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Abstract—In this paper an adaptive output-feedback
impedance control is proposed to be used in environment-
machine interaction applications. The proposed control is
designed to achieve a desired robot impedance in the presence
of possible dynamical parameter uncertainties. A high-gain
observer is utilized in the control structure to achieve this
objective by using only position feedback of robot joints, which
in turn, reduces implementation costs and eliminates additional
sensor requirements. Stability of the overall system is analyzed
through input to state stability analysis. Finally, to evaluate the
presented structure, computer simulations are provided and the
scheme effectiveness is verified.

Keywords—Adaptive control, impedance control, high-
gain observer, input to state stability, eye-surgery.

I. INTRODUCTION

Besides the mechanical design, control systems play a
fundamental role in achieving a desired performance in dif-
ferent robotic tasks. Depending on the task, different control
objectives can be considered. For example in painting task, the
robot’s end-effector moves freely in the workspace, while in
other tasks such as robotic surgery, end-effector’s motion can
be constrained by interactions with the environment. Generally
one may find two scenarios for most of the tasks, free and
constrained motions. Trajectory tracking, or position control
is the prime objective in free motion control, while in the
latter, both position and force controls are important.

Various control methods have been proposed to deal with
the problem of interaction control. The notion of impedance
control, which was first introduced by Hogan [1] is of great
interest among other proposed methods due to its ability for
the applicability of simultaneous position and force control.
Admittance control is also widely used as another method for
interaction control, which is the inverse of impedance control
and controls the ratio of motion output to force input. In [2]
both schemes have been compared by making use of a non-
adaptive control strategy.

Dynamics modeling of robotic arms introduces various
uncertainties in its parameters. Therefore, robust and adaptive
control schemes are more proper alternatives to tackle this
problem. In some robust control schemes such as sliding mode
control, the structure and bounds of the uncertainty is assumed
to be known. As an example of the sliding mode control

design, one may refer to [3] in which impedance control has
been used as well. In adaptive schemes uncertainty bounds are
not needed to be known a priori, which makes this schemes to
be used widely, and in these schemes adaptation rule can well
handle the parametric uncertainty effects. Several researches
have been focused on the realization of adaptive controllers,
however most of them use joints positions and velocities as
feedback signals, including [4]. Using velocity sensors makes
the feedback signal noisy, thus the resultant performance may
be deteriorated for high-gain controllers. Furthermore, velocity
sensors increase the robot weight and implementation costs.
Consequently, it is much preferable to use the output-feedback
instead of the state-feedback routines. As mentioned in [5], this
may be accomplished by using observers to estimate velocity
signals. In addition, it should be noted that in impedance
control, which is realized in some of the adaptive structures
by making use of output-feedback routines such as [6], direct
force measurements are also needed. However, force sensors
are expensive and may also introduce design limitations.
Hence, it is relevant to estimate external force signals besides
the velocity estimations, as well.

To handle the direct measurement challenges, sliding mode
observers [7], high-gain observers [5], and dirty filters [8]
are reported in the literature. In [7], it is proved that the
observation errors converge exponentially to zero by making
use of the sliding mode observer. However, this method is
based on the assumption that the initial joint position esti-
mation error must be zero. On the other hand, this limitation
does not exist in the high-gain observers, and furthermore,
the high-gain property make the observer to behave like a
linear systems. Moreover, in dirty filters the force estimation
is not realized, and therefore, this is not a preferable choice
in the impedance control strategies. One may see [8] as an
example of adaptive output-feedback structure, followed by a
simple non-adaptive control scheme that presented in [9]. In
these references two adaptive controllers have been introduced
without considering impedance in which one of them uses a
dirty filter to estimate the velocity signal. However, the force
signal, which is needed in an impedance control strategy, is not
estimated. Furthermore, in [5], joint velocity estimation is also
realized by using a high-gain observer. However, the stability
of the observer-based adaptive control is analyzed by some
assumptions that make the control law relatively conservative.
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Fig. 1: A) SMOS, B) MSD system, C) the proposed control scheme

Additionally, the proposed method is not based on impedance
and joint space control is the prime objective.

Moreover, most of the proposed adaptive impedance control
schemes are designed without considering the fact that one
of the important aspects of the impedance notion find its
application in the teleoperation systems, where the commu-
nication delay causes challenges in the overall closed loop
stability of the system. For an example in [6] different
adaptive impedance controllers are realized, and their closed
loop stability are studied by means of Lyapunov second
method and Barbalat’s lemma. Robustness with respect to time
delay and external inputs has not been addressed. Moreover,
that work uses the state-feedback control law and a force
sensor. Impedance control in the teleoperation systems has
been studied in several works, including [10], where an input
to output stability based impedance controller is utilized by
using feedback linearization scheme.

Inspired by [8] and [5], in this work an adaptive control
scheme has been proposed, which by using an adaptive high-
gain observer, the velocity and force estimations are made
possible. Considering the variable time delay in the teleoper-
ation applications, the stability of the control structure, which
is utilized in the robot task space, is provided in the sense
of ISS property. Furthermore, computer simulation results are
presented to show the effectiveness of the proposed algorithm.
In order to show the proposed controller effectiveness, SMOS
(Stereotaxical Micro-telemanipulator for Ocular Surgery) eye-
surgery robot [11] is considered as a case study, which its
computer-aided design (CAD) is shown in Fig. 1(A) and its
dynamical equations are given in Appendix.1.

II. PROPOSED CONTROL SCHEME

As illustrated in Fig. 1(B), force f(t) which is exerted
to an object (contact) and the corresponding displacement
dx(t) (insertion) may be used to define the impedance of
a mechanical system. In frequency domain, the linear time

invariant (LTI) impedance is defined, by making use of the
Laplace transformation, as Z(s) := F (s)

dX(s) . One of the typical
impedance definitions is a mass-spring-damper (MSD), also
called Kelvin-Voigt, system which is defined as follows.

Z(s) := M s2 +B s+K, (1)

where the constant and positive-definite matrices M , B, and
K represent the desired inertia, damping, and stiffness of the
object, respectively. Although (1) is defined for one degree
of freedom (DoF) motion, the generalization to several DoFs
may be considered as well. In addition, this concept may be
extended to torque and angular motions [12].

Robot dynamical behavior may be generally described as
follows [13]:

H(q)q̈ + C(q, q̇)q̇ +G(q) = uc + uext, (2)

where uext is the external torques that robot may experience,
while the other parameters are defined in [13]. In this paper,
the main idea of the proposed controller is to use a reference
impedance model, based on (1), as:

M [ẍref − ẍeq] +B [ẋref − ẋeq] +K [xref − xeq] = fext,
(3)

where, xeq is the desired trajectory, xref denotes the reference
position, and fext is the external force vector. To achieve the
desired dynamical behavior, a manifold may also be defined,
on which robot positions in task space asymptotically converge
to the reference model position x→ xref . Such manifold may
be considered as [4]:

s := q̇ − q̇dr, (4)

where, q̇dr is the first time derivative of an auxiliary reference
trajectory, qdr. In what follows q̇dr and its derivative are
presented, where the eigenvalues of matrix Λ are considered
to be on the open left half plane.

q̇dr = J−1 (q) [ẋref + Λ {xref − x}] , (5)

q̈dr = J−1 (q)
[
ẍref + Λ {ẋref − ẋ} − J̇(q) q̇dr

]
. (6)

Once all the system trajectories approach s, we have:

s = 0⇒ ẋref − ẋ+ Λ [xref − x] = 0. (7)

Thus, if the control strategy forces the trajectories of system
to s = 0, we will obtain the main control objective after a
time constant, i.e. x→ xref .

Consider the following control law:

u = Ĥ(q) ¨̂qdr + Ĉ(q, ˙̂q) q̇dr + Ĝ(q)−Ψ ŝ

= A(q, ˙̂q, q̇dr, ¨̂qdr) p̂−Ψ ŝ, (8)

where, Ĥ(q), Ĉ(q, ˙̂q), and Ĝ(q) are estimation of the dynamic
matrices, Ψ ∈ Rdim(u)×dim(q) is a Hurwitz control gain
matrix, ŝ is the manifold estimation, whose estimation error is
defined by s̃ := ŝ− s, A(·) ∈ Rdim(u)×dim(p) is the dynamic
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regressor matrix, and p̂ ∈ Rdim(p) is the dynamical parameter
estimation, updated by the following adaptation law [8]

˙̂p = −ΩAT (q, ˙̂q, q̇dr, ¨̂qdr) ŝ− κ [p̃+ ¯̄p] , (9)

in which, Ω ∈ Rdim(p)×dim(p) is a Hurwitz adaptation gain
matrix, κ is a positive constant, p̃ := p̂ − p is the parameter
adaptation error, and ¯̄p represents the nominal value of the
parameters. Furthermore, variables ˙̂q, , ¨̂qdr and ŝ are updated
by a high gain estimator, defined by [14]:

˙̂x1 = x̂2 +
φ1

ε
ỹ,

˙̂x2 = H−1(x̂1) [u−∆R − C(x̂1, x̂2) x̂2 −G(x̂1)] +
φ2

ε2
ỹ,

(10)

where x̂1 := q̂, x̂2 := ˆ̇q, ỹ := y − ŷ, and φ1, φ2, ε > 0 are
chosen according to the above mentioned considerations. In
(10) dynamic uncertainty, ∆R, may be estimated as:

∆R(x̂1, x̂2, t) = H(x̂1)
φ2
ε2
ỹ. (11)

The overall control scheme is illustrated in Fig. 1(C).
Theorem 1: System described by (2), (3), (8), (9), and (10),

with state X = [s, p̃, η̃] and inputs U = [ûh, p
?] is ISS with

proper control gains.
Proof 1: Consider the following ISS-Lyapunov (ISS-L) candidate

function

V (s, e, p̃, ñ) =
1

2

(
sTH s+ µ eT e+ p̃T Ω−1p̃+ η̃TPo η̃

)
(12)

in which, µ is a positive constant and Po is a positive-definite matrix.
In what follows it is proven that (12) is indeed an ISS-L function.
Based on matrix eigen-value inequality [8], one may obtain two
positive constants V1 and V2 such that the following inequality holds
on a compact set, like D.

V1 ≤ V (s, e, p̃, ñ) ≤ V2, (13)

Next, differentiate V (t) with respect to time:

V̇ (t) = sTHṡ+ 0.5 sT Ḣ s+ µ eT ė+ p̃T Ω−1 ˙̃p+ η̃TPo
˙̃η. (14)

To obtain an upper bound for V̇ (t), few terms have been considered
and each of them is studied, one by one, as follows. Base on (4):

ṡ = H−1(q) [uc + uext − C(q, q̇) q̇ −G(q)]− q̈dr. (15)

Substitute (8) in (15), and derive the first term of V̇ as:

sTH(q) ṡ = sT
[
Ĥ(q) ¨̂qdr + Ĉ(q, ˙̂q) q̇dr + Ĝ(q)−Ψ ŝ

]
− sT [H(q) q̈dr + C(q, q̇) q̇ +G(q)] + sTuext,

where C(q, q̇)q̇ may be replaced by C(q, q̇)s+C(q, q̇)q̇dr and ŝ :=
s̃+ s. Thus, in regressor representation, we have:

sT H(q) ṡ+ 0.5 sT Ḣ(q) s = −sT Ψ s− sT Ψ s̃+ sTuext

+ sT
[
A(Θ̂) p̂−A(Θ) p

]
, (16)

in which, the skew-symmetric property of Ḣ − 2C [13], is used
to eliminate 0.5 sT Ḣ(q) s. In addition, to simplify notations two
new variables Θ := [q, q̇, q̇dr, q̈dr] and Θ̂ :=

[
q, ˙̂q, q̇dr, ¨̂qdr

]
are

defined. With the aid of linear Algebra, one may show that the
following equality holds:

A(Θ̂) p̂−A(Θ) p = A(Θ̂) p̃+A(Θ̂) p−A(Θ) p. (17)

Substitute (17) in (16), and conclude that:

sTH(q) ṡ+ 0.5 sT Ḣ(q) s = −sT Ψ s− sT Ψ s̃+ p̃TAT (Θ̂)s

+ sTuext + sT
[
A(Θ̂) p−A(Θ) p

]
. (18)

In addition, manifold (4) results into ė = J(q) s − Λ e; therefore,
µ eT ė is derived as follows:

µ eT ė = −µ eT Λ e+ µ eT J(q) s. (19)

Dynamic parameters are considered to be constant with respect to
time, i.e. ˙̃p = ˙̂p. Thus, by utilizing (9) we have:

p̃T Ω−1 ˙̃p = −p̃T AT (Θ̂) ŝ− κ p̃T Ω−1p̃− κ p̃T Ω−1p?.

Hence,

V̇ = −sT Ψ s− µ eT Λ e− κ p̃T Ω−1p̃+ sTuext

− sT Ψs̃− κ p̃T Ω−1p? − p̃TAT (Θ̂)s̃+ µeTJ(q)s

+ sT
[
A(Θ̂) p−A(Θ) p

]
+ η̃TPo

˙̃η,

(20)

in which by using matrix inequality property [8], for the first three
terms, the following inequalities hold.

− sT Ψ s ≤ −λmin {Ψ} sT s, −µ eT Λ e ≤ −µλmin {Λ} eT e,
− κ p̃T Ω−1p̃ ≤ −κλmin

{
Ω−1} p̃T p̃. (21)

Moreover, function Ξ(Θ) := A(Θ) p is Lipschitz, i.e. there exists a
positive constant like l such that:

Ξ? =
∥∥∥Ξ(Θ̂)− Ξ(Θ)

∥∥∥ ≤ l ∥∥∥Θ̂−Θ
∥∥∥. (22)

Furthermore, Young inequality implies the following inequalities.

sT uext ≤
c1
2
sT s+

1

2 c1
uext

T uext,

κ p̃T
[
−Ω−1 p?

]
≤ κ c2

2
p̃T p̃+

κ

2 c2
p?

T

Ω−1T Ω−1 p?,

µ eT J(q) s ≤ µ c3
2

eT e+
µ

2 c3
sT J(q)T J(q) s,

sT Ψ s̃ ≤ c4
2
sT s+

1

2 c4
s̃T ΨT Ψ s̃, (23)

p̃T AT (Θ̂) s̃ ≤ c5
2
p̃T p̃+

1

2 c5
s̃T A(Θ̂)AT (Θ̂) s̃,

sT Ξ? ≤ c6
2
sT s+

1

2 c6
Ξ?T Ξ?,

Hence, by using (21)-(23) in (20), an upper bound for V̇ (t) is
obtained as follows:

V̇ (t) ≤− a1 sT s− a2 p̃T p̃− a3 eT e+ a4 uext
Tuext

+ a5 p
?T p? + a6 s̃

T s̃+ a7 Θ̃T Θ̃ + η̃TPo
˙̃η, (24)

where,

a1 :=λmin {Ψ} −
{
c1 + c4 + c6

2
+

µ

2 c3
λmax

{
JTJ

}}
a2 :=κλmin

{
Ω−1}− κ c2 + c5

2

a3 :=µ
[
λmin {Λ} −

c3
2

]
, a4 :=

1

2 c1
, a7 :=

l2

2 c6

a5 :=
κ

2 c2
λmax

{
Ω−1T Ω−1

}
,

a6 :=
1

2 c4
λmax

{
ΨT Ψ

}
+

1

2 c5
λmax

{
A(Θ̂)AT (Θ̂)

}
. (25)

From (4), following equality may be concluded.

s̃ = ŝ− s⇒ s̃ = ˙̃q ⇒ s̃ = [0 I] η̃, (26)
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which yields to:

s̃T s̃ = ‖s̃‖2 ≤ ‖S?‖2 ‖η̃‖2 . (27)

Moreover, a similar results may be obtained as Θ̃ := Θ̂−Θ = Θ? η̃,,
where the non-zero elements of 4×2 block matrix Θ? are θ̃22 = In×n

and θ̃42 = J−1(q) Λ J(q). Therefore, the following ineqality is also
satisfied.

Θ̃T Θ̃ =
∥∥∥Θ̃
∥∥∥2 ≤ ‖Θ?‖2‖η̃‖2. (28)

Now substitute (27) and (28) in (24), and simplify the time derivative
of V (·) as:

V̇ (t) ≤ −a1 sT s− a2 p̃T p̃− a3 eT e

+ a4 uext
T uext + a5 p

?T p? − a?6 η̃T η̃
(29)

in which a?6 is defined as follows:

a?6 := λmin

{
ε−1Wo

}
− 2 δ?o ‖Po‖ − a6 ‖S?‖2 − a7 ‖Θ?‖2.

in which, the stability analysis, provided in [14], is used for high
gain observer term, i.e. η̃TPo

˙̃η. Based on the ISS theorem provided in
[15], inequalities (13) and (29) indicate that V (·) is a ISS-L function,
which concludes the theorem.

The other part of closed loop system is the reference system (3),
which is represented in state space as follows.

ẋ : = AI x+BI

[
f̂ext + feq

]
, (30)

where feq := Mẍeq +Bẋeq +Kxeq , x = [xTref , ẋ
T
ref ]

T
, and

AI :=

[
0n×n In×n

−M−1
m Km −M−1

m Bm

]
, BI :=

[
0

M−1
m

]
. (31)

It may be shown that matrix AI in (31) is Hurwitz, therefore, for
any positive-definite matrix QI there exists a unique positive-definite
matrix PI such that the Lyapunov equation AT

I PI + PI AI = −QI

is satisfied. Hence, by choosing a Lyapunov function Vref (x) =
0.5xTPI x which is lower and upper bounded as well, the resultant
time derivative of that function is derived as follows.

V̇ref (t) = −xT
[
QI +AT

I PI

]
x+ xT PI BI

[
f̂ext + feq

]
, (32)

where by utilizing matrix [8] and Young inequalities we have:

V̇ref (t) ≤−
[
λmin

{
QI +AT

I PI

}
− λ1

2

]
‖x‖2

+
1

2λ1
‖PI‖2‖BI‖2‖f̂ext + feq‖

2
,

(33)

which indicates that the reference model system is also ISS. Thus, the
overall closed loop system is ISS by using the small gain theorem,
i.e. γ × γref < 1, by choosing appropriate control parameters.

III. SIMULATION RESULTS

In this section, computer simulations are presented by using
the SMOS robot as a case study. SMOS has two rotational
and one linear joints, and due to its spherical-like structure,
by using the spherical coordinate, task and joint spaces are
equivalent. This consideration is also reasonable in practice,
because in Cartesian space robot is singular in its remote center
of motion point (RCM). One may check the singularity of
robot in RCM by substituting q3 = r3 in the following forward
kinematic equation of SMOS.

x = (r3 − q3) s2, y = (r3 − q3) c2 c1, z = − (r3 − q3) c2 s1.

Fig. 2: A) SMOS structure, B) end-effector insertion to the human
eye, C) SMOS dynamics chain

where s1 := sin(q1), s2 := sin(q2), c1 := cos(q1), and
c2 := cos(q2). Hence, in spherical coordination the joint and
task space arrays are the same, i.e. q = x, which yields the
Jacobian matrix is an identity matrix. Furthermore, as the
proposed scheme is model-based, the dynamical matrices are
needed. In Appendix.1, the dynamical matrices are derived,
using Euler-Lagrange formulation.

Impedance plays a significant role in the constraint motions.
SMOS finds its application in eye-surgeries, in which robot
end-effector should be inserted to the interior region of the
eye through RCM point. Based on this fact, it is considered
that robot’s end-effector is interacting with a human eye. As
it is shown in Fig. 2(B), suppose motion starts somewhere
outside the eye like point A, according to the following desired
trajectory.

xeq,3(t) = a1 + a2 t+ a3 t
2 + a4 t

3, t ≤ 10(sec)

xeq,3(t) = 0, 10(sec) < t ≤ 20(sec)
(34)

In addition, xeq,1(t) = xeq,2(t) = 0. The above equations
represent the insertion task. It should be noted that for simplic-
ity only the insertion DoF has been considered. Moreover, in
simulation time tf = 20 (sec), the coefficients are a1 = x3, i,
a2 = ẋ3, i, and

a3 = +3 tf
−2 [x3, f − x3, i]− tf−1 [ẋ3, f + ẋ3, i] ,

a4 = −2 tf
−3 [x3, f − x3, i] + tf

−2 [ẋ3, f + ẋ3, i] ,
(35)

where x3, i = −0.005 (m) and x3, f = 0.005 (m). The
initial and final values of ẋ3 are considered to be zero, i.e.
ẋ3, i = ẋ3, f = 0. As the operation starts, robot experiences
both free (point A to C) and constraint (point C to D)
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motions. At point B, the first two joints of robot are reached
to their desired fixed positions, x1 = x2 = 0; however, the
third joint changes according to (34). Robot end-effector first
experiences the contact at point C, where a stiff layer impedes
the motion. To analyze the effect of layer characteristics, three
different stiffness have been considered for the environment,
k1 = 1(N/m), k2 = 100(N/m), and k3 = 1000(N/m) with
a fixed damping b = 1 (N · sec2/m), which is described by
the following Kelvin-Voigt relation:

fx3
= k δx3 + b δẋ3, x3 ≥ xe, 3, (36)

where, the insertion to the layer is defined by δx3 := x3−xe, 3,
with xe, 3 = 0 (m).

Here, The desired mechanical impedance is tuned as fol-
lows. The desired inertia, damping, and stiffness matrices are
set to M = 100 I3×3, B = 500 I3×3, and K = 5000 I3×3,
respectively, where I denotes the unity matrix. To reach
the objectives, control parameters are set to Ψ = 10 I3×3,
Λ = 100 I3×3, Ω−1 = 10−5I9×9, and κ = 1. Furthermore,
the observer parameters are set to φ1 = 5, φ2 = 6, and
ε = 0.0025.

As it may be seen in Fig. 3, last DoF best tracks the desired
trajectory in the presence of lower layer stiffness. This is
illustrated in the top part of this figure. Furthermore it may be
noted that more stiff environment leads to trajectory tracking
deterioration, starting from t = 5(sec) due to the unconstraint
motion, as shown in the lower part of the figure. In this
figure solid and dashed lines represent the desired and robot
trajectories, respectively. In addition, control efforts and the
external efforts estimation that are caused by the interaction,
are shown in Fig. 4, where the effect of different stiffness may
be clearly seen from time t = 5(sec). In this figure, control
efforts and external force estimation are shown with solid and
dashed lines, respectively.

Fig. 5 shows that the parameters converge to their real values
with an appropriate accuracy after a time transient. It should
be noted that all three simulations are performed with the same
control and impedance parameters, and only layer stiffness are
changed. These parameters may be tuned for higher stiffness to
gain better trajectory tracking. To show the perfect trajectory
tracking of the control scheme, it may be seen in Fig. 6, that
with a rich desired trajectories (solid lines), made of several
different sinusoidal terms, robot best follows the trajectories
(dashed lines) with the same control parameters.

IV. CONCLUDING REMARKS

In this article, an adaptive output-feedback impedance con-
trol scheme is developed for machine-environment interaction
motions. Unlike the majority of existing impedance con-
trol schemes, in the proposed method, desired impedance is
achieved by using only robots joint position feedbacks in the
presence of various uncertainties in robots dynamics. This
has been achieved using an adaptive high-gain observer that
eliminates the requirements of expensive sensors for environ-
ment interaction forces and joint velocity measurements. It
has been also proven that the closed-loop system, consisting

Fig. 3: Trajectory tracking

Fig. 4: Control efforts and the external effort estimations

adaptive impedance controller and high-gain observer, is input-
to-state stable using an ISS Lyapunov candidate function. In
order to validate the stability analysis and also demonstrate
the performance of the proposed method numerical simulation
results is given and analyzed.

V. APPENDIX 1

Using Figs. 2(A) and (C), SMOS dynamical equations may be
derived by Lagrange method. Dynamical parameters pi are:

p1 = Ix1 + Ix2 + Ix3 − [Ix1 − Iy1] sa
2 +m1 r

2
1 s

2
a + 2m1 r1 sa y1

p2 = m2 r2
2 +m3 r3

2, p3 = m1 y1
2,

p4 = m3, p5 = 2 m3 r3, p6 = Iy2 + Iy3 − Ix2 − Ix3,

p7 = Iz2 + Iz3, p8 = m2 r2, p9 = m1 y1 +m1 r1 sa,

The elements of inertia matrix H3×3 are:

H11 = p1 + p2 − p2 s22 + p3 + p4 q3
2 − p4 q32 s22

− p5 q3 + p5 q3 s2
2 + p6 s2

2,

H22 = p2 + p4 q3
2 − p5 q3 + p7, H33 = p4,

H21 = H12 = 0, H31 = H13 = 0, H32 = H23 = 0,

(37)
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Fig. 5: Parameter adaptation

Fig. 6: Perfect trajectory tracking in free motion scenario

the elements of gravity G3×1 array are:

G1 = −g s1 [p9 − p4 c2 q3 + p8 c2 + 0.5 p5 c2] ,

G2 = −g c1 s2 [p8 − p4 q3 + 0.5 p5] , G3 = −g p4 c1 c2,
(38)

and elements of centrifuge and Coriolis matrix C3×3 are:

C11 = −0.5 q̇2 ss2
[
p2 + p4 q3

2 − p5 q3 − p6
]

− 0.5 q̇3 [2 p4 q3 − p5]
[
s2

2 − 1
]
,

C12 = −0.5 q̇1 ss2
[
p2 + p4 q3

2 − p5 q3 − p6
]
,

C13 = −0.5 q̇1 [2 p4 q3 − p5]
[
s2

2 − 1
]
,

C21 = 0.5 q̇1 ss2
[
p2 + p4 q3

2 − p5 q3 − p6
]
,

C22 = p4 q3 q̇3 − 0.5 p5 q̇3,

C23 = p4 q3 q̇2 − 0.5 p5 q̇2,

C31 = 0.5 q̇1 [2 p4 q3 − p5]
[
s2

2 − 1
]
,

C32 = −p4 q3 q̇2 + 0.5 p5 q̇2, C33 = 0,

(39)

where, c3 := cos(q3), s3 := sin(q3), sa = sin(a), and ss2 :=

sin(2q2). To verify dynamical equations, a virtual SimMechanics
model of SMOS robot has been utilized in a PD control loop, together
with the derived dynamical equations. Control signal um is exerted
to the virtual physical model of SMOS, which causes that model
follows a rich desired trajectory. The resultant motions of the model
enters the inverse version of the derived dynamics. As a result, the

TABLE I: SMOS structural parameters

Parameter Value Quantity
[Ixx1 , Iyy1 , Izz1 ] [0.01, 0.01, 0.01] Kg/m2

[Ixx2 , Iyy2 , Izz2 ] [0.001, 0.001, 0.001] Kg/m2

[Ixx3 , Iyy3 , Izz3 ] [0.001, 0.001, 0.001] Kg/m2

[r, r1, r2, r3] [0.125, 0.086, 0.086, 0.086] m
[l0, l1, x1, y1] [0.41, 0.35, 0, 0] m
[m1, m2, m3] [0.8, 0.25, 0.10] Kg

a 90 deg

mathematical model input vector ui is calculated. It should be noted
that the proportional and derivative control gains are kp = 100 and
kd = 10, respectively. Furthermore the rich trajectory is given by
x(t) =

∑6
i=1 ai sin(ωi t). Comparison between um and us proves

the validity of the derived equations. The validation errors are in the
order of 10−14. Due to space limitation, the results are not displayed
in here. However, a similar procedure is reported in [13]. Finally, the
nominal values of the model parameters are given in Table I.
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