
Adaptive Control for Force-Reflecting Dual User
Teleoperation Systems

Sara Abkhofte, Mohammad Motaharifar, and Hamid D. Taghirad, Senior Member, IEEE
Advanced Robotics and Automated Systems (ARAS), Industrial Control Center of Excellence (ICCE),

Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran.
Email: {s.abkhofte, motaharifar}@email.kntu.ac.ir, taghirad@kntu.ac.ir

Abstract—The aim of this paper is to develop an adaptive force
reflection control scheme for dual master nonlinear teleoperation
systems. Having a sense of contact forces is very important
in applications of dual master teleopreation systems such as
surgery training. However, most of the previous studies for dual
master nonlinear teleoperation systems are limited in the stability
analysis of force reflection control schemes. In this paper, it is
assumed that the teleopreation system consists of two masters
and a single slave manipulator. In addition, all communication
channels are subject to unknown time delays. First, adaptive
controllers are developed for each manipulator. Next, Input-to-
State Stability (ISS) approach is used to analyze the stability
of the closed loop system. Through simulation results, it is
demonstrated that the proposed methodology is effective in a
nonlinear teleopreation system.

Keywords— teleoperation system, Dual user, adaptive
controller, Input-to-state stability

I. INTRODUCTION

The demand for manipulation of remote objects has made
the teleoperation systems attractive in several applications
such as space exploration, handling hazardous materials and
telesurgery. One of the new applications of these systems,
which is considered in this paper, is surgery training. In
conventional bilateral teleoperation systems, one operator han-
dles a single master robot in order to perform a task on
the remote environment by the use of single slave robot [1].
However, some applications like collaboratively performing a
task by two human operators need at least two master robots.
Therefore, trilateral or dual user teleoperation systems have
recently became an attractive field of research.

Dual user teleoperation systems are used in surgical training
in which a trainee learns how to do a specific surgery by
utilizing the guidance from a trainer. This work is done by
means of two master robots, one for the expert trainer and
one for the trainee, and a slave robot to do the surgery. In
this application, it is desired for the trainee to have feedback
information from the environment, and furthermore, have a
sense of forces applied by the trainer. The interactions between
these two users and the authority allocation is defined by a
parameter called dominance factor.

Several control schemes have been used to ensure the
stability of dual user teleoperation systems. An H∞ based
shared control architecture is proposed in [2] for surgery
training. However, an important drawback of the proposed

structure is that no kinesthetic feedback is provided for the
operators. In order to solve this problem, a six-channel control
scheme is proposed in [3] for dual user teleopration system
which provides kinesthetic feedback from the environment to
the human operators.

On the other hand, several researchers have investigated
the stability of dual user teleoperation systems such as [4–
8]. An important note is that, most of these studies do not
consider nonlinear dynamics or time delay in the communi-
cation channels. However, considering both of these issues
is necessary in practical applications. In [9], the stability of
a nonlinear dual user teleoperation system with time delay
is investigated by developing a PD controller. However,
the performance of the proposed PD control scheme is not
sufficiently suitable specially when the nonlinear behavior of
the dynamic equations are dominant.

In most of the practical situations, the exact dynamic models
of the systems are not available and may vary due to lots
of reasons such as aging. In order to addresse the dynamic
uncertainty problem of the teleoperation systems, an adaptive
approach is presented in this paper. For bilateral teleoperation
systems, some researchers have already studied the problem
of dynamic uncertainty and some adaptive control algorithms
have been previously proposed. For instance, an adaptive
passivity-based control method is suggested in [10] which
aims at position synchronization of the master and slave
manipulators. However, as shown in [11], the method proposed
in [10] suffers from not being general and being applicable
in the absence of gravity forces. In order to overcome this
problem, another adaptive architecture is proposed in [11].
Inspired by [11], an adaptive control scheme for dual user
teleoperation is presented in [12] which ensures position
tracking. However, the proposed scheme is a position error-
based control architecture in which no force is reflected from
the environment to the operators. However, in surgery training
application, force reflection is essentially needed.

The aim of this paper is to propose an adaptive force-
reflecting control structure for dual user teleoperation systems
under dynamic uncertainties and unknown communication
delays. Motivated by [13], an adaptive control scheme is
proposed for dual user teleoperation systems. The present
work is mostly an extension of [13] to the case of dual user
teleoperation system. As far as we know, no adaptive force-
reflecting control scheme has been proposed for dual-master
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nonlinear teleoperation.
The rest of the paper is organized as follows. In section

II, the configuration of dual user teleoperation systems is
illustrated and the desired references for these systems are
defined. An adaptive control architecture is designed in section
III to ensure the stability of the system. In section IV the
stability of the overall system is proved. Simulation results
are presented in V. Finally, the paper ends up with conclusion
and future works in section VI.

II. SYSTEM DESCRIPTION AND DESIRED REFERENCES

As stated before, dual user teleoperation systems consists
of two users with two master manipulators that carry out the
task on the environment by means of a slave manipulator.
Each manipulator is connected to the other one through a
communication channel. The time delay in the communication
channels may cause the instability of the closed loop system.
In application of surgery training, a trainer guides a trainee,
according to his/her level of expertise, to do a surgery. The
desired objective for the trainee is to feel the trainer command
and also to have a sense of the environment. Different levels
of authority are needed in different situations and it can be
adjusted by a parameter called dominance factor.

A. System Dynamics

Each master and slave robot has the following n-DOF
nonlinear dynamics [14]

Mm1(qm1)q̈m1+Cm1(qm1, q̇m1)q̇m1 +Gm1(qm1)

= uexm1 + um1

(1)

Mm2(qm2)q̈m2+Cm2(qm2, q̇m2)q̇m2 +Gm2(qm2)

= uexm2 + um2

(2)

Ms(qs)q̈s+Cs(qs, q̇s)q̇s +Gs(qs)

= uexs
+ us

(3)

in which, qi ∈ Rn×1 are the vectors of joint variables,
where i = m1 and i = m2 represent for primary and
secondary masters, respectively, and i = s for the slave.
Mi(qi) ∈ Rn×n are the inertia matrices of masters and slave,
Ci(qi, q̇i) ∈ Rn×n are the centrifugal and Coriolis matrices,
Gi(qi) ∈ Rn×1 are the gravity vectors, τi are the control
inputs, and τexi are the external torques applied to each robots
which are described by the following equations:

uexm1 = JT
m1(Fh1 + Frm1) (4)

uexm2 = JT
m2(Fh2 + Frm2) (5)

uexs = JT
s Fe (6)

in these equations Ji denote jacobian of the each manipulators,
Fhi denote human inserted forces, Fe denotes the environment
force and Fri denote the desired forces sent back to the

masters. For the rest of the paper, the environment forces are
assumed to be bounded and satisfy the following inequality:

|Fe| ≤ k1|q̇s|+ k2|qs|+ |fe| (7)

where fe is the bounded part of the environment force and can
be chosen arbitrarily, while k1 and k2 are positive constants.
The above inequality can be rewritten in terms of environment
torque,

|uexs| ≤ ke1|q̇s|+ ke2|qs|+ ke3|fe| (8)

where ke1 = JT k1, ke2 = JT k2, and ke3 = JT . We
also consider that the dynamics equations (1)-(3), satisfy the
following properties [14]:

P1 The inertia matrix is symmetric and positive definite
and MT

i = Mi.
P2 ∀x ∈ Rn, xT (Ṁi(qi)− 2Ci(qi, q̇i))x = 0.
P3 Dynamic of the manipulators satisfy the linear pa-

rameterization property, i.e. Mi(qi)q̈i + Ci(qi, q̇i) +
Gi(qi) = Yi(qi, q̇i, q̈i)θi where Yi is the regressor
and θi is the vector of manipulator parameters.

B. Desired References

In order to meet the control objective discussed before,
reference forces and reference position sent to each side are
defined as follows, [9]:

Frm1 = α1F̂h2 + (1− α1)F̂e1 (9)

Frm2 = α2F̂h1 + (1− α2)F̂e2 (10)

qrs = α3q̂m1 + (1− α3)q̂m2 (11)

where 0 ≤ αi ≤ 1 are dominance factors which determine
the authority of the dominant side. Besides, F̂e1 and F̂e2 are
the measurement of the environment force transmitted to the
first and secondary masters through communication channels,
respectively. In addition, F̂hi are the human forces of one
master manipulator transferred to the other master. Similar to
transmitted forces, q̂i are the measured position signals sent
back to the slave side through communication channels.

III. ADAPTIVE CONTROLLER DESIGN

According to the dynamic model of the systems and using
P3, the following equations hold for master manipulator

−Mmi(qmi)λmiq̇mi − Cmi(qmi, q̇mi)λmiqmi + ...

Gmi(qmi) = Ymi(q̇mi, qmi)θmi

(12)

where Ymi(q̇mi, qmi) are the master manipulator regressors,
θmi are the vector of master parameters, and λmi are sym-
metric positive definite matrices for i = 1, 2. Denote i = 1, 2
as the subscript of primary and secondary master parameters,
respectively. Likewise, the above equation may be rewritten
for the slave manipulator as following.

−Ms(qs)λs ˙̃qs − Cs(qs, q̇s)λsq̃s +Gs(qs)

= Ys(q̇s, qs, ˜̇qs, q̃s)θs
(13)
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where Ys(q̇s, qs, ˜̇qs, q̃s) is the slave manipulator regressor, θs
is the vector of slave parameters, λs is a symmetric positive
definite matrix, and ˜̇qs, q̃s ∈ Rn×1 represent slave velocity
error and slave position error, respectively, defined as:

q̃s = qs − qrs (14)

˜̇qs = q̇s − q̇rs (15)

Considering the above definitions, adaptive control laws for
master and slave manipulators may be expressed for t ≥ 0 :

umi = Ymi(q̇mi, qmi)θ̂mi −Bmismi (16)

us = Ys(q̇s, qs, ˜̇qs, q̃s)θ̂s −Bsss (17)

where Bmi, Bs are symmetric positive definite matrices,
θmi, θs represent for the vector of estimated parameters and
smi, ss are defined as the following

smi = q̇mi − λmiqmi (18)

ss = q̇s − λsq̃s (19)

Subsequently, the adaptation laws for estimated parameters for
t ≥ 0 are:

˙̂
θmi = −ΨmiY

T
mi(q̇mi, qmi)smi − δmi(θ̂mi − θnmi) (20)

˙̂
θs = −ΨsY

T
s (q̇s, qs)ss − δs(θ̂s − θns) (21)

where θnmi, θns are the vectors of nominal values of param-
eters, Ψmi,Ψs are symmetric positive definite matrices, and
δmi, δs are positive constants. Also, assume θ̃mi and θ̃s to
be the error between the actual and estimated values of the
parameters that are defined as θ̃mi = θ̂mi− θmi, θ̃s = θ̂s− θs,
respectively.

IV. STABILITY ANALYSIS

In this section the stability of dual master teleoperation
system, including two master robots and a slave robot with
unknown communication delays, is investigated. Similar to the
approach proposed in [13], we show the stability of overall
system by checking the stability of each subsystems. Fig.
1 shows the overall dual user teleoperation system and its
subsystems. First, consider each robot as an individual sub-
system. According to the following propositions, we illustrate
that the proposed algorithm stabilizes these subsystems. Next,
assuming an integrated subsystem including two masters,
ISS stability can be easily checked on the new subsystem.
Finally, we define the closed-loop system as the feedback
interconnection between two masters, as a subsystem, and a
slave. Applying the small gain theorem [13], it can be shown
that the whole telerobotic system is input-to-state stable.

Inspired by [13], first we investigate the stability of both
master subsystems using the proposition below. Denote
θ̄nmi = θmi− θnmi and λmin(A) as the minimum eigenvalue

of matrix A.

Proposition 1. Consider the primary and secondary
master subsystems (1), (2), and (16), with states
xmi := (qTmi, q̇

T
mi, θ̃

T
nmi)

T , inputs Fh1, Fh2, F̂ei, and θ̄nmi.
For λmin(Bmi) ≥ bmi ≥ 0 and λmin(Ψmi) ≥ ψmi ≥ 0, the
closed-loop primary and secondary masters are ISS.

Proof. First we show that the primary master subsystem is
ISS. Let us define the ISS-Lyapunov function candidate as:

Vm1 =
1

2
sTm1Mm1(qm1)sm1 +

1

2
qTm1q

T
m1 +

1

2
θ̃Tm1Ψ−1m1θ̃m1.

(22)
It may be easily shown that this function is positive definite,
and furthermore, αm1(|xm1)| ≤ Vm1 ≤ αm1(|xm1|) for some
αm1, αm1 ≥ 0. Differentiate the given Lyapunov candidate
along the trajectories of the system and considering P2:

V̇m1 = −sTm1Bm1sm1 − qTm1λm1qm1

−δm1θ̃
T
m1Ψ−1m1θ̄nm1 − δm1θ̃

T
m1Ψ−1m1θ̃m1

+sTm1uexm1 + qTm1sm1

Employing Young’s inequality, the time derivative of Vm1 is
limited to the following upper bound:

V̇m1 ≤ (−λmin(Bm1) +
c1
2

+
1

2c2
)|sm1|2+

(δm1λmin(Ψ−1m1)− 1

2
δm1c3λ

2
min(Ψ−1m1))|θ̃m1|2+

(−λmin(λm1) +
c2
2

)|qm1|2 +
|uexm1|2

2c1
+
|θ̄mn|2

2c3

(23)

where ci are positive constants. Considering the approach
presented in [15], it can be shown that by choosing appropriate
values for c1, c2, and c3, master 1 subsystem is ISS with γm1

ISS gain. If we use the same approach for the second master
subsystem, it is easy to prove that master 2 subsystem is also
ISS with γm2 ISS gain. Let us consider a new integrated
subsystem including two masters (see Fig.1). Based on the
result of proposition 1, we can show that the integrated
subsystem is ISS, as follows.

Proposition 2. Consider the integrated master subsystem,
including two masters (1), (2) and (16), with states

Fig. 1: A dual user teleoperation system
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xm := (qTm1, q̇
T
m1, θ̃

T
m1, q

T
m2, q̇

T
m2, θ̃

T
m2)T , inputs

Fh1, Fh2, F̂e, θ̄nm1 and θ̄nm2. For λmin(Bm1) ≥ bm1 ≥ 0,
λmin(Bm2) ≥ bm2 ≥ 0, λmin(Ψm1) ≥ ψm1 ≥ 0, and
λmin(Ψm2) ≥ ψm2 ≥ 0, the closed-loop integrated master is
ISS.

Proof. Suppose the ISS-Lyapunov function candidate
Vm = Vm1 + Vm2. Using the same approach for proposition
1, we simply get the result of proposition 2. Then the
integrated master subsystem is ISS with γm ISS gain.

As there exist unknown delay in communication channels,
we should consider ”integrated master system and input
delay” as a new subsystem in order to use small gain theorem
and prove that the overall system is stable. Employing the
result of [13] and utilizing the following lemma, we may
state the stability of this subsystem.

Lemma 1. [13] Consider the general system defined by
the following differential equation:

ẋ(t) = F (x(t), u(t)) (24)

If the above system is ISS with ISS gain γ, then the new
system with delay in input

ẋ(t) = F (x(t), u(t− τ)) (25)

is also ISS with ISS gain γ for any T ≥ τ .
Since there are different delays in inputs, like τsm1 in F̂e1

and τm2m1 in F̂h2, we should consider the maximum delay
input as

τm = max(τm1m2, τm2m1, τsm1τsm2) (26)

in which, τm1m2, τm2m1, τsm1, and τsm2 are the communi-
cation delay between master 1 - master 2, master 2 - master
1, slave - master 1, and slave - master 2, respectively. Then,
according to Lemma 1 the new subsystem plus input delay is
ISS, as well.

Similar to each master subsystems, we examine the stability
of the slave subsystem, the interconnection of the slave robot
and the environment, utilizing the proposition below.

Proposition 3. Consider the slave subsystem, (3) and
(17), interconnection of slave and environment, with state
xs := (q̃Ts , q̇

T
s , θ

T
s )T , inputs fe, q̂m1, ˆ̇qm1, q̂m2, ˆ̇qm2 and θns.

Then, for λmin(Bs) ≥ bs ≥ 0 and λmin(Ψs) ≥ ψs ≥ 0, the
closed loop slave subsystem is ISS.

Proof. The ISS-Lyapunov function candidate for this
subsystem may be chosen as

Vs =
1

2
sTs Ms(qs)ss +

1

2
q̃Ts q̃

T
s +

1

2
θ̃Ts Ψ−1s θ̃s. (27)

One can easily check the positive definiteness of this function,
and the following inequality αs(|xs)| ≤ Vs ≤ αs(|xs|) for
some αs, αs ≥ 0. Considering assumption 1 and following
the approach used in the proof of proposition 1, it can be

concluded that the time derivative of Vs along the trajectories
satisfies:

V̇s ≤ −cs1|ss|2 − cs2|θ̃s|2 − cs3|q̃s|2 + cs4|fe|2+

cs5|q̂m1|2 + cs6|q̂m2|2 + cs7|ˆ̇qm1|2 + cs8|ˆ̇qm2|2
(28)

where csj ≥ 0 for j = 1, 2, ..., 8 are constant. Hence, the
input-to-state stability of slave subsystem is proven. Using
lemma 1, the slave plus input delay subsystem is ISS, as well.

Now, assume the overall system as the feedback
interconnection of integrated master and slave subsystems.
Combining the results of proposition 3 and pursuing the
same trend, the following theorem is stated to show the
input-to-state stability of the dual user teleoperation system.

Theorem: Consider the force reflecting dual master
teleoperation system (1)-(3), (16)-(17) with state
variables x := (qTm1, q̇

T
m1, θ̃

T
m1, q

T
m2, q̇

T
m2, θ̃m2, q̃

T
s , q̇

T
s , θ̃

T
s ),

U = (Fh1, Fh2, fe)
T as input, and the following output

y := (qTm1, q̇
T
m1, q

T
m2, q̇

T
m2, q̃

T
s , q̇

T
s )T . Also, assume that the

environment forces satisfy (7). Then, the overall system
is ISS if there exist bm1, bm2, bs, ψm1, ψm2, ψs > 0 such
that λmin(Bm1) ≥ bm1, λmin(Bm2) ≥ bm2, λmin(Bs) ≥
bs, λmin(Ψm1) ≥ ψm1, λmin(Ψm2) ≥ ψm2, λmin(Ψs) ≥ ψs.

Proof: The proposed ISS small gain theorem in [13] is
used to complete proof of the overall system stability. Let us
denote the ISS gain of the closed-loop integrated master and
input delay subsystem as γm, from the input Fe to the output
y = (qm1, q̇m1, qm2, q̇m2). Also, consider γs as the ISS gain
of closed-loop slave and input delay subsystem, from the
input u = (qm1, q̇m1, qm2, q̇m2) to the output y = (qs, q̇s).
Then, it can be stated that the overall dual user teleoperation
system is ISS if

γm · γs · γe < 1 (29)

where γe = max(k1, k2), and k1 and k2 are positive constants
defined in eq. (7). As we can choose the ISS gains subject to
fe, so as the above inequality may always be satisfied. Hence,
the proof is complete.

V. SIMULATION RESULTS

In this section, the simulation results are presented to
demonstrate the practical use of the proposed algorithm. The
experiment is conducted on three identical two-link planar
arms [14]. The system dynamics are described by (1)-(3), and
we considered that Mm1 = Mm2 = Ms, Cm1 = Cm2 = Cs,
and Gm1 = Gm2 = Gs. The elements of inertia, Corolios,
and gravity matrices are defined as:

M11(q) = m1l
2
c1 +m2(l21 + l2c2 + 2l1lc2 cos(q2)) + I1 + I2

M12(q) = M21(q) = m2l
2
c2 +m2l1lc2 cos(q2) + I2

M22 = m2l
2
c2 + I2

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2)(q̇1 + q̇2)

C21(q, q̇) = −m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0

G1(q) = g cos(q1)(m1lc1 +m2l1) +m2lc2g cos(q1 + q2)

G2(q) = m2lc2g cos(q1 + q2)
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Fig. 2: Operators applied forces
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Fig. 3: Environment forces applied to the slave

where, the nominal values of the parameters are m1 = 10 kg, l1 =
1 m, lc1 = 0.5 m, I1 = 10

12
kgm2,m2 = 5 kg, l2 = 1 m, lc2 =

0.5 m, I2 = 5
12
kgm2, and g = 9.8 m/s2. From property P3, the

vector of manipulator parameters may be expressed by

θ =


θ1
θ2
θ3
θ4
θ5
θ6

 =


m1l

2
c1 +m2l

2
1 + I1

m2l
2
c2 + I2

m2l1lc2
m1lc1
m2l1
m2lc2


Furthermore, the control parameters in (12)-(21) are defined as:

λmi = 5I , Bmi = 10I , Ψmi = 0.1I , δmi = 2.5, λs = 2.5I ,
Bs = 20I , Ψs = 0.1I , and δs = 2.5. Here, I is assumed to be
the identity 2 × 2 matrix. The simulation has been performed for
zero initial conditions and all the communication channels’ delays
are considered 0.5s. Besides, all the dominance factors, α1, α2, and
α3 are set to 0.5. Suppose that the slave robot is in contact with a
stiff environment at the surface y = 1. The environment is modeled
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Fig. 4: Desired and actual values of the slave position
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Fig. 5: Position tracking error of the slave manipulator

by a spring-damper system as follows:

Fey =

{
−Bẏ −Ky if y ≥ 1

0 otherwise

where K = 1000 and B = 1. It is considered that the environment
exerts forces just in the y-direction and the contact forces on x-
direction are equal to zero. In order to examine the stability of the
proposed method under dynamic uncertainty, we assume the actual
mass of the first link of the master 1 manipulator as m1 = 9kg.
While its nominal value is still considered as m1 = 10kg.

Simulation results are depicted in Figs. 2-6. Fig. 2 shows the
operator exerted forces. Assume that each operator exerts different
forces to the master console on his/her side independent of the
other operator. Due to the applied forces by the operators, the slave
robot follows a certain trajectory and contacts the environment.
The reflecting contact forces are shown in Fig. 3. Besides, Fig. 4
demonstrate the slave joint angles and their desired references and
Fig. 5 shows the position tracking errors. Finally, Fig.6 displays the
estimated value for master 1 manipulator as an example. As we can
see in this figure, the estimated values of the manipulator parameters
converge to constant values.
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As it is shown in Fig.3, the slave robot moves in free space and
it follows the desired trajectory defined by both masters joint angles
with small position errors. Around the time 7.5s the slave contacts the
obstacle and environment forces send back to the masters side. During
the time 7.5s and 17s, the slave is in contact with the environment
and we have the environment and operators’ forces at the same time.
In Fig. 6, it can be seen that after few seconds the slave end-effector
goes to a stable position. However, due to the contact forces we
have more tracking errors, compared to that of free motion. After
the time 17s, the slave contact to the environment is released and
it moves freely in space again. We still have non-zero human forces
till the time 20s and after that each robots goes to his stable desired
position, qi(0) = 0. Based on the experiment, it can be concluded
that the overall system is stable even when it is in contact with a
rigid environment. Therefore, the suggested control algorithm ensures
stability of the system.

VI. CONCLUSIONS

In this paper, an adaptive force reflection control scheme is
proposed for dual master teleoperation systems. All of the subsystems
are supposed to be nonlinear and all communication channels are
subject to time delay. The stability of the closed-loop system is
investigated using the ISS approach. Simulation results show the
effectiveness of the proposed approach. The proposed control scheme
is developed for nonlinear teleoperation with parametric uncertainty
and time delay. Our future work is to develop a generalized control
scheme which is able to tolerate unstructured uncertainty and variable
time delay. In addition, we plan to develop an experimental test bed
for surgery training and experimentally evaluate the performance of
the proposed approach.
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