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Abstract—Optimal solution for nonlinear identification prob-
lem in the presence of non-Gaussian distribution measurement
and process noises is generally not analytically tractable. Particle
filters, known as sequential Monte Carlo method (SMC), is a
suboptimal solution of recursive Bayesian approach which can
provide robust unbiased estimation of nonlinear non-Gaussian
problem with desire precision. On the other hand, Hunt-Crossley
is a widespread nonlinear model for modeling telesurgeries
environment. Hence, in this paper, particle filter is proposed to
capture most of the nonlinearities in telesergerie environment
model. An online Bayesian framework with conventional Monte
Carlo method is employed to filter and predict position and
force signals of environment at slave side respectively to achieve
transparent and stable bilateral teleoperation simultaneously.
Simulation results illustrate effectiveness of the algorithm by com-
paring the estimation and tracking errors of sampling importance
resampling (SIR) with extended Kalman filter.

Keywords—Nonlinear Identification, Gaussian Noise, Force
Predictions, Hunt-Crossley , Telesurgery, Particle Filter.

I. INTRODUCTION

Teleoperation systems typically consists of a master robot
for operator’s leverage and providing force feedback, a slave
robot which imitate master commands and interacts with the
environment, and a communication channel for transition of
data. In bilateral teleoperation systems an operator uses robotic
manipulator to accomplish tasks at a distance, while force
feedback from remote environment is resubmit to recover the
transparency [1]. Transparency is a performance objective in
teleoperated system which compares the amount of distortion
employ by the teleoperation system while accomplishing a task
with the direct execution of it. In other words, an ideal trans-
parent teleoperator system dose not introduce any dynamics
relating to system’s own characteristics during execution of
tasks [2].

Force reflecting teleoperation has been cited extensively
in the recent research area [2]. One of the main concerns in
the design of the force-reflecting teleoperators is the enhance-
ment of transparency while assuring stability of the global
system under widest possible uncertainty bounds persist in
communication channel as well as environmental dynamics.
In these systems, the stability concern arises due to the
structure of the closed loop system. The strong force feedback
creates a destabilizing effect known as induced master motion
phenomenon [3]. Despite the enormous amounts of literature
dealing with the design of guaranteed stable feedback systems,
they present undesirable poor transparency. This constitutes the
major challenge of designing the force-reflecting teleoperators.
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Motion filtering and force prediction of robotic manipu-
lators is inevitable from two different points of view. First,
sensors are polluted by measurement noise while noise-free
signals are required in the control structure. Secondly, force
sensors are inaccurate, hard to use, and expensive [4]. There-
fore, online identification methods are required to smooth and
estimate desire signals. Different environment identification
methods have been proposed in literature for linear and Gaus-
sian noise in teleoperation systems (e.g. [5]-[7]). However,
in the case of nonlinearity like in Hunt-Crossley model with
non-Gaussian process noise, there is no optimal solution for the
tracking problems. Although, different methods have been pro-
posed for identification of Hunt-Crossley environment model
like in [8], [9], establishing a probability framework for robust
identification of environment dynamics has not been reported.

One of the main advantages of probability framework is
that it provides the opportunity of decision making under
uncertainty which is a unique feature among other approaches.
Besides, knowledge fusion is significantly facilitated in prob-
ability framework; different distinct sources based on the
certainty of them can be incorporated to achieve better result.
Some other distinctive aspects of this space are counted in the
following:

1)  Possibility to cooperate prior information [10]

2)  Obtaining full probability distribution on unknown
parameters presenting whole knowledge of them [11]

3)  Using credible interval instead of confidence interval
[12]

4)  Absence of over parameterized phenomena [13]

5) Evaluate method in the presence of limited number
of observed data

Besides the pros of the proposed method, its drawbacks are
enumerated as follows:

1)  High computational effort for obtaining whole prob-
ability distribution

2)  Some assumptions on knowing noise distribution
before estimation

It is true that Bayesian methods are employed for identifi-
cation problems in some articles and it is somehow a mature
topic (e.g. [11], [14], [15]), but it is not widely developed for
environment identification of teleoperation systems. Hence, it
has been a real challenge in recent literature. Firstly, in [16],
Bayesian hypothesis tree is utilized to estimate location of
remote object. Reference [17], reports adaptive methodology



to maintain stability without compromising performance with
finite set of environment models. Specific switching policy be-
tween these models are employed by Markov chain approach.
Internet communication with packet loss and data corruption
by the solution of Particle filters are discussed in [18]. In
[19], motion and force are estimated using two particles in
master and slave side. Different application of particle filters
in teleoperation with time delay is surveyed in [20]. A new
method to precisely obtain time delay in teleoperation via
internet is proposed in [21].

In this paper, we use particle filter with sampling impor-
tance resampling (SIR) algorithm in the slave side to filter
motion and velocity signals required for local impedance
control and predict force flow to use as feedback in bilateral
framework. For the sake of comparison, this algorithm is
collate with extended Kalman filter (EKF) method to estimate
environment dynamic.

The reminder of this paper is organized as follows. In Sec.
I, brief explanation of teleoperation and probability approach
for filtering are presented. Sec. III is devoted to structure
of proposed controller in master and slave side. Detailed
algorithm is expressed in Sec. IV including EKF and SIR
Particle filter. Simulation results are addressed in Sec. V.
Finally, the paper is concluded in Sec. VI.

II. PRELIMINARIES

In this section, some precursory implications are wrapped
up to declare the forgoing concepts. These intention comprise
bilateral teleoperation and probabilistic perspective in nonlin-
ear system identification case.

A. Bayesian approach

In Time-series modeling of state-space approach, the state
vector includes all available information of a system. Two ded-
icated models are required to make inference about a dynamic
system; first, a system model that qualify the evolution of
the state as time goes on and, second, a measurement model
including the noisy measurements. It is assumed that these
models are available in a probabilistic form. This assumption
provides a rigorous framework for dynamic state estimation
problems.

Generally, the posterior probability density function (pdf)
of the states includes the evolution model and received mea-
surement to capture the whole available information in the
Bayesian approach. This approach tends to the complete so-
Iution of the estimation problem, since the pdf embodies all
available statistical information [22].

Similar to recursive approaches, in the state estimation
problems, the algorithm should be updated every time as a
measurement arrives. In a recursive filters, data processing are
done sequentially and the current state is adjusted only by the
latest received information regardless of batch datasets. These
filters are implemented in two fundamental stages: prediction
and update. In the prediction stage, the state pdf is predicted
using the system model. The update operation modifies this
pdf by the latest available measurement. These procedure can
be employed systematically using Bayes theorem, which is
the method to update evolution information given measured
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data. To define the problem of tracking, consider the following
evolution of the state sequence:

T = fro(@Tp—1, Up—1,Vk—1), (1

where (f)) is a possible nonlinear function of state vector
(zx) and exogenous input (uy) and (vg—1) is ii.d. process
noise sequence. The main objective of the tracking problem is
to recursively update () from noisy measurement equation:

2 = hi(xp, ug, ny), )

where (ny) is i.i.d. measurement noise. Particularly, a filtered
estimates based on the set of all available measurements (z1.%)
is required in the state estimation problems. In a Bayesian point
of view, the identification problem is to recursively calculate
some degree of belief in the state (xj), given the measured
data set (Z1.x) up to time (k). In order to achieve this end,
the posterior pdf p(zx|z1.,) need to be constructed in each
time sample. The following assumptions should be hold:

e Some prior information of Initial pdf (p(xg|z0)) is
required to be known.

e  The sequence of (x)) is Markovian process of order
one and only depends on the past observations through
its own history.

e  The sequence of (zy) is first order Markovian process.

Prediction: It is assumed that the posterior pdf is available
at the current time. In the prediction stage, the system model
as in Eq. (1) and known statistics (vg_1) is calculated to obtain
the prior pdf at current time using the Chapman—Kolmogorov
equation [23]:

p($k|21:k—1):/p($k|$k—1)p(xk—1|Zl:k—l)dxk—1- 3

Update: As the measurement (zj) becomes available at
time step (k), this is used to update the prior knowledge in
Eq. (3) via Bayes’ rule:

p(ze|zr)p(r|21:0-1)

P\Tk|21:k) = ) “4)
(wilz1e) p(zk|21:6-1)
with the following normalizing constant:

p(zk|z1k-1) = /P(Zk|Zk)P($k\Z1:k71)d$k~ )

First expression in nominator of Eq. (4), is called the likelihood
function derived from measurement model in Eq. (2); the
next expression is the prior knowledge defined by evolution
model in Eq. (1). The recursive relations (3) and (4) are
obtained form the core of the optimal Bayesian solution.
However, this recurrent propagation relation for obtaining the
posterior density is not analytically tractable, in general, it is a
conceptual solution, except under some restrictive assumptions
holds on general estimation problem as the one in kalman
Filter.

In Kalman filters, it is assumed that the posterior density is
Gaussian at every time step and, hence, can be fully interpreted
by a mean and covariance hyperparameters. Particularly, the
process and measurement noises (vi_1,n%) are drawn from
Gaussian distributions. Moreover, in evolution and measure-
ment relations, (fx,hy) are known linear function of state,
inputs and noise.



B. PFarticle Filter

Particle filters also known as sequential Monte Carlo meth-
ods are substantially a generalization of the traditional Kalman
filtering methods. They are based on point mass which repre-
sent the probability densities. Particle filters can be applied
to many state estimation problems. One of the main method
typically applied in these filters is the sequential importance
sampling (SIS) algorithm. It utilizes Monte Carlo (MC) to
simulate over system model and observed data. Survival of the
fittest, bootstrap filtering, interacting particle approximations,
and the condensation algorithm, are some other conventional
referees for sequential Monte Carlo (SMC) approach [21].
This technique is actually employed to implement an online
recursive Bayesian filter via MC simulations. This method
is used widespread in the area of research targeting nonlin-
ear environment with non Gaussian noise such as in image
processing and robotics. The key concept is to consider the
required posterior density function with a set of random
samples with associated weights. These samples with their
associate weights are established to represent the posterior
density discretely. This MC approach becomes an equivalent
representation to the actual posterior pdf as the number of
samples becomes very large, and the SIS filter conquer the
optimal Bayesian estimation problem. To provide the details of
the algorithm, let (z},,, w);=*, denote a random measure that
represent the posterior pdf p(xo.x|21.%). Moreover, the weights
are normalized such that ), w! = 1. The posterior density
function can be approximated as following:

Ns
Plaoklzik) = > whd(won — zhp)- ©)
i=1

Meanwhile, a discrete approximation is proposed to the true
posterior density. In This stage, it is assumed that (p(z)
m(x)) is a target probability density function from which it is
difficult to draw samples but it can be evaluated on separated
points. Consider (g(-)) as an arbitrary density which is easy

to draw sample. 4
i P(xhkl21:k)

; . @)
(.| 21:8)
In the recursive algorithm we have:
i i p(zklx;c) p($2|$;€71)
wh o< wh_| ®)

q((L’}JiCZ_h Zk)

Another MC method that can be applied to recursive Bayesian
filtering is the SIR filter which is proposed in [24]. Some slight
assumptions need to be hold in order to use SIR algorithm;
the state dynamics and measurement functions, mentioned in
Egs. (1) and (2), need to be known. The prior and process
noise distribution need to be able to draw sample realizations.
Finally, the likelihood function up to proportionality should be
point-wise available for evaluation.

Admitting the required assumptions, the SIR algorithm
is calculated directly from the SIS algorithm by appropriate
choice of the importance density and resampling step. ¢(-) as
the importance density should be chosen to be the prior density
of p(-). Moreover, at every time sample, resampling may need
to derive in this algorithm as follows.

wj, oc wi,_1p(zk|z},). 9)
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the importance sampling density for the SIR filter, namely
(wi_, =1/N), is available independent of measurement. On
the other words, the state-space is probed without any inter-
position of the observations. This will increase the sensitive
to outliers and make the algorithm inefficient. Abatement of
diversity in particles can be taken into account as another
side effect of SIR method, since resampling is applied at
every iteration [25]. On the other hand, this method takes the
advantage of the capability to easily evaluated the importance
weights. Therefore, importance density can be easily sampled
in this approach.

III. CONTROL STRUCTURE

The teleoperation setup used in this paper is shown in
Fig. (1). Master manipulator dynamics may be represented as
follows by alleviating nonlinearities.

GmOm A bmbm + k(O — Omo) = wpm + Fi, (10)

where (jin, b, ki) are inertia, damping and friction coeffi-
cient of master robot. Moreover, (u,,) is the master controller
and (Fj,) is the operator applied force. Slave dynamic can
be considered as another 1-DOF prismatic manipulator with
following dynamic:

Mes + bsts + ks(xs - st) =u, — Fg, 11

where (mg, bs, ks) are mass, damping and friction coefficient
of slave robot. Moreover, (us) is the slave control signal and
(F.) is the environment force considered as Hunt-Crossley
model [8].

F. = K.xl + Bexlds, (12)

where (K,.) and (B.) are the stiffness and damping parame-
ters respectively related to the coefficient of restitution. It is
assumed that, the viscous force is dependent on the penetration
into the contact area. The parameter (n) is a constant that
depends on the material and the geometric properties of contact
area which is usually between 1 and 2. Control structure
consist of master and slave impedance controllers. For the slave
side, particle filter is utilized to filter position and velocity
signals and predict environment force to feedback in master
side. Slave control signal is obtained base on Eq. (13).

Us:Fe+Fewg+ES7 (13)
where

ms _

Fezg - Ktun ( ) (szm - xfs)v (14)
Mmds
ms ms .

FiQZKs_ Ks s BS_ Bs ER 15
s = ( p— ds)Tfs + ( p— ds)Egs,  (15)

in which (K, Kt,,) is the position scaling factor and tuning
parameter, respectively. Master controller is another impedance
controller base on Eq. (16).

U = = Fy o+ (= K f) + F(16)
where (K) is the scaling factor and,

Fim = (Km — 2™ Kagp)tm + (B — 2™ B )im. (17)
Jdm Jdm
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Fig. 1. Control Structure

IV. ENVIRONMENT ESTIMATION

In this section, detailed equations are outlined for position
filtering and force prediction by Kalman filter and Particle fil-
ter. Notice that, since assumption required for optimal solution
dose not hold, suboptimal solution should be employed and
compared in this case. Consider differential equation of slave
dynamic as follows:

Ts = a1Ls + asxs + bu (18)
where a1 = —cs/ms, as = —ks/ms, b = [1/mg, 1/my] and
u = [us, fe].

A. Extended Kalman Filter
Model Equation is given by Eq. (19) as an LTV system:
X(k)=F(k)X(k—1)4 Bus(k — 1) + vp_1,
y(k) =CX (k) + i, 1

where (X = [X1, X2]T) consist of motion and velocity data
and

e 1 T,
= %(176a1T3)+KI ealTS JrB/ )
20
B=[0 2(1-emT)]", 20
C=[100],
where
! TS n—1
K = —Mn(Xl) ([(e—‘y-Be)(g)7
T @1
B'=— 11 B(X))".

The motion data flow is considered in a nonlinear and non-
Gaussian environments in this paper. Therefore, it is assumed
that the state noise () probability distribution can be repre-
sent by the Gamma distribution, which is typically observed
in an impulse noise [26]. This density can be modeled by the
following equation.

501 a—1_—pBv,
) = oy e w0 Q)
The mean and variance of the Gamma density function in
Eq. (22) are (o/B) and (a/f3?), respectively. Note that the
observation noise is considered to be Gaussian. The algorithm
is accomplished in three steps:
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Step 1. Initialization
Choose initial condition for X randomly.

X7 =Xo+e, (23)
where € ~ N (0, 0;).
Step 2. Prediction
Calculate the model equation 19.
X~ = FX(k) + Bus,

P~ =FPk)F +Q, @4

where (Q)) is variance of model equations and (P) is the
covariance matrix.

Step 3. Update
Compute Kalman gain and covariance matrix.

K =P~ C'(CP~C'+R)™,
X(k+1)=X"+K(X(k+1)—CX™), (29
plk+1)=(1-KC)P~.

B. PFarticle Filter

Evolution dynamics for environment estimation based on
Eq. (1), consisting of three states position, velocity and random
walk for applied torque. Discreet time differential equation is
given as following:

1 T 0
dk+1)= |21 —enTs)  enT —Le
Ke in n—1 Be xi n 0
@) Buled) o6
. 0 €1
2 (k) + | 21— e ) | ug + e
0 €3
where (T) is the sampling rate, #° = [z}, 2%, 28]T corre-

sponding to motion, velocity and force signals, respectively.
and ¢; ~ N(0,0;). These parameter (o) depict degrease of
belief for evolution model and must be well chosen based
on preciseness on that. Meaning that if dynamic equation
are highly accurate, the corresponding parameter must be
chosen small enough to decrees chartering for filtered signal.
It is worth mentioning that due to passive force generated by
environment, the force is hold from previous sampling time.
Measurement dynamic (2) is the same as in Eq. 19. Given
measurement noise assumptions, the importance weight 9 is
further simplified as:

wh,, = ez (XD, 27)

Moreover, o is designed based on measurement noise. If it is
chosen very small, only a small number of particles are active
in each step. Steps to implement particle filter is expressed as
bellow:

Step 1. Initialization
Choose initial condition for particles by cooperating of prior
knowledge.

Step 2. Prediction
Evaluate the evolution model based on Eq. (26) for next
generation particles.
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Fig. 2. Environment estimation and Control effort: extended Kalman filter

Environment

Fig. 3. Tracking of teleoperation system: extended Kalman filter

Step 3. Update
Calculate the normalized importance weights based on Eq. (27)
based on measurement.

Step 4. Resampling
Multiply/suppress samples with high/low importance weights.

V. SIMULATION

Master robot consist of 1 DOF manipulator with parameter
shown in Table I. Slave robot is 1 DOF translational manip-
ulator and environment is Hunt-Crossley model with gamma
Gaussian noise. Environment position is 1.5 cm away from
slave initial position. Therefore, at first the control structure
must propose position tacking and then at time about 2 sec
after penetration it must impose ideal force tracking. Commu-
nication channel are UDP local host having time-varying delay
up to 250 msec round trip delay. Whole simulation parameters
are given in Table L.

A. Extended Kalman Filter

The tracking problem of motion, velocity and force are
depicted in Fig.( 2) and position and impedance tracking in
teleoperation system with control signals are shown in Fig.
(3). It should be noticed that, before s = 1.5 optimal
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position tracking in free motion is required but after insertion,
impedance tracking is the main objective of control structures.

B. Particle Filter

According to Table II, there are 50 number of particles to
be applicable in practice for real time implementation with 1
msec sampling rate. Estimation of environment and control
signals are shown in Fig. (4). Teleoperation position and
impedance tracking with control efforts are drawn in Fig. (5).

C. Comparison

In this section, mean and variance estimation and tracking
error for previously designed filters are compared. The desired
variable of control parameter are listed in II. Efficiency of
estimation and capability to provide suitable signals are shown
in table III. As it can be seen in this table, Kalman filter mean
of error is noticeable due to non-Gaussian noise result in biased
estimation. Moreover, inherent nonlinearity of environment
dynamic, deteriorate the resulting position and impedance
tracking in the bilateral teleoperation, since predicted force
and velocity are far away from real variable in Kalman filter.



TABLE 1. MODEL PARAMETERS

par. value description par. value description
Jm 0.05 master inertia ms 0.07 slave mass
bm 0.03 master damping bs 0.05 slave damping
Km 0.1 master spring ks 0.08 slave spring
v 0.01 noise variance T4 0.25 RTD (sec)
Ke 2 environment stiffness Be 3 environment viscose
n 1.7 environment Teo 1.5 environment position
TABLE IL CONTROL PARAMETERS
par. value par. value par. value
Jdm 0.2 mds 1 Kiun 300
bam, 4 bas 15 Npar 50
Kdm, 2 kds 50 o1 0.001
kg 0.1 Ky [ ) 0.02
var(v) | 0.002 var(n) | 0.005 o3 0.01
TABLE III. COMPARISON IN ESTIMATION AND TRACKING
Errors EKF PF
mean position -0.84134 0.0058
mean velocity 0.4614 0.3049
mean force 3.3925 3.3688
mean position tracking -0.3518 -0.3129
mean impedance tracking -0.5616 -0.4644
RMS position 35.9604 5.8643
RMS velocity 82.8132 51.879
RMS force 616.8643 605.884
RMS position tracking 37.2563 37.8827
RMS impedance tracking 104.2703 101.4193
VI. CONCLUSIONS

In this paper, we employ online Bayesian estimation ap-
proach for identification of nonlinear, non-Gaussian process
noise model of environment to filter position and force signals
required for local impedance control and predict force to feed-
back in bilateral teleopration for enhancement of transparency.
Extended Kalman filter and particle filter as robust suboptimal
solution of Bayesian problem was established and compared.
Simulation results reveals that particle filter with 50 number
of particles can perform fast and robust to dynamic model.
Moreover, it can minimize the tracking error iteratively by well
assigning parameter of the method.
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