) =

AICr ≥ AICr−1 0
AICr < AICr−1 1 (17)

where the ith sample point is shown by Pi, r indicates the iteration
number and it is assumed that AIC0 = +∞. Therefore, a sample
point is called salient, if and only if the following conditions are
met

Ψf (ω, τ , p) ≥ 0.707V(τ̄ )

AICr < AICr−1. (18)

In order to apply the test function, a pool has to be constructed
from the set of available items. Since in each test only frequencies
lower than 1

τ̄
are evaluated, the sampling rate is defined as

s(τ̄ ) =
2
τ̄

. (19)

Therefore, in each iteration of the proposed adaptive group testing
algorithm, the sampling rate is computed and the corresponding
pool is constructed by selecting items based on the sampling rate
s(τ̄ ). Also, in each test a B-spline basis function with bandwidth of
1
τ̄
is employed.
Almost every group testingmethod, is concerned inminimizing

the number of tests to find a list of defective elements from a large
set, which is a set of salient points in our case. In both the adaptive
or non-adaptive group testing the complexity of tests are ignored.
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Algorithm 1 B-spline curve fitting
Require: M:set of samples, N:number of samples.
s = 1 ◃ Initialize sampling rate
Q = {∅} ◃ Set of salient points
repeat

P= SeekSalient(s,N)
if P ≠ {∅} then

Q = Q ∪ P
Update B-spline curve
Compute AIC

end if
until (AIC is met Or s ≥ N

2 )

Algorithm 2 SeekSalient function.
function SeekSalient (s,N)

Pl = {∅}

repeat
s← 2s
S← sample s items from M
Test(S)
if S is contaminated then

s← BinarySearch(s, S)
S← sample s items from M
repeat

c ← Test(S)
Pl = Pl ∪ {c}
S← S \ {c}

until (S is pure)
end if

until (s ≥ N
2 Or |Pl| > 0)

return Pl
end function

The original set of elements is divided into some subsets called
pools without considering the complexity of performing test on
each pool. In our case, the computational complexity of each test
depends on the size of the pool. Therefore, a complexity function
is defined here and it has been shown that the complexity of most
popular algorithms is more than that of the proposed method. The
computational complexity of a test is shown by KT (l) which is
equal to the algorithm complexity of performing a test on a pool
of size l. Also the total computational complexity of the proposed
adaptive group testing is represented by KA and is derived from
the following equation.

KA =

NT
i=1

KT (li) (20)

in which, NT is the total number of tests required for finding
all defective elements and li is the size of ith tested pool. The
complexity of performing a test on a pool of size li is defined by

KT (li) = li + li log li = li log 2li (21)

which is equal to the complexity of performing a convolution on
two vectors of size li and finding its maximum value. Therefore,
we are concerned in finding the minimum value of the algorithm
complexity

minKA = min
NT
i=1

li log 2li. (22)

It is noteworthy that in (22), the minimum value of algorithm
complexity is computed and no optimization is performed.

The proposed approach for B-spline curve fitting, is shown in
Algorithm 1. It is assumed that a set of samples are stored in M set
and we have N = |M|. As the initialization stage, proper initial
values are assigned to the sampling rate and the set of salient
points. Then, in the main body of the algorithm, the process of
finding salient points and updating the B-spline curve estimation
is performed until the AIC is met or the upper bound of sampling
rate is reached. At each iteration, the set of salient points related
to the current B-spline basis function are found and stored in P .
If at least one salient points is found, the set Q is updated and the
B-spline curve is estimated from the set of new salient points.

The process of finding one salient point is performed in the
SeekSalient function, which is shown in Algorithm 2. Initially, the
set of new salient points, Pl is empty. Then in a loop, the sampling
rate is doubled and s samples are uniformly derived from the
sample set M and stored in S as the set of current samples. This
process is inspired from the doubling technique [41] with the
difference that in here, one salient point is specified at eachpositive
test. In other words, additional information is provided at each
positive test, which is one salient point. Then a test is performed
on S as defined in (17). The test result would be either positive, in
the case of AICr < AICr−1 or negative in the case of AICr ≥ AICr−1.
For a negative test, it is implied that no salient point is found in
relation to frequencies up to 1

τ̄
. One salient point is found when

the test result is positive. Therefore, salient points are extracted
by successive low-pass filtering having gain values of Ψf (ω, τ , p)
greater than 0.707V(τ̄ ) in companion to a reduction in AIC value.
While the process of finding salient points is performed in the
frequency domain in this paper, similar idea has been already
employed for sparse signal recovery in the time domain based on
group testing [32,33].

In the case of a positive test, the BinarySearch function as
defined in Algorithm 3, is employed in order to find the lowest
possible sampling rate. Finally, after sampling with the derived
sampling rate, salient points are detected by sequential testing un-
til the sample set is pure. At the end of this function, all of the
salient points in the current set are found and added to the Pl set.
This set of salient points are sent to the main algorithm for updat-
ing the B-spline curve estimation. In the updating process of the
B-spline curve estimation, accumulated chord length parametriza-
tion is used for construction of the knot vector and a least square
approximation is derived from the new set of salient points.

In the following, the complexity of the proposed algorithm is
derived and an upper bound to the required number of tests is
provided. Furthermore, it will be shown that the algorithm has a
unique solution as defined in the group testing literature. In order
to provide the theoretical proofs, some definitions are required
which will be given as follows. Here we employ a Lemma in order
to prove the total number of required tests.

Algorithm 3 BinarySearch function.
function BinarySearch(s, S)

S′ ← S
E = {i| s2 ≤ i ≤ s} ◃ E and S are the same size
repeat

S
′′

← ⌈
|S′|
2 ⌉ items from S′

E ′ ← ⌈ |E |2 ⌉ items from E

Test(S
′′

)

if S
′′

is contaminated then
S′ ← S

′′

E ← E ′

else
S′ ← S′ \ S

′′

E ← E \ E ′

end if
until (S′ is a singleton)
return Single member of E

end function
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Table 1
Complexity of some popular algorithms.

Algorithm Complexity

Non-adaptive group testing N logN(logN − log d)
Multi-stage group testing d( N2

d )
1
s logN

B-AGE N − 2d

Lemma 4.1 ([18]). If d = d′ + d′′ and n = n′ + n′′ where d′ ≥ 0,
d′′ ≥ 0 and n′ ≥ 0, n′′ ≥ 0 then we have

d′ log
n′

d′
+ d′′ log

n′′

d′′
≤ d log

n
d
. (23)

Now we are ready to prove the number of required tests for
detecting salient points of a sample set.

Theorem 4.1. Algorithm 1 Finds d Salient B-spline Basis Functions
Uniquely in a Set S of N Points, In At Most (2d− 1) log N+1

d−1 Tests.

Proof. Starting from sampling rate s = 2, groups of 2, 4, . . . , 2i−1

elements are constructed for sequential testing. The testing
process continues until a contaminated set with 2i items is
detected. Therefore, the algorithm finds one contaminated set of
size 2i after i tests, while rejecting 2+4+· · ·+2i−1

= 2i
−2 items.

Then the binary search finds one salient item by i tests. Therefore,
after 2i tests, 2i

− 1 items are identified.
It can be proved by induction that the remaining items are

determined by 2(d− 1) log N−2i+1
d−1 tests. Total required tests are

2 log 2i
+ 2(d− 1) log

N − 2i
+ 1

d− 1
≤ (2d− 1) log

N + 1
d− 1

(24)

where this result may be directly concluded from Lemma 4.1.
In order to prove the uniqueness property of Algorithm 1, it

shall be considered that in each group test T (τ̄ ), the existence of B-
spline basis functionswith frequencies lower than 1

τ̄
is determined.

Since the set S is a discrete space with N points, it can be spanned
by ⌊N2 ⌋ B-spline basis functions. By choosing values of 1

2 ,
1
3 , . . . ,

2
N

for τ̄ , the existence of only one frequency is checked in the T (τ̄ )
group test. Therefore, at the end of Algorithm 1, the set of d salient
B-spline functions is constructed which is a subset of the set of
all possible frequencies F = {f |f = 2, 3, . . . , ⌊N2 ⌋}. The set of
d salient B-spline functions is the unique solution of the (d, ⌊N2 ⌋)
problem since the existence of all possible frequencies is checked
from lower value to the highest one andAlgorithm1 finds the same
solution, if applied to the same input data S. �

The complexity of some group testing algorithms are shown in
Table 1. It is easy to show that the complexity of the proposed
method is lower than two popular group testing algorithms. It is
assumed that d elements are defective in a set of N elements and
the complexity of one non-adaptive group testing and an adaptive
group testing are compared to the complexity of the proposed
method. In the next section, the proposed group testing method
is extended to find salient points for B-spline surface fitting.

4.2. B-spline surfaces

A 3D smooth surface is converted to a point cloud by a laser
scanner, stereo camera or Kinect, as shown in Fig. 6. By this means
a continuous space is represented by discrete measurements.
Various B-spline surface fitting methods are employed in practice
in order to achieve a continuous representation from point cloud
data. Here, it is assumed that the observed point cloud is a discrete
representation of a smooth B-spline surface. In other words, it
is assumed that a 3D range is scanned by a sensor where a 3D
observed point po(xo, yo, zo) satisfies the following conditions:

xl ≤ xo ≤ xu
yl ≤ yo ≤ yu
zl ≤ zo ≤ zu (25)

where, xl, yl, zl are the lower bound of sensor measurements along
x, y, z axes, respectively, and xu, yu, zu are their corresponding
upper bounds. Also, it is assumed that the sensor measurement
is an organized point cloud with the width of W and the height
of H , which results in a grid of W × H 3D points. Projection of
observed 3D points to the parametric plane u, v is performed by a
linear projection operator:

L : R3
→ R2, L(po) = (uo, vo) (26)

in which, the parametric values are placed in the bounds of

ul ≤ u ≤ uu

vl ≤ v ≤ vu (27)

with ul, uu as the lower and upper bounds along u and vl, vu as the
lower and upper bounds along v axes. According to the problem
assumptions, the measured points can be expressed by:

s(u, v) =

n
i=0

l
j=0

Ni,p(u)Nj,q(v)pi,j + e(u, v) (28)

where, e(u, v) is the measurement error of the B-spline surface
s(u, v). It has been shown that B-spline surface fitting by the
lofting method is equivalent to the simultaneous estimation of B-
spline surface control points [42]. Therefore,we construct the cross
sectional curves by fitting a B-spline curve to the salient points,
and finally, derive the control points of B-spline surface by lofting
method. Rewriting Eq. (28) one may achieve

s(u, v) =

n
i=0

Ni,p(u)fi,d + e(u, v) for d ∈ {1, . . . , l} (29)

with
l

j=0

Nj,q(v)pi,j = fi,d (30)

where, fi,d are the control points of the iso-parametric curves
s(u, v = const) on the surface. Each cross sectional curve cj(u) =
s(u, v)|v=const may be estimated by the adaptive group testing
method presented in 4.1. Having the estimated iso-curves along
u in hand, we use Eq. (30) in order to estimate the control points
of iso-curves along v using fi,d as observation. The estimated
control points pi,j are the B-spline surface control points achieved
by the lofting method. In the next section, the results of some
experiments are presented in order to show the integrity and
precision of the proposed method.

5. Experimental results

In this section the experimental results of proposed adaptive
group testing technique are presented in both B-spline curve and
surface estimation. In the first case, some 2D functions are chosen
and the proposed method is employed for estimation of a B-spline
curve from some measured points. In the second case, a smooth
surface is observed and an organized point cloud is constructed
by a sensor such as Lidar or laser scanner. The proposed method,
derives the control points of an approximated B-spline surface
fromsalient 3Dpoints using the loftingmethod. Since the proposed
method can be employed for both B-spline curve and surface
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Fig. 6. Observation of a 3D surface.
estimation, it is abbreviated with B-spline by Adaptive Group
testing Estimation (B-AGE).

The algorithm of B-AGE is implemented in C++ and all
experiments are performed on a PC with eight Intel Core i7 CPUs
and 16GB RAM. In all experiments a cubic B-spline is employed to
have a fair comparison with other techniques. In order to compare
the goodness of the fit, some metrics such as Mean Squared
Error (MSE), Maximum Error (ME), Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) are reported. It is
noteworthy that, in this paper AIC and BIC are used for evaluation
of goodness of the fit as standard curve fitting metrics.

5.1. B-spline curve estimation

In this section, some 2D functions are chosen in order to
analyze the applicability of developedmethod in approximation of
B-spline curves from salient points. The functions and the number
of samples are chosen the same as some state-of-the-art methods,
in order to have a fair comparison. The AIC and BIC are computed
for all methods and the goodness of fit is evaluated by having the
lowest value of AIC and BIC.

5.2. Titanium heat data

In this section, the Titanium heat data [43] is used for the first
curve fitting experiment. This challenging data is considered by
several B-spline curve fitting methods such as [9,44–46]. In [9],
initially the knot values are selected uniformly and a sparse
optimization problem is solved to specify the active knots. The
authors of [9] have used various number of knots and ranges for
each experiment, which means that the sparse optimization based
method depends on manual selection of number of knots and
the knots range, as a priori. In addition, this method suffers from
computational complexity as it has been denoted by the authors
too.

The Titanium heat data has been used in another knot selection
algorithm [46], where a set of pre-specified multi-resolution
B-spline basis functions is employed for knot placement according
to the curvature of an unknown function. In the first stage, some
basis functions are chosen by a statistical variable selection, called
Lasso. In the second stage, the locations of the knots are found
by pruning. In this method, it is required to specify the uniformly
spaced knot values and set the knot vector range manually. The
number of internal knots and their values can be determined
by optimization based techniques, simultaneously. Definition of
B-spline curve fitting as a convex optimization is presented in [45]
where both the number of required knots and their values are
found automatically. By minimizing the l1 norm of the third order
derivative of a cubic B-spline, a sparse set of active knots are found.
In this algorithm, it is required to select active knots from a set of
predefined knot values. Also, the range of knots shall be specified
a priori. In addition to the mentioned methods, the experimental
result of B-AGE on Titanium heat data is compared to two least
squares based B-spline curve fitting [43,44]. In these methods, it
is assumed that the number of knots are specified manually and
the algorithm shall find the knot values, which is a very restricting
requirement.

The results of experiments on the Titanium heat data are
denoted in Table 2, where the internal knots and the residual error
are reported. The residual error is defined in [44] as

ϵ =


1
n

n
i=0

wi(c(ui)− Pi)2
 1

2

w0 = wn =
1
2
, wi = 1, i = 1, . . . , n− 1. (31)

The residual error reported for the Jupp’s algorithm [44] is
1.2270e–2 which indicates performance improvement in relation
to the De Boor’s technique. The De Boor’s algorithm [43] is
developed based on the fixed number of knots, which is 5 for this
particular data. By means of sweeping in the parameter space, the
optimal knots are foundwith a residual error of 1.3050e–2. In spite
of good performance in the sense of residual error, the application
of these two techniques is very limited due to the assumption of
knowing the number of internal knots.

The B-AGE method is also applied to the Titanium heat
data, where 6 internal knots and their values are both found
by the proposed algorithm automatically. The residual error of
1.3231e–2 has been achieved without setting the number of
internal knots a priori or performing extensive optimizations. The
convex optimization technique presented in [45], has found 6
knot values resulting in a residual error of 1.4066e–2. The sparse
optimization based method [9], has reported 5 internal knots with
the residual error of 2.1629e–2. The SISL technique [47] which is a
very fast knot placement technique has also found 7 internal knots
but with a relatively high residual error of 2.1629e–2. Finally, the
adaptive knot selection method [46], has found 6 internal knots
with the residual error of 1.7695e–2. A set of basis functions are
selected by Lasso technique for approximation of the underlying
data, and later a pruning step is performed in order to reduce the
number of internal knots.

The computational complexity of B-AGE is very low in relation
to the optimization techniques as the process took 4 ms in
this particular experiment. The timing of sparse optimization
algorithm has been reported 40.22 s on a computer system with
4 Intel Core i5 CPUs. The timing of other optimization techniques
has not reported but they use extensive optimizations. The convex
optimization [45] has employed a re-weighting method and
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Fig. 7. Approximation of Titanium heat data (a) Salient points. (b) Knot values.
Table 2
Experimental results of Titanium heat data.

Algorithm Interior knots Residual error

Jupp’s algorithm [44] {37.65, 43.97, 47.37, 50.12, 59.20} 1.2270e–2
De Boor’s algorithm [43] {37.55, 43.04, 49.29, 59.82} 1.3050e–2
B-AGE {24.00, 28.00, 28.00, 31.00, 31.00, 36.00} 1.3231e–2
Convex optimization approach [45] {38.25, 39.00, 43.50, 46.50, 47.25, 51.00} 1.4066e–2
Sparse optimization [9] {38.41, 43.50, 47.04, 51.00, 58.09} 1.4128e–2
Adaptive knot selection [46] {18, 39.34, 44.82, 46.61, 50.13, 58.33} 1.7695e–2
repeats the optimization until the approximation error is lower
than a threshold.

While in most conventional research papers, the number of
internal knots and the residual error are used for evaluation of
the B-spline curve fitting quality, some authors presented curve
fitting methods based on the AIC or BIC metrics. These standard
model fitting metrics are used in this paper in order to perform
a fair comparison between the mentioned methods. Both AIC and
BIC are defined in order to find best approximating model to the
observed data through a trade-off between approximation error
and model complexity. The smaller the value of AIC or BIC, the
better model has been found by the fitting algorithm. The values
of AIC and BIC are reported in Table 3. The best fitting result
has been achieved by the Jupp’s algorithm with the lowest value
of AIC and BIC. The next is the De Boor’s method. While the
fitting metrics has shown that these twomethods are the best, but
their practical application is very limited due to their dependence
to the number of internal knots. The next algorithm is B-AGE
which has found knots based on salient points. The goodness of
fit for the B-AGE method is near to that of the De Boor and Jupp
methods while having a low computational complexity in relation
to the optimization based techniques. The sparse optimization
and convex optimization methods are placed next, as they have
lower AIC and BIC values in relation to the adaptive knot selection
algorithm. The optimization based methods have found near
optimal knot values with a relatively low residual error. Alongside
the good quality of fitness achieved by these optimization based
methods, their high computational complexity shall be considered
too. The adaptive knot selection method is the last algorithm
with acceptable AIC and BIC value, but with a high computational
complexity similar to other optimization based techniques. The
approximated curves by B-AGE algorithm is depicted in Fig. 7. The
Titaniumheat data is shown by circles and the approximated curve
as dashed line in Fig. 7(a). The salient points are also shown in
Fig. 7(a) by filled circles. These points are related to the maximum
of convolution with B-spline basis functions with various scales.
Table 3
Experimental results of Titanium heat data based on AIC and BIC.

Algorithm AIC BIC

Jupp’s algorithm [44] −405.25 −380.66
De Boor’s algorithm [43] −403.21 −382.40
B-AGE −394.35 −365.97
Sparse optimization [9] −391.44 −366.84
Convex optimization approach [45] −387.87 −359.49
Adaptive knot selection [46] −365.37 −337.00

In Fig. 7(b), the knot values are linearly scaled to the range of
[0, 75] and depicted by triangles for better visualization. The
approximated curve shown in Fig. 7(b) indicates the applicability
of the B-AGE method in B-spline curve fitting by using only salient
points.

5.3. Piece-wise smooth functions

In this section, some smooth functions are employed for
approximation of B-spline curve by the B-AGE method. The
experimental results are compared to that of some conventional
methods, namely adaptive knot selection (AKS) [46] and adaptive
free knot spline (AFKS) [48].

The smooth functions are defined as:

f1(t) = 2 sin(4π t)− 6|t − 0.4|0.3 − 0.5sgn(0.7− t), t ∈ [0, 1]
(32)

f2(t) = sin(4t − 2)+ 2 exp(−30(4t − 2)2). (33)

The number of samples are chosen as 1000 for f1(t) and 101
for f2(t), similar to [48] and the B-AGE method, presented in
Section 4.1, is applied for estimation of a B-spline curve. The
approximated B-spline curve by B-AGE is depicted in Fig. 8 for f1(t).
In Fig. 8(a) the solid line curve indicates the original function and
the dashed line represents the approximation result, where the
salient points are shown by filled circles. In Fig. 8(b), in addition
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Fig. 8. Approximated curve by B-AGE for f1(t) = 2 sin(4π t)− 6|t − 0.4|0.3 − 0.5sgn(0.7− t).
Fig. 9. Approximated curve by B-AGE for f2(t) = sin(4t − 2)+ 2 exp(−30(4t − 2)2).
Table 4
Estimation result of f1(t).

Method MSAE AIC BIC

B-AGE 8.58e–4 −6958.77 −6708.48
Adaptive free knot spline [48] 2.09e–3 −6112.59 −5970.26
Adaptive knot selection [46] 2.21e–3 −6058.50 −5925.99

to the original function and approximated curve, the knot values
are linearly scaled to the range of [0, 1] and depicted by triangles.

The fitting error and the relevant AIC and BIC values are
presented in Table 4. As it can be seen, the B-AGE algorithm
outperforms both AKS and AFKSmethods in the sense ofMSAE, AIC
and BICmetrics. The B-AGE algorithm has achievedMSAE values of
8.58e–4which results in a value of−6958.77 for AIC and−6708.48
for BIC. The AIC and BIC values related to AKS and AFKS are greater
than that of B-AGEmethodwhich indicates that the B-AGEmethod
has better performance in this experiment. The MSAE value 0f
0.00209 for the AFKS algorithm, results in values of−6112.59 and
−5970.26 for AIC and BIC respectively. Based on the model fitting
metrics, the AFKS has achieved slightly better results in relation to
the AKS, while the B-AGE is superior to both of them.

Similarly, the approximated curve by B-AGE for f2(t) is depicted
in Fig. 9. The original function is shown by solid line in Fig. 9(a),
while the dashed line indicates the approximated B-spline curve
by B-AGE. In addition to the approximated curve, the knot values
are also shown in Fig. 9(b) by triangles. The knot values are linearly
scaled in the range of [0, 1]. The results of model fitting for the
seconds case are denoted in Table 5, which indicates that the
proposed method significantly outperforms both AKFS and AKS
methods in the sense of MSAE, AIC and BIC. The B-AGEmethod has
achieved a MSAE value of 1.93e–4 which much lower than 0.0161
and 0.0245 as MSAE of AKS and AFKS respectively.

The B-AGE method, in each iteration finds a salient control
point and adds a relevant knot value in the knot vector. Therefore,
only salient control points are used for B-spline curve estimation
and their relevant knot values are stored in the knot vector
consequently. This makes the curve estimation more efficient as
extra knot values are not stored in the knot vector and only
salient control points are present in the B-spline model. The AKS
method selects a subset of B-spline basis functions whose linear
combination are definitely not B-spline, and tries to approximate
the curve. The estimation result cannot be used in CAD/CAE
applications as denoted in [46]. In addition, in the AKS method,
a knot pruning step shall be performed to reduce the number
of required knots. The AKFS method is developed based on the
genetic algorithm and requires some parameter tuning in order
to apply the curve estimation. Furthermore, this method cannot
be employed in many applications, since it is computationally
expensive due to the huge amount of least square fittings. In spite
of the AKS and AKFS methods, the proposed B-AGE technique,
can be employed for construction of a B-spline curve or surface
model without extensive fitting processes and limited capabilities
in B-spline representation. The approximation process can be
performed without an initial estimation and locates the salient
control points and their relevant knot values until the AIC is met.
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Fig. 10. Approximated curve by B-AGE from noisy samples of f2(t).
Table 5
Estimation result of f2(t).

Method MSAE AIC BIC

B-AGE 1.93e–4 −829.51 −758.05
Adaptive knot selection [46] 0.0161 −375.02 −320.10
Adaptive free knot spline [48] 0.0245 −332.61 −277.69

Finally, the performance of the proposed B-AGE method is
evaluated under noise. Considering f2(t), a zero mean Gaussian
noise with variance σ = 0.05 is added to the same 101 sample
points. It is assumed that the mean and variance of the noise are
unknown and no information is given to the B-AGE algorithm. The
results of this experiment are shown in Fig. 10, where it can be
seen that the underlying curve is efficiently approximated by the
B-AGE algorithm. TheMSAE of curve approximation under noise is
6.049e–4 while the AIC and BIC have achieved values of −710.45
and−660.76 respectively. Comparing these results with the noise-
less experiment where has been reported in Table 5, it can be
concluded that the B-AGE method can efficiently approximate
underlying smooth functions even under noise.

5.4. B-spline surface estimation

In this section the experimental results of fitting B-spline
surfacemodel to organized point clouds is presented. It is assumed
that the input data is captured by a 3D sensor and the B-AGE
method as defined in Section 4.2 is applied in order to construct
a B-spline surface from salient points. The results of B-spline
surface fitting from salient points of some organized point clouds
are shown in Fig. 11. After grabbing a point cloud, the bounding
box of the input point cloud is found and a B-spline plane is
initialized. The B-spline plane is perpendicular to the z-axis and
splits the bounding box in half. This step can be considered as
setting the sampling rate s(τ̄ )|τ̄=1 = 2 and finding salient points
for B-spline surface construction. This process is continued by
increasing the sampling rate if the AIC is not met. The salient
points are found iteratively by performing the group tests on each
row of the organized point cloud. The ISO-parametric curves are
constructed by salient points and the B-spline surface model is
updated by the lofting technique. The AIC prevents the B-spline
model construction process from overfitting by preferring models
with lower number of parameters.

In the first experiment, the Shell surface is considered. The
point cloud of this surface is generated by evaluating the following
equations at 45× 55 = 2475 data points.

x =
1
5


1−

v

2π


cos(2v)(1+ cos(u))+

1
10

cos(2v)

y =
1
5


1−

v

2π


sin(2v)(1+ cos(u))+

1
10

sin(2v)

z =
v

2π
+

1
5


1−

v

2π


sin(u) u, v ∈ [0, 2π ]. (34)

The experimental result of B-spline surface fitting is shown in
Table 6, comparing to that of [14]. The iteration and optimization
technique presented in [14], requires to specify the number
of control points manually, while the B-AGE method offers an
automatic approach for B-spline surface fitting by proving a trade
off between accuracy and model complexity. The approximated
surface is shown in Fig. 11(a).

The next experiment is performed on the crescent surface,
defined as

x = (2+ sin(2πu) sin(2πv)) sin(3πv)

y = (2+ sin(2πu) sin(2πv)) cos(3πv)

z = cos(2πu) sin(2πv)+ 4v − 2 u, v ∈ [0, 1]. (35)

The approximated surface is depicted in 11(b) and the maximum
approximation error is denoted in Table 7.

In the next experiment, the result of B-spline surface fitting,
performed by the B-AGE method, is compared to that of two
state-of-the-art methods [10,49]. The results of this experiment
are shown in Table 8, where it can be seen that the proposed
method achieves decently better accuracy with a fair number of
control points. Furthermore, the final B-spline surface is shown in
Fig. 11(c). This experiment is challenging as the B-spline surface
model is achieved without any initial surface estimation, while
both LSPIA and EPIA algorithms start from a manually created
initial surface. This property, makes the B-AGE method applicable
in a wide range of CAD/CAE applications.

The final experiment is accomplished using an unorganized
point cloud, known as Stanford Bunny. The B-spline surface result
Table 6
Experimental results of B-spline surface fitting for the shell surface.

Method Data points Control points Maximum fitting error

Iteration and optimization [14] 45× 55 20× 20 1.03e–7
B-AGE 45× 55 17× 19 2.11e–6
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Fig. 11. Constructed B-spline surfaces: (a) Shell surface. (b) Crescent surface. (c) Head model. (d) Stanford Bunny.
Table 7
Experimental results of B-spline surface fitting for the crescents surface.

Method Data points Control points Maximum fitting error

Iteration and optimization [14] 116× 124 30× 30 1.1e–8
B-AGE 116× 124 24× 27 1.26e–4
Table 8
Experimental results of B-spline surface fitting for the head model.

Method Control points Error

LSPIA 63× 74 0.002580
EPIA 68× 90 0.002576
B-AGE 64× 77 0.002414

is shown in Fig. 11(d). The input point cloud is uniformly sampled
to achieve an organized point cloud and then it is treated as a
regular organized point cloud. The final B-spline surface is also
trimmed to have a better visualization result.

6. Conclusions

In this paper, an adaptive group testing based method is
developed in order to find salient points of an organized point
cloud and construct a B-spline curve or surface. This B-spline
Adaptive Group testing Estimator, abbreviately called B-AGE, can
be used in a wide variety of CAD/CAE applications. In contrast to
most conventional B-spline fitting methods, instead of processing
a huge amount of non-informative points, thismethod finds salient
control points for curve or surface model fitting. In order to find
the salient points, the input curve is convolved with B-splines
of varying scales. The salient points are marked as maximum of
convolution result. This is in contrast to widely used dominant
points, which is related to points with high curvature. Exploiting
distinctive properties of group testing, salient points are derived
iteratively by performing group tests. A B-spline curve is derived by
least square approximation fromsalient points. The B-splinemodel
is updated until the AIC is met, which provides a trade off between
accuracy and model complexity. It has been shown theoretically
that the algorithm complexity of the B-AGE method is lower
than some state-of-the-art group testing methods. Furthermore,
the applicability of the proposed technique is shown by some
experiments in both B-spline curve and surface approximation.
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