
Visual Servoing Simulator by Using
ROS and Gazebo

Parisa Masnadi Khiabani, Babak Sistanizadeh Aghdam,
Javad Ramezanzadeh and Hamid D. Taghirad,Senior Member IEEE

Advanced Robotics and Automated Systems (ARAS), Industrial Control Center of Excellence (ICCE),
Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran,

Email: p.masnadi@ee.kntu.ac.ir, babaksistani@email.kntu.ac.ir,
j.ramezanzadeh@ee.kntu.ac.ir, taghirad@kntu.ac.ir.

Abstract—In this paper, a simulator for five degree of freedom
(DOF) visual servoing robot is presented with eye-in-hand config-
uration. This simulator has been developed in Robot Operating
System (ROS) and Gazebo environment. The designed simulator
eases the process of testing and debugging visual servoing
schemes, and robot controllers. Among different methods, one
of the existing Image based visual servoing schemes, image
moments, has been implemented to verify the functionality and
performance of designed simulator.

I. INTRODUCTION

A robotics simulator is the facility that creates a desir-
able environment to test a robot in different conditions and
for different applications such as mobile and behavior-based
robotics. Robotic simulator makes 3D modeling of a robot
and its environment possible. It facilitates creation of simple
environment of rigid objects and light sources to interact with
the robot. Many simulation engines such as Gazebo, Webots,
V-rep have been developed so far. In this study, Gazebo is
used since it readily integrates with ROS which is one of
the most celebrated system software for robotic developments.
ROS makes the task of creating robotic platforms with robust
behavior much easier. Gazebo provides common tools and
sensors that are used by most robots. The start of developing
Gazebo was in 2002, while Dr. Andrew Howard and Nate
Koenig created the Gazebo in the University of Southern
California. In 2009, ROS was amalgamated with Gazebo
at Willow. Afterward, From year 2012 till now OSRF is
responsible for further development of the Gazebo [1].

Visual servoing utilizes vision sensor information to control
robot’s motion [2]. It has been used in robot motion tracking
and regulation objectives, especially for featureless object.
The aim of visual servoing is controlling the system in
such a way that minimizes the vision error. Finding the best
solution for this purpose needs a lot of repetitive tests and
analyses. Although, the software for controlling robot have
been progressed widely, testing the real robot in the controller
development phase, continuously increases the risk of robot
damage due to mechanical or electrical failures. In addition,
creating a general robust software which consists every aspects
of robot experiments is very challenging [3]. Based on our
knowledge, there is no simulation environmemt to test the
proposed visual serviong schemes. Motivated by these issues,

a visual servoing simulator is implemented based on ROS and
Gazebo in this paper. The camera sensor and advanced control
plug-in, which are crucial for visual servoing, have been added
to this simulator to meet the robots requirement.

First approaches in visual servoing uses geometrical features
such as points, straight lines or eclipses to match and track
visual measurements [4], [5]. In those approaches the number
of objects that may be tracked were very limited. In addition,
no analytical form for interaction matrix were defined. In [6]
neural network has been utilized to estimate the interaction
matrix. Pre-learning process was the weakness of this method.
In [7], the author utilized image moments as visual features.
Furthermore, the analytical form of interaction matrix for
image moments has been determined. Author in [8] has
improved the suggested features in previous work. In this paper
the recommended features in [8] are used.

A visual servoing robot is simulated in Gazebo simulator
facilitates any hardware modification such as camera emplace-
ment with desired properties such as wide, or fish-eye lenses.
Moreover, moment based visual servoing is implemented on
the simulator to confirm it. The distribution of this simulator
eases the debugging and developing process of visual servoing
software.

The paper is organized as follows: in section II, the simu-
lator developments in ROS and Gazebo are described in more
details. In section.III features extraction, and also the relation
that links camera velocity to features’ variation are explained.
Finally, the implementation results of proposed method is
presented in section IV.

II. MODEL IMPLEMENTATION IN ROS AND GAZEBO

ROS is an open source framework for developing robotics
program. This framework contains libraries such as slam,
navigation stack etc that makes simulator development process
much easier. Moreover, developers all over the world can
cooperate with each other and contribute to ROS libraries.
Consequently, ROS users benefit from these rich libraries and
use them for their robots. In what follows, an explanation on
ROS elements will be described briefly.

A node in ROS is a part (process) of whole software which
is responsible for computing the specific task. In addition,
nodes communicate with each other in order to pass the

Proceedings of the 4th
International Conference on Robotics and Mechatronics
October 26-28, 2016, Tehran, Iran

978-1-5090-3222-8/16/$31.00 ©2016 IEEE 308

information and data. The combination of nodes builds a
graph. Each node has a name which is known to all other nodes
in the graph. Moreover, the type of each node is originated
from its package name. Therefore ROS find executable node
location in file system easily.

Nodes communicate with each other through topics. Many
nodes can subscribe to a topic, and also publish data to a
topic. The topics use TCP/IP and UDP protocols to convey
data. It has to be mentioned that ROS topics are used for
transmitting one directional continuous data. If the node needs
to receive a response or a request, it may use services. Topics
uses messages to transmit data. A message is a data structure
which may consist of many fields such Integer, floating point,
Boolean, etc.

Gazebo is an Open Source software that makes it possible
to simulate a robot in an accurate and efficient way in
complicated indoor and outdoor environments. It can easily
represent the 3D world as the environment in which the robot
operates in. In addition, it includes variety of sensors, different
robot model and environment, and some physics engines like
Open Dynamics Engine (ODE) ,Bullet , Simbody and Dart, to
simulate dynamic behavior of objects in the environment.

The proposed simulator mainly contains three packages
aras visual servo gazebo , aras visual servo camera, and
aras visual servo controller. A package may include one
or more nodes. It may consists launch files, configuration files
etc. The aras visual servo gazebo package is responsible
for launching the robot in gazebo environment through robot’s
Unified Robot Description Format file (URDF). 3D drawings
of all the robot elements are prepared by software such as
Solid Works, and then exported into the URDF file. This file
is an XML file format which has a tree structure. A joint
is defined in terms of a parent and its links and attributes
such as origin, axis, limits (lower, upper, velocity, effort) are
defined as the children. In addition, camera link and figure box
which are crucial parts in visual servoing are defined in URDF
file. The aras visual servo gazebo package also contains
configuration file for PID controller of the robot. The model
for visual servoing robot is shown in Fig. 1.

As it is shown in this figure, a five DOF robot with one
degree of redundancy in y direction is considered in this
simulation. This robot resembles completely the industrial
robot being used in ARAS robotic Lab. The camera has been
mounted on the robot’s end effector to simulate an eye-in-
hand visual servoing configuration. Visual servoing routines
fetch the camera data and current joint position to create the
connection between Gazebo and VS controller program. For
this purpose, subscriber and publisher functions are used in
the simulator.

The publisher continually broadcast a message to a specific
channel called topic. The subscriber function binds to a spe-
cific topic that will be called back, whenever a new message is
arrived. The aras visual servo camera package obtains the
images from gazebo’s camera plug-in and utilizes Open CV’s
library in order to extract image features and subsequently
publishes data to aras visual servo controller node based

on specific update rate that is defined by user. The graph of
the whole simulator is illustrated in Fig. 2. The way Gazebo
is communicating with the other nodes is illustrated in this
figure. The before-mentioned nodes are represented in circles.
The two topics of joint states and camera data are published
by Gazebo node and subscribed by robot state publisher
and aras visual sevo camera nodes, respectively. After the
aras visual servo controller receives the data, it updates
interaction matrix and calculates error signals and control
signals and finally publishes the appropriate commands to
move the joints.

The flowchart of the whole simulator is presented in
Fig. 3. As it is shown in this diagram the structure of
whole software is divided into seven sections. The Gazebo
simulator generates the camera image with the help of gazebo
plug-in and publishes it to camera image topic. Later,
aras visual servo camera node receives the image and
publishes it to converted camera image topic. In addition,
aras visual servo camera node extracts appropriate fea-
tures from received images and publishes to relevant topics.
Subsequently, ros controller receives the commands and
publishes the PID coefficients for ros control. Afterward, the
ros control node publishes commands which is applicable for
gazebo ros control node. Subsequently, gazebo ros control
node sends the commands for controlling the robot in the
simulator (gazebo).

III. IMAGE MOMENTS MODELING

Image moments have been utilized in computer vision for
a long time. They can describe any objects or complex shapes
effectively. In addition, the combination of moments could be
invariant with respect to specific transformation which makes
them suitable for visual servoing purposes. The moment mij

may be defined by [9]:

mij(t) =

∫∫
R(t)

f(x, y)xiyj dx dy (1)

if f is considered as a function in x − y plane which is
projected in the area R, m will represent the moment of f and

Fig. 1: The model of VS robot

309

/gazebo

/aras_visual_servo/controller_spawner /robot_state_publisher

/aras_visual_servo_camera

Aras_visual_servo

Gazebo

Robot_state_publisher

Aras_visual_servo_camera

\labrob/camera/Image_raw

Fig. 2: The simulator graph

ij will determine the order of moment. In a binary image f is
considered as intensity of pixel in x-y coordinates, therefore
its value could be one or zero. In other words equation (2)
may be written in [7]

mij(t) =

∫∫
R(t)

f(x, y) dx dy (2)

in which f is considered as xiyj . The centered moments which
are invariant with respect to x-y transformation are defined
by [7]:

µij(t) =

∫∫
R(t)

(x− xg)
i(y − yg)

jdx dy (3)

where xg and yg are the coordinates of image’s center. In order
to relate the time variation of moment ṁij to relative velocity
between camera and object, a linear mapping is defined as
follow [7]:

ṁij = Lmij v (4)

where v represents transitional and rotational velocity of
camera v = (v, ω), and Lm is the interaction matrix that links
camera velocity to the rate of moment changes. The only part
in (2) that changes by time is R. The time derivative of the

aras_visual_servo_controller aras_visual_servo_camera

Gazebo Simulator

Gazebo_plugins
Ros_control

Joint_command_interface

Gazebo_ros_control
Default_robot_hw_sim

ros_controller

Joint_command_interface

Joint_command_interface

Joint_command_interface

Converted_Camera_Image

Camera_Image

Fig. 3: The simulator diagram

moments may be simplified by use of Green’s theorem (for
further information refer to [7]) and is defined by:

ṁij =

∫∫
R

(t)

[
∂f

∂x
ẋ+

∂f

∂y
ẏ + f(x, y)

(
∂ẋ

∂x
+
∂ẏ

∂y

)]
dxdy

(5)
On the other hand, velocity of any point in image coordinates
x = (x, y) with known depth represented by Z, links to the
camera velocity with the well-known relation

ẋ = Lxv (6)

where Lx is written by[−1
Z 0 x

Z xy −1− x2 y
0 −1

Z
y
Z 1 + y2 −xy −x

]
(7)

If the object is considered planar, the depth of scene points
will be related to image point by [7]:

1

Z
= Ax+By + C (8)

A, B, and C are scalar parameters that describe the orientation
of plane. When the camera plane is parallel to the image plane
A = B = 0 [7]. By applying (8) in (7) ẋ and ẏ are obtained
as below

ẋ =− (Ax+By + C) · vx + x(Ax+By + C) · vz
+ xy · ωx − (1 + x2) · ωy + y · ωz

ẏ =− (Ax+By + C) · vy + y(Ax+By + C) · vz
+ (1 + y2) · ωx − xy · ωy − x · ωz

(9)

By replacing (9) in (5) and simplifying the final equation,
interaction matrix of moment is obtained. The simplified form
of interaction matrix which includes four degree of camera
motion may be represented by:

Lvx
mij

=−A(i+ 1)mi,j −Bimi−1,j+1 − Cimi−1,j

Lvy
mij

=−Ajmi+1,j−1 −B(j + 1)mi,j − Cjmi,j−1

Lvz
mij

=A(i+ j + 3)mi+1,j +B(i+ j + 3)mi,j+1

+ C(i+ j + 2)mi,j

Lωz
mij

=imi−1,j+1 − jmi+1,j−1

(10)

similarly, for centered moment one may obtain:

Lvx
µij

= 0,

Lvy
µij

= 0,

Lvz
µij

= C (i+ j + 2)µi, j ,

Lωz
µij

= i µi−1,j+1 − j µi+1, j−1.

(11)

As mentioned earlier, centered moments are invariant with
respect to x-y transformation. Therefore, the interaction matrix
of them has no elements along camera transitional motion
in x − y plane. The zero order moment(m00) calculates
the area that is utilized to control the camera motion in z
direction. Noting that in parallel situation Z∗√a∗ = Z

√
a [8];

therefore, the depth may be calculated. The selected features
for controlling the camera velocity in x and y directions
are the coordinates of image’s mass center(xg = m10/m00,

310

(a) (b) (c)

(d) (e) (f)

Fig. 5: Simulation results 2. (a) Desired image. (b) Initial image. (c) Difference between final and desired images. (d) Moment errors. (e)
Robot velocities. (f) The camera 3D trajectory.

along x, y, z, and θ are 2 mm, 4.7 mm, 2.6 mm, and
0.003 degree, respectively. In second set of experiments, the
target point is not at the center of image as illustrated in
Fig. 5(a). As seen in Fig. 4(c) the difference between final
image and target image is more than first set of experiments.
In Fig. 4(d) the exponential decreases of error signal are
observed. In Fig. 5(f) the trajectory and the before mentioned
errors are visible. The mean of tracking errors in second set
are 4 mm, 8.9 mm, 7.2 mm, and 0.03 degree, respectively.
The simulation results ensures the effectiveness of the visual
servoing scheme presented in this paper, and motivates to
implement it in practice on our real robot in ARAS robotic
Lab.

V. CONCLUSIONS

In this paper, a visual servoing simulator for a five DOF
robot in ROS and Gazebo environment was presented. This
simulator facilitates the development of different methods of
feature tracking, visual servoing routines, and control algo-
rithm. To validate the proposed simulator, image-based visual
servoing for four degree of camera motions have been imple-
mented. The method have been checked for different initial and
target points. It is planned to develop six DOF robot simulator
in future to assist development of feature selection, and other
visual servoing routines for simultaneous six DOF camera
motion. This would be a crucial issue in the development and
test of the state-of-the-art visual servoing algorithm, before its
implementation on real robotic manipulators.

ACKNOWLEDGMENT

The authors would like to thank all visual servoing team
member of ARAS Robotic Lab for their kind assistance
in preparing VS program. Special thanks goes to Ebrahim

Abedloo for providing Solid Work model of the Robot used
in this paper.

REFERENCES

[1] “The gazebo robot simulation,” http://gazebosim.org/, 2014, accessed:
2014-10-22.

[2] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic ap-
proaches,” Robotics & Automation Magazine, IEEE, vol. 13, no. 4, pp.
82–90, 2006.

[3] “Ros wiki,” http://wiki.ros.org/, 2015, accessed: 2015-07-03.
[4] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual servoing

in robotics,” Robotics and Automation, IEEE Transactions on, vol. 8,
no. 3, pp. 313–326, 1992.

[5] S. Hutchinson, G. D. Hager, P. Corke et al., “A tutorial on visual servo
control,” Robotics and Automation, IEEE Transactions on, vol. 12, no. 5,
pp. 651–670, 1996.

[6] G. Wells, C. Venaille, and C. Torras, “Vision-based robot positioning
using neural networks,” Image and Vision Computing, vol. 14, no. 10,
pp. 715–732, 1996.

[7] F. Chaumette, “Image moments: a general and useful set of features for
visual servoing,” Robotics, IEEE Transactions on, vol. 20, no. 4, pp. 713–
723, 2004.

[8] O. Tahri and F. Chaumette, “Point-based and region-based image mo-
ments for visual servoing of planar objects,” Robotics, IEEE Transactions
on, vol. 21, no. 6, pp. 1116–1127, 2005.

[9] A. K. Jain, Fundamentals of digital image processing. Prentice-Hall,
Inc., 1989.

[10] R. Mukundan and K. Ramakrishnan, Moment functions in image anal-
ysis: theory and applications. World Scientific, 1998, vol. 100.

[11] H. Taghirad, M. Shahbazi, S. Atashzar, and S. RayatDoost, “A robust
pose-based visual servoing technique for redundant manipulators,” sub-
mitted to Robotica, 2012.

[12] R. C. Gonzalez, Digital image processing. Pearson Education India,
2009.

[13] “Vs simulator,” https://github.com/babaksit/aras visual servo/, 2015, ac-
cessed: 2015-11-22.

312

