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Abstract—In this paper, a monocular vision based autonomous 

flight and obstacle avoidance system for a commercial quadrotor is 

presented. The video stream of the front camera and the navigation 

data measured by the drone is sent to the ground station laptop via 

wireless connection. Received data processed by the vision based 

ORB-SLAM to compute the 3D position of the robot and the 

environment 3D sparse map in the form of point cloud. An 

algorithm is proposed for enrichment of the reconstructed map, and 

furthermore, a Kalman Filter is used for sensor fusion. The scaling 

factor of the monocular slam is calculated by the linear fitting. 

Moreover, a PID controller is designed for 3D position control. 

Finally, by means of the potential field method and Rapidly 

exploring Random Tree (RRT) path planning algorithm, a 

collision-free road map is generated. Moreover, experimental 

verifications of the proposed algorithms are reported. 

Keywords—Autonomous navigation; obstacle avoidance; 

autonomous quadrotor; monocular SLAM 

I.  INTRODUCTION  

It goes without saying that in such a sophisticated world the 

prominent role of robots, and especially aerial robots, may not 

be dismissed and autonomous obstacle avoidance is the key 

component for the success of these micro aerial vehicles 

(MAVs). When it comes to the MAVs, controversy surrounds 

the issue how to reduce the weight of robot, because of the 

highly constrained payload. As a result, cameras are the 

appropriate and attractive lightweight sensors to provide rich 

information. So far, many researches have been conducted in 

the autonomous flight of quadrotor using GPS-denied in 

unknown environments but this field is still an open research 

area. 

Garcia Carrillo et.al, work may be considered as a 

representative work on autonomous navigation of MAVs using 

on-board image processing in GPS-denied environments, [1]. 

The aim of this study is the road following using a quadrotor 

with an onboard image processing system. Their approach 

generally consists of two parts, namely estimating and 

tracking the road map without any prior information about the 

environment and the desired path for tracking. Also, a 

switching controller is designed for stabilizing the lateral 

position of the Unmanned Aerial Vehicle (UAV) with respect 

to the road. This approach is limited to segmented straight line 

which exists in the image and they have not considered 

obstacle avoidance. Reference [2], presents a solution for 

enabling a quadrotor to autonomously navigate, explore and 

locate specific objects in unstructured and unknown indoor 

environments using a laser scanner and a stereo camera. In 

order to accomplish that, a quadrotor platform is used, which is 

capable of carrying a laser scanner, stereo camera and an 

onboard computer. However, the aim of our research is to 

develop a lightweight system for autonomous flight and 

obstacle avoidance using only a monocular camera and on-

board sensors. Reference [3], proposed an autonomous 

navigation system on a quadcopter in an unknown 

environment. In this work a monocular SLAM is proposed that 

calculates the 3D position of the robot and fuses the output 

with the measured navigation data, which sent to the ground 

station using EKF. However, no solutions for autonomous 

obstacle avoidance are proposed in this paper.  Sven, et al. [4], 

report an Autonomous corridor flight of a UAV using an 

RGB-D camera, in which SLAM by RGB-D camera is an 

accurate real time method. Compared to the color camera, 

RGB-D camera has more weight and requires higher power 

consumption, which is very restrictive for our application. 

Despite the development of visual SLAM, it is still very 

challenging to use a monocular SLAM for autonomy. The 

major concern is the limited computational capability of 

MAVs, for that reason often data are communicated to a 

ground station using Wi-Fi connection link. So, the visual 

SLAM must be robust to the data loss and probable 

measurement noise in an unstructured environment. 

In this paper, an autonomous flight and obstacle avoidance 

system for a low cost commercial quadrotor called AR.Drone 

is presented. The robot sends video data stream to the ground 

station using Wi-Fi connection link. On the ground station the 

data are processed by ORB-SLAM in order to determine the 

3D position of the robot and the 3D sparse map of the 

environment. The scalar factor is calculated by linear fitting 

and then visual odometry data are fused to the navigation data 

measured by robot on-board sensors to obtain more accurate 

measurements by using Kalman Filter. A PID controller is 

design for the position control of the drone in three 

dimensions. Since the reconstructed 3D map is sparse and 

cannot be used for obstacle avoidance, an algorithm is 

proposed in this paper to make the output map more dense and 

precise. Finally, by applying some path planning methods an 

appropriate and collision-free path is generated. 
The remainder of the paper is organized as follows. Section 

2 gives an overview of the monocular ORB-SLAM and the 
proposed vision-base pose estimation including the KF and 
scaling factor. Section 3 describes our algorithm for enrichment 
of the reconstructed 3D map. We generate the safe and 
collision-free trajectory for autonomous flight of the robot by 
utilizing some path planning methods which is elaborated in 
Section 4. Finally, Section 5 provides a performance 
evaluation, presents experimental results and in Section 6 
concluding remarks are given. To verify the proposed method 
in a series of experiments with a real quadrotor, many 
experimental scenarios are followed, whose videos are 
available online at this link.  
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II. VISON-BASED ODOMETRY AND MAPPING  

A. Monocular ORB-SLAM 

ORB-SLAM is a sparse and feature-based monocular 

SLAM system that operates in real time and in wide assortment 

of indoor and outdoor environments and is robust to rapid 

motions [5]. The system makes the pose estimated more 

accurate by utilizing loop closing and re-localizing as well as 

this system is initialized automatically. The system consists of 

three threads that run in parallel, namely tracking, local 

mapping and loop closing thread. FAST corner detection and 

ORB extractor is used for feature tracking. The tracking and 

feature matching are necessary for camera localization which 

are performed with every frame and decides when to insert a 

new keyframe. After track the extracted features in two 

consecutive frames, the first estimation of camera pose 

performed and then it is made more precise by utilizing the 

Bundle Adjustment (BA) optimization. The place recognition 

is conducted by the Bag of Word (BoW) when tracking is lost. 

Processing new keyframes, Performing Local Bundle 

Adjustment and optimal reconstruction achievement in the 

surroundings of the camera pose are done in local mapping 

thread. Once a new keyframe is added, the loop closing thread 

searches for loops with other ones. When a loop is detected, 

both side of the loop are aligned and duplicated points are 

fused. The key point is that the optimization is performed over 

the Essential Graph. 

B. Scale Calculation 

One of the major problems in using the monocular SLAM 
is the scale difference between visual SLAM output and the 
real world. Therefore, before applying the SLAM 
measurements, the scale factor      of a monocular SLAM 
system shall be calculated. Since the scale is almost identical in 
three dimensions, it is enough to calculate the scale factor in 
one dimension. For this mean, if we consider the robot 
coordinate as given in Fig. 1, then the scale factor may be 
computed by measuring the SLAM output in the Z-axis ,which 
is consistent with the height of the robot, in two different points 
(   

     
). Thanks to the robot on-board sonar sensor, the 

actual altitude is known, and therefore, the scale factor is 
calculated using a linear fitting: 
    (              )                            (1)   

  
               

      
       

 
 (2)   

Hence, the modified robot position in the Z-axis is equal to: 

   (            )            (3)   

Other axes may be computed similarly. 

 

 

Fig. 1. AR. Drone (body) coordinate system and world coordinate system. 

C. Pose Estimation 

In this section, we introduce the state space of KF, 
including the observation and prediction model. The state space 
consists of the 3D positions and the one degree of freedom 
attitude angle. Therefore, state variables are set as follows: 

                
  (4)   

where            denotes the 3D position of the robot in meter 
that represented in world coordinate and    is the rotation 
around Z-axis (yaw) in degrees. The prediction model is given 
as: 

                  (5)   

The aim of KF is to compensate and fuse the 3D position of 
robot in world coordinate and yaw angle with the measured 
navigation data. Therefore, the measurement model has the 
form of: 

   ( ̂   ̂   ̂   ̂ )
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where        are the process and measurement noise, 
respectively. To find the system matrices, consider the 
kinematic equations that lead to: 
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respectively, and     is the yaw angular velocity (
   

 
) and    

is the system time step in seconds (s). If we consider   as 
follows: 
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Consequently, according to (9) to (12) the system matrices are 
given as follows: 

       (14)   

and 
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] (15)   

The horizontal velocity    
   

 
   is measured by the robot 

which is in the robot frame. Therefore, there is a need to 
compute them in the word frame. Use rotation matrix for 
transformation: 

(  
   

 
 )  [

            

             
]  (  

   
 
 ) (16)   

Furthermore,   
  is equal to the derivative of the robot height: 

  
  

       

  
 (17)   

On the contrary, robot cannot directly compute the 
acceleration in three dimensions and sum of both dynamic and 
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static acceleration is accessible. While, we need just dynamic 
acceleration which can be computed as follows: 
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According to [6],  ⃗ 
       is equal to: 
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where,   is the rotation around X-axis (Roll),   is the rotation 

around Y-axis (Pitch) and   is gravity of earth      
 

  
 ; 

therefore, 

 ⃗ 
          ⃗ 

          ⃗ 
         (21)   

Finally, acceleration in the world coordinate may be computed 

similarly: 

 ⃗ 
         [

               
                

   

]   ⃗ 
        (22)   

Moreover,    is directly available in the robot measurements. 

D. PID Controller 

After prediction of the robot 3D position, we can control the 

position of robot. For this, ordinary PID controller is utilized 

for each axis and robot Yaw angle. All the PID coefficients are 

determined and tuned during some experiments. The general 

structure of controller is shown in the Fig. 2 using block 

diagram. In this structure, the estimated 3D robot position and 

robot Yaw angle calculated in the last section are used as 

feedback.  

III. MAP ENRICHMENT 

As mentioned before, the environment map which is 

reconstructed by ORB SLAM is sparse, and hence, it is not 

suitable for autonomous flight and obstacle avoidance. To 

realize this aim, there is a need to make the output map more 

precise and dense. For this reason, we proposed an algorithm 

which is mainly based on plane fitting, clustering and 

classifying methods. In what follows, we will elaborate the 

proposed approach. 

First, a part of sparse map that is around the robot (e.g. 

points that are inside of a sphere with a finite radius) is selected 

and split up into cubes with specific side length. Then, the 

mean of points of all boxes is computed. Any box in which the 

number of containing points is lower than the mean point is 

ignored. After that, for each remaining box a plane is fitted. 

Thanks to K-Means [7] clustering algorithm, the determined 

planes are categorized into five groups, namely top, right, left, 

front, and rear directions, with respect to their normal vectors. 

Then, for each cluster a mean direction vector is computed. In 

every cluster, the angle deviation between each normal plane 

and mean vector is computed and if the deviation is more than 

15 degrees, the corresponding plane will consider as outlier. By 

utilizing the K-nearest neighbors (K-NN) classifier method, 

[8], with K = 3 the outliers are classified to the right cluster. As  

 

 
Fig. 2. General structure of PID controller for 3D position and Yaw angle 

control 

 
Fig. 3.  A snapshot of a corridor (a); reconstructed map of corridor and selected 
around point cloud of robot, the selected point cloud divided into several boxes 
and each box exhibited in different colors, the fitted planes are distinguished in 
different clusters and displayed in different colors (b); outlier planes 
determined and highlighted, the modified planes are in green color (c); 
according to corrected normal vector for each cluster, the existed points are 
lined up and some extra points added (d). 

the outliers are corrected, the mean vectors for each cluster are 

altered. 

Finally, to enrich the map, we line up points in each cluster 

with respect to the average normal vector. Moreover, some 

extra random points are added according to the mean normal 

vector in every separate box, in order to enrich the environment 

map. In Fig. 3 it is shown the map enrichment algorithm for a 

corridor (Fig. 3-a), as you can see in Fig.3-b the reconstructed 

map using only ORB SLAM in really sparse and not suitable 

for autonomous flight; therefore it should be made more  dense.  

First, the point cloud area of robot is selected and is divided 

into several boxes in order to fit a plane to each box. Then, 

these boxes are distinguished in different clusters (Fig. 3-b). In 

the next step the outlier planes are determined and corrected 

according to the normal vector of each cluster (Fig. 3-c). 

Finally, the existed points are lined up and some extra points 

are added to make it more dense (green points in Fig. 3-d). 

IV. PATH PLANNING 

By performing the previous steps, the data are ready to be 

used for autonomous flight and obstacle avoidance. The 

autonomous flight consists of two steps. The first step is to 

determine the next appropriate motion set point and the second 

step is generating a collision-free trajectory to reach to this set 

point. To aim this, we used some path planning methods such 

as potential field and RRT algorithms. In what follows, we will 

explain the proposed approach. 

  ∫     
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A. Set Point Determination 

The first step of autonomous flight is to determine an 
appropriate set point that is far enough from the obstacles. To 
this end, the next set point is specified using potential field 
method [9]. Usually, in potential field method robot is 
considered as a point in a potential field that combines 
attraction to the goal and repulsion from obstacles. However, in 
our approach we do not consider goal point and the potential 
field only consists of repulsive field which made up of two 
different sources. The field is a combination of the repulsion 
from obstacles and the current position of robot. The repulsive 
field of both sources is computed by the following equation: 

        {
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)
 

        

                                                      

   (23)   

where      is the Euclidean distance between the query point 
       and new set point  ,      is a constant coefficient which 

determines the intensity of field. Hence, the repulsive force 
acting on robot is proportional to the gradient of repulsive field: 

                   (24)   
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 (25)  

Therefore, the affecting force is equal to: 

                                        (26)  

where each of two forces has different constant coefficients 

(       ). Thus, to determine the new set point for the robot 

we consider the initial position for new set point with the same 
height of the robot and a bit further than the current robot 
horizontal position. Then, the potential field algorithm is 
executed and at each iteration      is applied to the new set 
point to converge to a steady state. When      is lower that   
then the algorithm is terminated and the computed point is 
considered as the new set point. 

B. Path Generation 

To reach to new set point we must determine a collision-
free path. To this end, there is a need for a real time path 
planning algorithm, and in this research we used RRT path 
planning method [10]. RRT is an algorithm designed to 
efficiently search non-convex, high-dimensional spaces by 
randomly building a space-filling tree. The tree is 
incrementally constructed from random samples generated in 
admissible search space and grows towards large unsearched 
areas of the environment. Tree starts growing from the current 
robot position and tries to find a feasible path toward the new 
set point by using random samples from the search space. As 
each sample is drawn, a connection is attempted between it and 
the nearest state in the tree. If the connection is feasible, and 
the new connection pass through admissible space and keeps 
enough distance from the obstacles, the addition of the new 
state is inserted to the tree. This process continues until a 
collision-free path can be found between the goal and the start 
point.  

After a path is found, path smoothing may be applied to make a 
smoother and more direct route to the goal. This may be done 
iteratively by sampling points between nodes on the overall 
path and then checking if two points could be connected to 
reduce the overall path length. In Fig. 4 it is shown the RRT 
path generation for a 2D environment. The dashed-dotted lines 
are the RRT Tree which consists of some branches. As you can 

see, the tree has randomly grown in the admissible space to 
find a feasible path between start point and goal point. Upon 
finding a feasible path, the tree growth terminates (solid lines). 
Since the generated path is not smooth enough for navigation, 
consequently a smooth path is fitted to it which is shown in 
dashed line. 

Another noteworthy aspect of the proposed path planning is 
to consider an admissible area in both set point determination 
and path generation. Due to the sparse reconstructed map, 
sometimes the floor and the ceiling cannot be recognized, and 
therefore, to avoid wrong path generation, the admissible area 
shall be determined. Thanks to the proposed algorithm for map 
enrichment, we exactly know the bounds of reconstructed map 
and we consider these bounds as admissible area. In Fig. 5, 
new set point and a generated collision-free path between robot 
(red wired sphere) and set point (green solid sphere) are 
illustrated. As it is seen in this figure in order to prepare the 
point cloud for collision-free and successful autonomous flight, 
first we line up and enrich the reconstructed point cloud (green 
points). Then by means of RRT path planning method a 
feasible path generated which is rough and not appropriate for 
navigation (red solid lines). Therefore, the smooth path is 
generated which is distant enough from the obstacles (violet 
dashed lines). 

 
Fig. 4.  RRT path generation algorithm, for the ease of understanding the 2D 
path generation is shown. The dashed-dotted lines are the RRT tree, the feasible 
generated path is in solid lines and the dashed lines denote the final smooth 
path. Blue circles and the black lines are obstacles.                                                                                                                             

 

Fig. 5. Generating 3D collision-free path between current robot point (red 
wired sphere) and determined new set point (green solid sphere). The red solid 
lines are RRT feasible generated path and violet dashed lines are final smooth 
path. 
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V. EXPERIMENTS AND RESULTS 

To verify the effectiveness of the proposed approach a 
series of experiments is conducted in different environments. 
For all tests, we used a low cost AR. Drone quadrotor which is 
released in 2010 and has been used in several researches [11, 
12, 13, 14]. This Drone is equipped with a navigation system 
operating in 200 Hz that includes an inertial measurement unit 
(IMU) and vision based horizontal velocity system estimator. 
Its IMU consists of a 3-axis gyroscopes and accelerometer. The 
height of robot is measured by an ultrasonic sensor with a 
refresh rate of 25 Hz. Moreover, there is a 720p frontal camera 
sensor with     lens that is recording up to 30 frames per 
second. All navigation data and video stream are sent to the 
ground station laptop using Wi-Fi connection link to be 
processed real-time. All programs are designed in Robot 
Operating System (ROS-indigo) and will be published as open 
source software in near future. 

A. POS Estimation Evaluation 

In current section, we evaluate the performance of the 
proposed Kalman filter. After scale factor calculation, Kalman 
filter provides directly the robot 3D position and the yaw angle. 
To verify the KF output data, the estimated position of robot in 
Z-axis and yaw angle with the actual values that obtained from 
the accurate external sensors are compared. Fig. 6, shows the 
results; in which the solid lines denote the actual 
measurements, the dashed-dotted lines are the estimated values 
and the SLAM outputs are drawn with dotted lines. In the both 
graphs it can be seen that the KF estimated values are close to 
the actual measurements. Moreover, the delay is well 
compensated .In samples 800 to 900 the SLAM is lost for a 
moment and the outputs are not reliable while the KF is 
capable to modify and estimate the correct values. In short, the 
KF outputs are more reliable, precise and in general far better 
than the raw SLAM outputs. 

Moreover, we evaluated the position control system by 
defining a       square path as reference trajectory that the 
results of this experiment are shown in Fig. 7. In this figure the 
reference path is shown in the dashed-dotted red lines and the 
blue solid lines denote the robot position. As you can see, robot 
can suitably track the reference trajectory, although the aim of 
this research is not path following. 

B. Complete System Performance 

To appraise the reliability of our approach, we arranged 
increasingly challenging environments which the robot had to 
fly autonomously. The aim of these experiments is to evaluate 
the success rate of autonomous flight and avoiding the probable 
obstacles. Fig. 8 shows the three different environments which 
have been tested in our approach. In Fig. 8-a the robot fly only 
in the blocked corridor, while Fig. 8-b illustrates a blocked 
corridor with an extra obstacle. In Fig. 8-c a more challenging 
environment is set up in which a blocked corridor with two 
extra obstacles are installed while there are no additional 
features added to the environment. Columns in Fig. 8 represent, 
respectively, a snapshot of the environment, the ORB-SLAM 
output image which consists of the robot view and extracted 
and tracked corner features of environment and the last picture 
is a view of the developed software that exhibits all steps of our 
proposed algorithm (ORB-SLAM reconstructed map, enriched 
point cloud and collision-free generated path). In all 
experiments robot starts the mission from the beginning of 
corridor and moves along it. The mission will be finished when 
robot faces an obstacle that cannot pass through, while the 
robot lands at the end of mission. It is noteworthy that all 

experiments have been conducted successfully in real-time 
without any collisions; this verifies the effectiveness and 
reliability of the proposed approach. The videos of experiments 
with more details are available online at this link. 

VI. CONCLUSION 

In this paper, a visual navigation for autonomous flight and 
obstacle avoidance of a low-cost quadrotor is presented. The 
proposed system enables the robot to flies autonomously in 
unknown environment and avoids colliding obstacles. The 
proposed algorithm generally consists of two parts. Firstly, we 
obtain the 3D position of robot. For this, the 3D position of 
robot is estimated using Kalman Filter which fuses the 
monocular ORB-SLAM outputs and navigation data measured 
by on-board sensors of drone. Regarding the autonomous flight 
and obstacle avoidance, robot needs to have a perception of its 
environment. To fulfill this aim, we use the surrounding map of 
robot which is reconstructed by monocular ORB-SLAM. But, 
this map is sparse and not appropriate for autonomous 
applications. Therefore, we represented an algorithm that lines 
up and enriches the reconstructed map. In the next step we 
determine the motion next set point and generate a collision-
free path between specified set point and current robot position. 
For this, a dynamic trajectory generation algorithm is proposed 
to fly and avoid the probable obstacles autonomously in an 
unknown but structured environment by utilizing some path 
planning methods such as potential field and RRT. The 
algorithm has been evaluated in real experiments and the flight 
variables are compared with some external precise sensors. In 
the experiments, it is illustrated that robot can perform reliable 
and robust autonomous flight in different scenarios while 
avoiding obstacles. Moreover, the proposed system can be 
easily applied to other platforms, which is being extended and 
implemented in our future plans.  

 

 
Fig. 6. Evaluation of estimated KF states, top graph is comparison between 

estimated and actual height, in bottom graph the actual and estimated Yaw 

angle compared.    
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Fig. 7. Square path following of a quadrotor in three-dimensions. The solid 

lines are the 3D position of robot and the reference path is shown in dashed-

dotted lines. 

 

 
Fig. 8. Verification of autonomous flight and obstacle avoidance approach on 

three different environments. From top to bottom: blocked corridor, blocked 
corridor with an extra obstacle, blocked corridor with two extra obstacles and 

without any additional features. 
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