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Abstract—Representation of the surrounding environment is
a vital task for a mobile robot. Many applications for mobile
robots in urban environments may be considered such as self-
driving cars, delivery drones or assistive robots. In contrast to the
conventional methods, in this paper a Non Uniform Rational B-
Spline (NURBS) based technique is represented for 3D mapping
of the surrounding environment. While in the state of the art tech-
niques, the robot’s environment is expressed in a discrete space,
the proposed method is mainly developed for representation of
environment in a continuous space. Exploiting the information
theory, the generated representation has much lower complexity
and more compression capability in relation to some state of
the art techniques. In addition to representation in a lower
dimensional space, the NURBS based representation is invariant
against 3D geometric transformations. Furthermore, the NURBS
based representation can be employed for obstacle avoidance
and navigation. The applicability of the proposed algorithm is
investigated in some urban environments through some publicly
available data sets. It has been shown by some experiments
that the proposed method has better visual representation and
much better data compression compared to some state-of-the-art
methods.

I. INTRODUCTION

Mobile robots are used in diverse applications such as

scientific research, surveillance or military applications. Ex-

ploration or navigation in an unknown environment requires

the simultaneous localization and mapping (SLAM). The

perception of the environment is accomplished by grabbing

sensor observations. Microsoft Kinect camera, stereo camera

and Lidar sensors are widely used for this purpose.

KinectFusion has been presented for real-time reconstruc-

tion of indoor environments using Kinect [1]. The RGB-

D point clouds are merged into a truncated signed distance

function (TSDF) where later is used for mesh construction

by marching cubes algorithm. Later, Kintinuous developed for

extending the spatial limits of KinectFusion and incrementally

making a triangular mesh [2].

In contrast to the case of indoor environments where several

surface reconstruction has been developed, few methods are

available for representation of outdoor environments. OctoMap

has been widely used for outdoor exploration and naviga-

tion [3]. The point cloud data are stored in an octree data

structure probabilistically where occupied and free spaces

can be determined. Surfel maps are another technique for

representation of outdoor spaces [4]. Surfel maps are used

for representation of indoor and outdoor spaces by a mixture

Gaussian functions which can be used for loop closure detec-

tion.

Furthermore, the continuous 3D environment is represented

in a discrete space by raw sensor observations or polygonal

surfaces in most state-of-the-art techniques. Later, the environ-

ment representation shall be used for mobile robot navigation

which is a vital task for either exploring an unknown environ-

ment or travelling towards a goal. Path planning in a discrete

space can not be performed efficiently as it shall be applied to

a continuous environment. Moreover, the conventional state-

of-the-art environment representation methods have weak data

compression capability and the huge amount of acquired data

has to be kept in the memory. In this paper, a NURBS

based representation is proposed for urban environments. In

the proposed method, the discrete sensor observations are

expressed by a continuous surface. Furthermore, the grabbed

raw data are compressed by storing few control points of the

NURBS surface.

The structure of the paper is as follows. The next section is

devoted to some preliminaries required for development of the

proposed method. The proposed method for representation of

outdoor urban environments by NURBS surfaces is presented

in Section III. The Section IV is dedicated to the experimental

results, which is followed by the concluding remarks.

II. PRELIMINARIES

In this paper, it is assumed that a mobile robot is performing

either exploration or navigation towards a goal in an indoor

or outdoor urban environment. The surrounding environment

is perceived through a 3D sensor such as stereo camera,

Microsoft Kinect or 3D laser scanner. Acquiring the point

cloud data, a continuous representation shall be generated by

NURBS, providing obstacle avoidance and navigation on a

surface capabilities. It is supposed that the point cloud is

organized and can be expressed by a matrix of ph by pw.

In the case of unorganized point cloud, a uniform sampling

is performed to extract an organized point cloud. In order to

represent the acquired point clouds by NURBS, it is required

to perform a classification step. The entropy maximization is

employed for classification as it achieves a classification result

with minimum bias [5], [6].

In Fig. 1 the overall process of generating a set of NURBS

from point clouds is depicted. The acquired organized point

cloud is mapped to a grid graph by representation of each
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Fig. 1. The overall process of representation of point clouds by NURBS

3D point as a node of graph. Then the weights of the graph

edges are computed based on the point-wise distances, in

order to construct an undirected grid graph. In the next step,

a random walk on the graph is performed to derive the

stationary distribution. During this phase, the edges with low

weights are removed iteratively, resulting in groups of nodes

having stronger connection with each other. A greedy entropy

maximization is developed for detection of groups in the graph

according to the weights between nodes. Having the groups

of nodes in hand, an efficient NURBS fitting technique based

on the salient points is used for surface fitting [7]. In the

following, the steps of the proposed method is explained in

more detail.

A. Graph Based Representation of Organized Point cloud

In this section, the representation of an organized point

cloud by an undirected grid graph is explained. In order to

express the organized point cloud by a graph G = (V,E), a

set of nodes V and edges E shall be defined. Each 3D point

in the acquired point cloud is expressed by a node vi while

the edge between nodes i and j is expressed by eij . Each

edge has a non-negative weight represented by a real function

W : E → R+∪{0}. It is assumed that the graph is symmetric,

the edges eij and eji have the same value.

Wij = Wji (1)

vi
ei j

Fig. 2. Undirected lattice graph.

Since it is assumed that the grabbed point cloud is orga-

nized, it is expressed as a lattice graph such as the one depicted

in Fig. 2.

The classification of point cloud is performed on the graph

which results in S = {S1,S2, . . . ,Sk}, where each Si consists

of nodes having stronger connection between each other in

relation to nodes of other groups. The constructed groups have

no intersection and their union is equal to the original graph.

The entropy of a random variable X is expressed by pX
which indicates the amount of uncertainty and is defined as

H(X) = −
∑

x∈X

pX(x) log pX(x) (2)

where X is the support of random variable X . The conditional

entropy which indicates the uncertainty of X while having Y

is expressed by

H(X|Y ) =
∑

y∈Y

pY (y)H(X|Y = y) (3)

= −
∑

y∈Y

pY (y)
∑

x∈X

pX|Y (x|y) log pX|Y (x|y)

where Y is the support set of Y and pX|Y is the conditional

density function.

The entropy rate for a random process {Xi} is defined as

H(X) = lim
n→∞

H(X1, X2, . . . , Xn) (4)

which indicates the amount of remaining uncertainty after a

random walk. For a stationary process, the limit of equation

(4) can be computed, where for a Markov process we have

H(X) = lim
n→∞

H(Xn|Xn−1) = lim
n→∞

H(X2|X1) (5)

It has been shown that a random walk on an undirected

graph has a close relation to the classification of graphs [8].

In the graph classification by random walk, a particle is moved

from a node to another one probabilistically. The random walk

of a particle can be expressed by {Xn} which is a sequence

of graph edges. The probability of moving from the ith node

to the jth node, is expressed as

Pij =
Wij∑
k Wik

(6)
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In this situation, the stationary distribution can be shown

simply by µi =
Wi

2W
. In this relation we have Wi =

∑
j Wij

and W =
∑

i,j:j>i Wij . Therefore, the entropy rate is

H(X) = −
∑

i

µi

∑

j

Pij logPij (7)

Now we show that the entropy rate can be expressed

as difference of two convex functions and the optimization

problem can be solved efficiently [9].

Theorem II.1 (The entropy rate of a random walk on an

undirected graph can be expressed as difference of two convex

functions.).

Proof. Based on the equation(4) we have

H(X) = −
∑

i

µi

∑

j

Pij logPij (8)

= −
∑

i

Wi

2W

∑

j

Wij

Wi

log
Wij

Wi

= −
∑

i

∑

j

Wij

2W
log

Wij

Wi

=
∑

i

∑

j

Wij

2W
log

Wi

2W
−
∑

i

∑

j

Wij

2W
log

Wij

2W

=
∑

i

Wi

2W
log

Wi

2W
−
∑

i

∑

j

Wij

2W
log

Wij

2W

Assuming Wij ̸= 0, the entropy rate can be expressed as the

difference of two convex functions ζ log ζ over the domain of

{ζ ∈ Rn|ζ > 0}.

H(X) = g(W )− h(W ) (9)

g(W ) =
∑

i

Wi

2W
log

Wi

2W

h(W ) =
∑

i

∑

j

Wij

2W
log

Wij

2W

Based on this theorem, in the next part, a greedy approach

for classification of point clouds is presented. Finally, the

classification result is used for NURBS fitting.

III. PROPOSED METHOD

A. Point Cloud Classification and NURBS Fitting

In order to fit NURBS surface patches to a point cloud,

it is required to perform classification. Many techniques are

developed for graph classification such as spectral clustering

[11], modularity based clustering [12] and information theory

based methods [13], [14] just to mention few. As the graph

classification based on the entropy rate maximization has the

minimum bias, is employed here. In order to classify the graph,

the greedy algorithm (1) is used.

In the greedy algorithm (1), an undirected graph of n nodes

is considered. In the initialization step, the sampling rate is

set to 2. Then, the corresponding nodes are selected and a

Algorithm 1 Greedy NURBS surface fitting approach

Input: An undirected graph with n nodes.

The sampling rate sr = 2 is initialized.

Main loop

Based on the sampling rate, the corresponding nodes are

selected and a sub-graph is constructed.

For each node, a group is considered.

Local loop

Add the ith node to the jth node having the maximum

probability Pij .

Fit the NURBS surface on each group.

Repeat local loop until AIC condition is met.

Increase the sampling rate.

If the sampling rate is reach the maximum possible value,

finish the process.

Repeat the main loop.
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Fig. 3. The overall process of proposed method for 3D mapping.

sub-graph is constructed. In the sub-graph, initially each node

is assigned to a separate group. Then, the process of joining

groups with maximum probability is performed until the AIC

condition is met. Finally, the groups of nodes are used for

NURBS fitting from salient points [7]. In the next iteration,
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TABLE I
DATASETS

Data Set # Scans Traveled Dist.(m) Scene Type Sensor Type

Freiburg room 2890 7.11 Indoor Kinect
KITTI (00) 4541 3721.73 Urban-Dynamic Lidar
KITTI (06) 1101 1231.22 Urban-Dynamic Lidar
KITTI (07) 1101 694.38 Urban-Dynamic Lidar

(a) (b)

Fig. 4. Experimental results of Freiburg room [10]. (a) The color image. (b) The NURBS surfaces.

the sampling rate is increased if it is lower than the maximum

possible value. In each iteration, new nodes are added to the

groups having maximum probability value, maximizing the

entropy rate. The maximization process is continued until the

AIC condition is met and a trade of between the number of

model parameters and fitting error is achieved.

Having the NURBS surfaces in hand, a 3D map of the

environment can be achieved by performing a Simultane-

ous Localization And Mapping (SLAM) algorithm. In this

paper, iSAM2 algorithm [15] is employed for solving the

SLAM problem and the proposed method is used for 3D map

generation. In the following section, the process of 3D map

generation is explained in more detail.

B. Localization And Mapping

After development of a NURBS based representation of

urban environment, in this section the 3D mapping and lo-

calization approach is presented. The proposed approach is

added to the iSAM2 algorithm and performs mapping and

localization in real-time. The overall process of the proposed

method for 3D mapping is shown in Fig. 3.

The grabbed point clouds are used for estimation of relative

transformation by performing ICP algorithm. The output of

this stage is fed to the factor graph generation phase. As the

factor graph is being constructed, the 3D mapping is performed

simultaneously and NURBS surfaces are constructed in real-

time. A geometric transformation invariant representation is

generated for NURBS surfaces as described in [16]. Sub-

routes are compared by computing the information distance

between NURBS surfaces and loop closure constraints are

added to the factor graph in the case of low information

distance [17]. The iSAM2 and 3D mapping algorithms are

executed iteratively and the map of environment and robot’s

location are updated. This process is continued until the robot’s

task is accomplished.

TABLE II
THE ROOT MEAN SQUARED ERROR (RMSE) OF TRAVELLED PATH.

Data Set Proposed method ORB-SLAM

KITTI (00) 5.16 6.68
KITTI (06) 3.70 14.68
KITTI (07) 0.80 3.36

TABLE III
THE MAP SIZE OF NURBS, OCTOMAP AND SURFEL MAP.

Data Set NURBS size OctoMap size Surfel map size

KITTI (00) 5.01 MB 111 MB 222 MB
KITTI (03) 1.37 MB 9.8 MB 19.6 MB
KITTI (07) 2.11 MB 28.6 MB 57.2 MB

In the next section the experimental results of the proposed

approach in some urban environments are presented. it has

been shown that the NURBS based representation of mobile

robot’s surroundings is applicable to the indoor and outdoor

urban environments. The amount of data compression and the

quality of representation of the proposed method is compared

to that of some state of the art techniques.

IV. EXPERIMENTAL RESULTS

As mentioned before, most of the outdoor representation

techniques for mobile robots are mainly based on the raw

point clouds, voxels or mixtures of Gaussians. For instance,

in [19] a voxel based representation is presented. Discrete

representation of environment, storing a huge amount of point

cloud data and providing no suitable navigation method are the

draw-backs of this method. Surfel maps [4] are a relatively

new approach for representation of outdoor environments. This

technique is widely used as it provides the location of the

mobile robot in real-time. However, it only stores the position,

orientation of surface and color data for limited portion of the

3D space. Finally, the OctoMap [20] is another widely used
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(a) (b)

Fig. 5. Experimental results of KITTI dataset [18]. (a) The OctoMap representation. (b) The NURBS surface representation.
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Fig. 6. Experimental results of performing iSAM2 in KITTI dataset.

technique for expression of the robot’s surroundings. In this

method, the point cloud data are stored probabilistically in an

octree structure. As it has been seen, the conventional methods

have limitations such as discrete representation, storing huge

amount of data, no suitable method for easy obstacle detection

and navigation on a surface. As the real world is continuous

in nature, representation of the acquired data in a continuous

space is more convenient.

The proposed approach is implemented in Ubuntu linux and

is written in C++ using the multi-threading technique. For

each task of initial processing of data, estimation of relative

geometric transformation by ICP, execution of the iSAM2

algorithm, NURBS surface fitting and representation of the

map of the environment are implemented in a separate thread.

The solving of SLAM problem in real-time has been made

possible by simultaneous execution of these tasks.

In order to evaluate the applicability of the proposed

method, one indoor [10] and some outdoor urban environ-

ments [18] are chosen from publicly available datasets. The

Pioneer SLAM dataset is generated in an indoor environment

using Kinect and the KITTI datasets are grabbed in a dynamic

outdoor urban environment using a Lidar. The properties of

these datasets such as the number of scans, the travelled

distance and the type of environment are shown in Table I.

The first experiment is performed on a dataset of indoor

environment which is captured by a Kinect sensor [10]. The

results of this experiment can bee seen in Fig. 4. The color

image of the Freiburg room is shown in Fig. 4(a) while the

resulting NURBS surfaces are depicted in Fig. 4(b).

In the next experiment, the proposed method is applied to

the KITTI dataset [18]. The visual appearance of the NURBS

surfaces is compared to that of OctoMap method in Fig. 5

where Fig. 5(a) is generated by OctoMap method while the

same scene is represented by NURBS surfaces which can be

seen in Fig. 5(b).In the proposed method, the 3D scene is

expressed by a set of continuous NURBS surfaces instead of

using voxels.

Finally, the proposed method is used with iSAM2 in order to

solve the SLAM problem. Various sequences from the KITTI

dataset are selected for this experiment where the estimated

path after performing iSAM2 algorithm with the ground truth

data are depicted in Fig. 6. The root mean squared error

(RMSE) of estimated path for the selected KITTI sequences

is reported in Table II and compared to that of ORB-SLAM

algorithm [21]. The RMSE of the proposed method, which is

based on the iSAM2 algorithm, is lower than the RMSE of

the ORB-SLAM algorithm.

The compression of the acquired data from sensors shall be

considered as an important feature when long-term navigation

or exploration is considered for a mobile robot. In this exper-

iment, the map size of the proposed method is compared to

that of OctoMap and Surfel map techniques. The result of this

experiment can be seen in Table III where it can be seen that

the map size of the proposed method is much lower than the

OctoMap and Surfel map techniques as the NURBS surfaces

can be expressed by few control points and cover a large area

of scanned environment. This is made possible as in urban

environments, many smooth surfaces are available.

Based on these experiments, it can be concluded that the

proposed method can efficiently represent outdoor urban envi-

ronments. The proposed method required no prior information

about the surrounding environment or training. The proposed

mapping approach can be integrated with iSAM2 algorithm in

a SLAM framework for long-term exploration or navigation.
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V. CONCLUSIONS

In this paper we have proposed a method for representation

of urban environments in a continuous space for mobile

robots. The proposed representation, can be used for obsta-

cle detection and navigation on a surface. Furthermore, the

acquired sensor observation are compressed by expression of

data using NURBS surfaces. The proposed mapping technique

is integrated in a SLAM framework and applied to some

publicly available datasets. The experimental results indicates

that the NURBS based mapping can be efficiently used for 3D

mapping of indoor and outdoor urban environments.
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