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 Abstract—In this study, the problem of navigation in dynamic and unknown 

environment is investigated and a navigation method based on force field approach is 

suggested. It is assumed that the robot performs navigation in unknown environment 

and builds the map through SLAM procedure. Since the moving objects' location and 

properties are unknown, they are identified and tracked by Kalman filter. Kalman 

observer provides important information about next paths of moving objects which are 

employed in finding collision point and time in future. In the time of collision detection, 

a modifying force is added to repulsive and attractive forces corresponding to the static 

environment and leads the robot to avoid collision. Moreover, a safe turning angle is 

defined to assure safe navigation of the robot. The performance of proposed method, 

named Escaping Algorithm, is verified through different simulation and experimental 

tests. Besides, comparison between Escaping Algorithm and Probabilistic Velocity 

Obstacle, based on computational complexity and required steps for finishing the 

mission is provided in this paper. The results show Escaping Algorithm outperforms 

PVO in term of dynamic obstacle avoidance and complexity as a practical method for 

autonomous navigation. 
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1. Introduction 

MOBILE robots find their path to the daily life of 

humans by the means of navigation. This 

general concept transforms a mobile robot 

from a "toy" to an autonomous system able to 

operate in unknown environment.  The 

motivation of developing navigation systems 

lies in two important aspects: assistive robotics 

and industrial applications. Examples of 

autonomous systems for assistive purposes are 

automated wheelchairs, robots able to find and 

manipulate objects, searching and rescue after 

catastrophe [1] and performing dangerous 

tasks instead of human like searching mines 

and monitoring the Fukushima nuclear site [2]. 

Such applications need both the ability to move 

in crowded environment and optimal path 

planning. Besides, industry benefits from the 

concept of navigation in different ways. The 

usage of autonomous systems decreases the 

expenses of health insurance (due to usage of 
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robots instead of human) and raises the 

production rate due to operation with higher 

speed. 

There is a rich literature on the concept of 

navigation. Different navigation approaches 

are suggested by researchers for static or 

dynamic environment. The complete literature 

review on the navigation problem is mentioned 

in Section2. A navigation scheme which 

supposes complete knowledge of environment 

and dynamic obstacles will not provide a 

realistic framework for practical applications. 

This issue attracts researchers concern for 

further extension of navigation systems. 

Navigation in dynamic environment is a 

challenging topic from two aspects: 

1- Dynamic obstacles in the environment have 

unknown future motion. 

2- The robot is equipped with sensors with 

limited range of view. The robot does not 

have complete knowledge about 

environment. 

In this paper, these two challenges will be 

addressed. The main purpose of current study 

is suggesting a method for navigation in 

dynamic environment without considering any 

prior information about environment and 

dynamic obstacles. The first challenging topic 

will be addressed by categorizing observations 

to static and dynamic and tracking dynamic 

ones by the means of Kalman filter. The main 

contribution of this paper lies in solving the 

second issue and that is using Escaping 

Algorithm (EA) for navigation. In the 

mentioned method which is an extension of 

force field approach, the aim is leading the 

robot to the target while trying to avoid local 

obstacles. 

In our problem it is assumed that the 

environment is unknown to the robot. Hence 

the robot performs SLAM and navigates 

toward the target simultaneously. In each 

iteration of our routine, the robot incrementally 

completes its local map by performing SLAM 

and uses the local map to distinguish between 

dynamic and static obstacles. The robot 

predicts the path of dynamic obstacles and 

based on it, the modifying force is applied to 

the robot. The resultant total force leads the 

robot toward the target while avoids the local 

obstacles. The robot moves for a while (i.e. 

duration of the loop) and then the loop starts 

again by performing SLAM. This procedure 

continues until the robot reaches the target. 

This paper which is an extension to our 

previous work [35] is organized as follows: In 

section 2, a complete literature review of the 

navigation systems is presented. Section 3 

provides environment representation and 

formulates the problem. The definitions of 

attractive and repulsive force in static 

environment are mentioned in this part. In 

section 4, escaping algorithm and its 

components are enlightened and the required 

steps to obtain repulsive force of dynamic 

obstacles are discussed. Section 5 contains 

simulation and experimental results of EA. 

Besides, EA is compared to PVO and the 

complexity analysis of both is included in this 

section. Finally, concluding remarks are given 

in section 6. 

2. Related Works 

Navigation systems have been extensively 

studied before. The problem of navigation in 

static environment is solved and saturated with 

different approaches like A* [3], [4] and force 

field method [5]. However, navigation in 

dynamic environment still attracts researchers' 

attention and motivates them for better and 

further developments. 

Some navigation systems divide the 

navigation problem into two parts: the first part 

is path planning from the start point to the 

target and the second part is designing a 

controller for tracking the path. Modified A* 

[6] and D* [7] are examples of these groups 

which search the cost map to generate the path. 

These methods usually suppose complete 

knowledge about environment or consider 
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unknown locations as free and plan the path 

toward the goal. The expensive computation 

cost of these methods and the need of re-

planning due to the change in the environment, 

limit their usage as an applicable navigation 

method. 

Another part of research involves navigation 

systems which solve for optimal or near 

optimal trajectory. Even though these 

navigators are fast, they usually plan locally 

and it is possible to trap in local minima. In [8], 

a horizon limited trajectory is produced by 

minimizing a utility function and considering 

obstacles with very low velocities. The idea of 

dynamic window is introduced in [9] and tries 

to find the control inputs by maximizing the 

cost function which contains the robot heading, 

distance to obstacles and the robot velocity. 

Rapidly exploring Random Trees (RRTs) 

method is a tool able to search high 

dimensional input space and consider vehicle 

dynamic. The method is suitable for searching 

complex environment [10]. In [11], partial path 

planning is done based on RRT that considers 

vehicle model constraints such as acceleration, 

steering velocity, and steering angle bounds 

and the real-time operation. 

A set of techniques named Velocity Obstacle 

exist that compute safe velocities for the robot 

based on obstacle velocities and the selected 

time horizon [12]. The main problem of this set 

is that they assume a complete knowledge 

about moving objects like their velocities. 

Recently, some navigation algorithms based on 

VO developed that consider the avoidance 

possibilities of workspace objects like [13] and 

[14]. These methods may trap in local minima 

and fail in some situations. 

The concept of Inevitable Collision State 

(ICS) introduced by [15] guarantees the motion 

safety criteria which is listed in [16]. The 

output of mentioned approach is a set of states 

for the mobile robot which leads to a collision 

and then, they are dangerous and should be 

avoided.  This approach requires a complete 

environment model which is not realistic. In 

[17], the Probabilistic Inevitable Collision 

State (PICS) which is applicable for 

probabilistic settings is suggested. One of 

disadvantages of this method is that there is no 

reliable long-term motion prediction for 

humans. 

Potential field is one of the most common 

methods for path planning.The popularity of 

this method is due to its simplicity for 

implementation. This method was introduced 

by [5] and then improved for real time 

implementations in [18]. First, potential field 

approach was suggested for navigation in static 

environment [19], [20], [21], [22]. However, 

the real world is not stationary, and the robot 

moves in dynamic environment and encounters 

dynamic obstacles like moving humans. 

Researchers started to develop potential field 

methods for navigation in dynamic 

environment. In [23], the velocity of dynamic 

obstacles is included in the definition of 

potential function. The basic problem is that 

the collision depends on the velocity of both 

robot and obstacle; however, [23], considers 

only the speed of the robot. In [24] relative 

positions and velocities of the mobile robot 

with respect to the obstacles are considered in 

definition of potential function. However, this 

method needs exact knowledge of velocity of 

dynamic objects, which is not available in 

practice. Potential function to reach a moving 

target is defined in [25], but the velocities of 

the robot, obstacles and target are assumed to 

be known. 

The contribution of this paper is an extension 

of potential field approach for navigation in 

dynamic environment without considering any 

prior information about environment and 

moving objects. The proposed method 

provides safe motion for the robot operating in 

dynamic environment. This paper is an 

extension to our previous work [35] and 

describes more details about Escaping 

Algorithm. Besides, the current study includes 
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comparison to another navigation system 

(PVO). 

A. The Environment Modeling and Problem 

Formulation 

B. The Environment Modeling 

 

In this paper, the popular occupancy grid 

map is used for environment modeling [26]. 

The occupancy grid map uses a matrix to 

represent obstacles. Each entity in matrix is a 

symbol of one square part of environment and 

its quantity shows the confidence of the 

obstacle lying at this location. In this context, 

the size of square sides is set to 10 cm. 

Certainty values range from  to  in 

occupancy grid maps. As the possibility of 

existence of an obstacle in specific square 

increases, the certainty values goes to  ; 

while for a free cell, this value approaches to 

 . The robot is equipped by one laser range 

finder and two encoders. Since laser is used to 

obtain information from environment, this map 

is suitably adapted to our system. In each range 

reading, the values of certainties are updated 

and used for navigation purposes. 

C. Problem Formulation 

The motion planning problem of a mobile 

robot is to plan and control it such that it 

reaches the target while avoiding obstacles. In 

Force Field Method (FFM) the obstacles exert 

repulsive force to the robot while the target 

attracts the robot to itself. The total force 

determines the direction of movement for the 

robot. The definitions of attractive and 

repulsive forces are not unique, and different 

definitions can be found in [27] and [25]. 

To use FFM for the mobile robot navigation, 

it is enough to suitably define the repulsive 

force of static objects, the attractive force of the 

target and the repulsive force of the dynamic 

objects and use their total direction for mobile 

robot steering. The last component will be 

explained in next section with more details. 

1) The repulsive force of static objects 

Since gird map is used for environment 

representation, the repulsive forces of static 

objects are defined for each occupied cell in 

grid map. To accomplish this task, it is needed 

to define a window on the robot coordinates 

and calculate the repulsive forces through it. 

This window is called active window and is 

used to avoid local obstacles while moving 

toward the target. For each cell in the active 

window, the repulsive force of static cell is 

calculated as follows. 
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in which, crF   is the repulsive force constant, 

),( jiC denotes the certainty of cell ),( ji , ijd

denotes the Euclidean distance between the 

robot and cell ),( ji , ),( ,, jiji yx  is the position of 

cell ),( ji , and ),( rr yx    is the position of the 

robot. Total repulsive force is calculated by 

adding all repulsive forces in active window: 
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2) The attractive force of the target 

The robot moves toward the target while 

avoiding obstacle. As a result, it is not 

important that whether the target is located in 

the active window or not, it always exerts its 

attractive force to the robot by the following 

relation: 
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in which, caF  denotes attractive force constant, 

),( tt yx  is the target position, and td denotes 

the Euclidean distance between the robot and 

the target.  
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3) The total force 

The total force is determined as the sum of 

the repulsive and attractive forces. The total 

force in static environment is derived from 

following equation: 

rat FFF   (4) 

The above force is used for avoiding local 

static objects while moving toward the target. 

If a collision is predicted, the repulsive force of 

dynamic object is added to the total force and 

the resultant force is used for navigation. 

Definition of repulsive force of dynamic 

objects denoted by mF and the required steps 

are explained in details in the next section. 

 

mtf FFF   (5) 

The direction of fF is used as steering rate 

command. In static environment, mF is equal to 

zero; in the other words fF  and tF  are the 

same. Let   shows direction of fF . If robot 

direction is denoted by , angular velocity can 

be given by: 

)(   sk  (6) 

in which, sk is the steering constant whose 

dimension is 
1s . This constant is set as the 

inverse of the sampling time. 

3. Escaping Algorithm: A Strategy for Navigation in 

Dynamic Environment 

In static environment, the mobile robots can 

reach the target by using repulsive forces of 

static objects and attractive force of the target. 

However, it needs to perform four steps 

sequentially, to move in dynamic environment 

safely. These steps are as follows: moving 

objects detection, motion prediction, collision 

detection and velocity planning for obstacle 

avoidance. These sub programs are executed 

within the Simultaneous Localization And 

Mapping (SLAM) loop and use the grid map 

obtained from SLAM in their calculations. 

Each sub program is explained in the following 

sections with more details. 

A. Moving Object Detection 

Moving object detection is one of the most 

important parts of planning in dynamic 

environment. The objective is to classify 

observations as static or dynamic. Researchers 

developed several methods for this 

classification. One common method is 

Expectation Maximization Algorithm (EMA) 

[28], [29]. EMA is a two steps maximization 

process which solves incomplete data 

optimization problem [30]. Another method is 

sample-based variant of probabilistic data 

association filter. This method filters dynamic 

observations like human and results robust 

scan matching [31]. Besides, non-probabilistic 

methods are also developed. For example, [32] 

suggested a simple rule for classification. This 

method is extended for grid map and is used for 

dynamic observation mapping in this paper. 

In this paper a three-state map is generated 

and used for dynamic object detection.  The 

three-state map has similar structure to grid 

map and represents environment by set of cells. 

Each cell in this map can be labeled as free, 

occupied or unknown.  A reading is associated 

to dynamic object if it locates in a free cell. The 

three-state map is generated by following 

formula in each SLAM loop: 















otherwiseUnknown

ccjicifOccupied

ccjiciffree

jicd

,

0,),(,

0,),(,

),( maxmax

minmin

  (7) 

In above, ),( jicd  shows the cell ),( ji in 

three-state map. The values of minc  and maxc  are 

tuned practically. Using three-state map, 

observations are divided to dynamic and static. 

Static observations are used in gird map, while 

dynamic observations are predicted and special 

strategy (EA) is used to avoid them. Please 

note that several sequential dynamic 

observations refer to one moving object 
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because moving objects like human reflects 

several beams of laser to the robot. As a result, 

it is required to group sequential dynamic 

readings. The center of each group is used as 

pose of dynamic object and the distance 

between center and dynamic border is 

considered as obstacle radii, obsR . 

B. Motion Prediction 

In this context, a set of Kalman filters is 

defined. Each Kalman filter predicts next poses 

and velocities of one moving object. The state 

vector of each Kalman filter is defined as

 TyyxxX  . The initial guess of state 

vector is set to  TX 0000  for all 

moving objects. As it can be seen, the constant 

velocity model is used to represent moving 

object movement. It is important to note that 

movement of moving obstacles especially 

human is unpredictable; however, the constant 

velocity model with noisy acceleration may be 

suitably used to predict this behavior [28]. The 

discrete space state equation is shown as 

follows: 
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In whichT , denotes the sampling time. 

Dynamic readings which obtained from 

previous routine are considered as new 

positions of moving objects. Therefore, the 

observation equation is as follows. 
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In Eq. (8) and Eq. (9), wn and vn  are process 

and observation noises. The variance of 

process noises have to be carefully tuned in 

practice to provide desire performance in 

tracking. The variance of observation noises is 

related to sensor properties and should be 

determined based on them. In each sensor 

range readings, observations are classified into 

static and dynamic. Dynamic observations are 

used for updating Kalman filters. Since there 

are several dynamic observations and moving 

object, nearest neighbor algorithm is used to 

match dynamic observations and obstacles. If 

there is not any observation for one moving 

obstacle, our algorithm only performs the 

prediction step. If this happens several times, it 

means that the obstacle moves out of the robot 

vision and it is not necessary to predict its 

motion anymore. As a result, the corresponding 

filter is eliminated. 

A Kalman filter is also used for the robot 

position and velocity prediction. The 

prediction of this filter is used for collision 

detection between the robot and the obstacles. 

Therefore, in each SLAM loop, the following 

set of Kalman filters is updated. 

   1,,1,,  NiZX
ikk   (10) 

In this equation, N  denotes the number of 

predictable moving objects, while the last 

Kalman filter is for the estimation of robot pose 

in future. By this means, N may differ in each 

iteration, according to the number of visible 

dynamic obstacles. 

C. Collision Detection 

The set of Kalman filters and their 

predictions are used to find possible collisions. 

To perform that, each Kalman filter predicts 

the next poses and velocities of one dynamic 

obstacle up to max predictions time, maxT . 

Similar prediction is done for the robot. 

Moreover, suppose that dynamic obstacles and 

the robot can be modeled by circles with radius 

obsR  and robR  respectively. In k th prediction 

step the distance between the robot pose and 

the obstacle is calculated. If this distance, 

denoted by d , is less than the summation of 

obstacle and robot radii, then the collision will 

probably happen. The distance is calculated 

between the robot and all moving obstacles in 

order to find all possible collisions. It is 

important to note that as prediction step 

increases, the uncertainty grows, as well. As a 
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result, a confidence factor, denoted by conf , is 

defined and used in collision detection. The 

following condition holds if a collision is 

possibly happening: 

1),(  confobsrobconfk RRd   (11) 

 
Figure 1- Escaping Algorithm 

D. Velocity Planning for Obstacle Avoidance 

Navigation in dynamic environment using 

potential field method is widely studied in 

literature. In this method, the target exerts 

attractive force to the robot, while static and 

dynamic objects apply repulsive forces. There 

are different definitions for the repulsive and 

attractive forces. For example in [25] a moving 

target is considered and the repulsive and 

attractive forces are derived by supposing full 

knowledge of the target and obstacle's 

positions and velocities. The final output of 

method suggested in [25] is a function of the 

target velocity and the relative positions 

between the obstacles, the target and the robot. 

Similarly, by considering full knowledge about 

moving objects and the target, in [24] relative 

distance and velocity between the robot and the 

obstacle are used in repulsive force definition. 

The attractive force is defined based on relative 

distance and velocity between the robot and the 

target. One key problem of this method is that 

they need exact knowledge of position and 

velocity of dynamic obstacle and the target. 

However, this is an unrealistic assumption as 

none of them is known in practice. 

In this paper Escaping Algorithm (EA) is 

suggest for obstacle avoidance. This algorithm 

is originated from a common behavior of 

human. A person usually intends to move in 

opposite direction in order to avoid colliding 

with a moving person. The same strategy can 

be used for mobile robot navigation. In our 

approach, the robot tries to moves in opposite 

direction if possibility of collision is detected. 

Consider Fig. 1. In this figure, obstacle 

direction in global frame is denoted by angle 

 .The projection of this direction in robot 

frame is a suitable direction to align a new 

repulsive force. In order to perform that, the 

velocity of obstacle is expressed in the robot 

frame by the following rotation. 
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In Fig. 1, tF  denotes the total force 

considering static environment. The obstacle 

velocity which is projected in the robot frame 

is used to define modifying force mF . This new 

force has the same norm as tF  and its direction 

is opposite to the obstacle direction in x , and 

parallel to it in y direction. Any time that 

possibility of a collision is detected, the 

modifying force mF  is added to the total force 

and the final force fF , is used for steering the 

robot toward the target. 

To address the safety of motion, consider Fig. 

2. As it is mentioned before, it is supposed that 

the robot and the obstacle can be modeled by 

circles with radius obsR  and robR  respectively. 

It is similar to consider the robot as a point and 

enlarge the radius of obstacle to robobs RR  . As 

a result, the minimum turning angle for the 

robot is   to avoid collision. This angle is 

shown in Fig. 2 and may be derived by the 

following equation. 
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Figure 2- Definition of safe turning angle 

 

)arcsin(
d

RR obsrob   (13) 

In the above equation, robR  is a known 

parameter and can be measured before test. 

obsR Is calculated as it is explained in section 3-

A.To assure safety, if the turning angle )(  

, is less than , the turning angle   is 

considered for the robot steering. 

4. Results 

In this part the simulation and experimental 

results of using EA in dynamic environments 

are presented. It is important to note that 

navigation by using force field family suffers 

from trapping in local minima. This problem 

occurs when the robot direction differs more 

than 90 degrees off target or fF  is equal to 

zero. 

2/   (14) 

  0fF  (15) 

Researchers develop several recovery 

methods to encounter local minimum problem. 

For example recovery methods based on 

electromagnetic field and modification of 

repulsive potential functions are suggested in 

[33] and [24] respectively. One of the most 

popular recovery methods is Wall Following 

Method (WFM) which is suggested in [5]. In 

this context, WFM is used for mobile robot 

navigation to avoid trapping in local minima. 

 
Figure 3- The global map in which the robot reads 

observation 

A. Simulation Results 

In this section, simulation result of using EA 

in a dynamic environment is described. For 

simulation, seven dynamic objects are 

considered whose positions and motion 

directions are randomly selected. The robot 

does not have any prior knowledge about 

moving objects and their paths are estimated by 

Kalman filter. The robot obtains its observation 

from global map shown in Fig. 3. In this figure, 

the start point, the target point and seven 

dynamic objects are shown. The robot 

navigates from the start point to the target point 

successfully, provided that it does not collide 

with static and dynamic objects and it reaches 

the target. Through different tests, it is possible 

that several collisions are detected at some 

occasions by collision detection algorithm. In 

these situations, our algorithm considers only 
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the nearest obstacle. The reason is that the 

nearest obstacle is more dangerous than others 

and hence the danger of it should be removed 

first. After eliminating the nearest danger, the 

next hazardous collision is considered. 

Fig. 4 shows one of the several simulation 

tests and it is selected because it shows 

different aspects of EA algorithm. Through 

moving from the start point to the target point, 

the robot builds the map of environment 

incrementally and localizes itself 

simultaneously in SLAM loop as it is shown in 

Fig. 4 (a)-(f).  As it can be seen in this figure, 

the robot starts moving to the target in (a). The 

wall 0w  bans the robot path. In this point the 

wall following method is activated to preserve 

the robot from trapping in local minima. As a 

result of this method, the robot follows wall 0w

. Continuing its movement in wall following, 

the robot faces a moving object in (b). Here, 

first collision detection algorithm predicts a 

possible collision and then EA is activated. The 

modifying force is executed on the robot and it 

causes that the robot moves in opposite 

direction of the moving object. When the threat 

of collision is removed, the robot turns to the 

target in (c). Due to the absence of dynamic 

obstacles and the good alignment of the robot 

toward the target, the robot continues its path 

to the target in (d) by potential field method 

(since in this step, the environment is static.). 

However, appearance of another moving object 

in (e) and the possibility of collision cause that 

our EA algorithm is activated again and the 

robot tries to avoid the obstacle by turning it. 

This movement is depicted in (f). Again, by 

disappearing dynamic obstacles, the robot uses 

potential field method to reach the target in (f). 

 

 
Figure 4- The robot path in dynamic environment using Escaping Algorithm (EA) 
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Figure 4 shows only one of several 

simulation tests. Due to the fact that moving 

objects are located and directed randomly, 

almost all scenarios have been tested on the 

robot. These set of simulations provides us 

enough assurance to implement this algorithm 

in the following real time experiments. 

B. Experimental Results 

EA for navigation in dynamic environment is 

implemented on KNTU Mellon mobile robot. 

The mobile robot perceives environment 

through a laser range finder whose maximum 

range reading is 8 meter. The laser scan data is 

used for map building in a SLAM environment. 

The ego motion estimation is done by well-

known ICP algorithm [34]. To achieve more 

accurate result in the robot localization, the 

odometry information by encoders mounted on 

two wheels, serves as the initial guess for ICP 

algorithm. A computer with core i5 processor 

is used for online execution of the algorithm. 

The algorithm contains a loop for simultaneous 

localization and mapping (SLAM) which 

contains the  robot navigation routine. 

 

For the control of Mellon mobile robot two 

commands are prompted, namely the velocity 

of the right and left wheels, denoted by r , and

l , respectively. These velocities are easily 

obtained by linear transformation of linear and 

angular velocities as bellow: 































 V

b

b

rl

r

2/1

2/11  (16) 

where, r  and b  denote radii of wheel and 

wheel base, respectively. Different methods 

are suggested by researchers [25], [18] for 

linear velocity definition. In this context, since 

fast performance of the mobile robot is desired, 

it is good that the mobile robot moves as fast as 

possible. However, it should start deceleration 

before an obstacle appears in its path in order 

to avoid collision. Hence, it is suitable that the 

mobile robot moves with its maximum linear 

velocity until it reaches the region that should 

decelerate to stop completely near an obstacle. 

Hence, 

 







 


otherwiseV

d

d

ddifV

V

eff

eff

max
min

minmax

         (17) 

In Eq. (17), mind  is the minimum range 

reading in range scanning and effd  is the 

distance passed by the robot when it 

decelerates from maximum velocity to zero.  

 

In what follows, experimental result of using 

EA in dynamic environment is given. In this 

experiment, the target is located in front of the 

robot with a relative distance of m4 , while the 

robot tries to reach target with a distance less 

than cm30 . In the terms of static environment, 

the robot goes straight to the target until it 

approaches static obstacle and tries to avoid it. 

However, the robot motion in dynamic 

environment is different. The dynamic scenario 

is run twenty two times and the result of one of 

them is shown in Fig.  5.
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Figure 5- Experimental results of Escaping Algorithm (EA) in a real dynamic environment 

To examine the effect of dynamic 

environment, two moving objects approach the 

robot from the left. The robot tries to find a 

collision free path for safe navigation. As 

indicated in Fig. 5 and in part (a), the robot 

starts moving toward the target, while in (b) a 

moving obstacle appears and in (c) a collision 

possibility is detected. In (d) the robot turns left 

to avoid collision and again in (e) it moves back 

toward the target. Moreover, in (f) another 

collision possibility is detected and the 

modifying force is added to the total force, and 

hence, the robot turns to the left to avoid 

collision in (g). Finally, in (h) it reaches the 

target. Robot path using EA in this experiment 

can be observed in more detail in Fig. 5. From 

the promising results observed in the set of 

twenty two experiments, we may conclude that 

EA algorithm is suitable to be used in further 

development of autonomous robots. 

C. Probabilistic Velocity Obstacle: A Method 

for Comparison 

Velocity Obstacle (VO) method first 

introduced in [12] and supposed deterministic 

knowledge about the velocity of obstacles to 

produce control inputs for navigation. This 

method was extended to probabilistic 

framework in [13] and is used in this paper for 

the sake of comparison. The idea is describing 

all velocities in the robot frame and finding 

those velocities which yield to collision in a 

predefined time horizon. The Collision Cone 

roCC of the robot r relative to the obstacle o , is 

the set of all relative dangerous velocities 

)( orr vvv 


 which finally cause a collision: 







 





 








 tjvytivxttvCC rrrrhrro


,,0|  (18) 

In which, ht  shows the time horizon, and   

denotes any type of obstacle (dynamic or 

static). Any velocity is safe for the robot iff the 

relative velocity does not belong to the 

collision cone. To compute the probability of 

collision )( Rcoll VP  of the robot velocity, all the 

possible velocities of obstacles have to be 

considered. Since in this paper Kalman filter is 

used to predict next poses and velocities of 

dynamic obstacles, the estimated state of 
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dynamic object and its relevant covariance 

matrix is used to compute the probability of 

collision. To obtain permitted velocity for the 

robot, two constraints are considered: 

minimizing the risk of collision and reaching 

the goal position. 

  
rgoalr vxkxrdsitvU ,,1)(   (19) 

)()( rbreakhrsafe vTtvT    (20) 

Equation (19) calculates the distance 

between the robot next pose and the goal 

position applying velocity 
rv  to the robot. A 

velocity can be applied to the robot for the time 

interval ht , if the robot does not collide with 

any object up to safeT . As it can be seen in Eq. 

(20), safeT  contains the required time for 

deceleration from rv  to zero which is )( rbreak vT . 

Minimizing the distance between the robot 

and the goal position yields to high velocities 

and thus, increases the risk of collision. In other 

words, these two cost functions act reversely.  

PVO navigates in the following order: First, 

velocity with maximum utility is considered. 

Second, the collision time collisionT  for the 

selected velocity is calculated. Third, the 

following equation is evaluated: 

    
collisionrsafe TvT )(   (21) 

If Eq. (21) holds, it means that a collision will 

be happen for the selected velocity. As a result, 

this velocity is unsafe for the robot. Forth, until 

finding a safe velocity, iteration will be done.  

There are some problems with PVO. One of 

them is trapping in local minima. The author in 

[13] mentioned that in the presence of local 

minima, some optimization parameters are 

considered. However, the recovery method is 

not mentioned in either [13] or [12]. The 

velocity searching space is the second problem 

of this method. The complexity of computation 

grows with the size of velocity sampling set. 

The mentioned issues limit the performance of 

PVO in complex scenarios and in the real word 

applications. 

D. Escaping Algorithm vs Probabilistic 

Velocity Obstacle 

To validate Escaping Algorithm and 

demonstrate its performance, Probabilistic 

Velocity Obstacle (PVO) method is 

implemented and tested through simulation 

tests. The global map shown in Fig. 6 is used 

for testing mentioned algorithms in both 

dynamic and static forms. For dynamic 

scenario, four moving objects are located and 

directed randomly. Both EA and PVO were 

simulated 20 times for static and dynamic 

environment and the reporting results in Table 

I shows the average value of them. 

 
Figure 6- Complete simulated environment 
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Our study analyses the performance of EA 

and PVO from two important aspects. The first 

one is the number of iterations required to 

complete the mission and the second one is the 

complexity of algorithm. Here, we analysis the 

first metric and in the next subsection the 

complexity issue is extensively discussed. 

In our study we found that EA algorithm 

terminates its mission in smaller number of 

iterations than PVO. In dynamic environment, 

EA takes 165 steps in average to finish its task 

while this value for PVO is 173. While EA 

algorithm produces continuous values for 

linear and angular velocity, in PVO the 

velocity is discretized. Even though it is 

possible to assume smaller sampling interval 

for velocity, it causes the complexity grows up 

polynomially. Assuming a reasonable value for 

velocity intervals, the selected velocity differs 

from the optimal value and hence, the required 

number of iteration is larger than EA. Similarly 

for static environment, the number of iterations 

of PVO is more than EA. Please note that in 

static environment EA reduces to potential 

field method. The required number of steps is 

reported in Table I. 

 

Table I- Performance analysis of Escaping Algorithm (EA) and Probabilistic Velocity Obstacle (PVO) in 

static and environment 

 EA PVO 

Steps Running 

Time (s) 

Step/Running 

Time 

Steps Running 

Time (s) 

Step/Running 

Time 

Static 

Environment 

116 25.63 0.221 167 38.29 0.229 

Dynamic 

Environment 

165 36.25 0.220 173 39.756 0.229 

 

E. Complexity Analysis 

The computational time complexity of EA is 

    2

anO  (22) 

in which an stands for the size of the active 

window in force field method. The complexity 

of PVO grows with the size of control space 

sampling set. Let's show the size of control 

space sampling set with vn . Since in this paper 

a planar robot is assumed, the control input has 

two components:  Tyx vv ,  and they will be 

selected from vv nn   space. Besides, PVO 

needs to check next poses of the robot for the 

selected control input and defined time 

horizon. Up to 






 

scale

hor

d

tvv )(
max  grids with 

size scaled  will be check for each selected 

velocity. Hence, the overall complexity of 

PVO is: 

    




















 


scale

hor
m

d

tvv
nO

)(
max2  (23) 

Table II shows the considered parameters in 

EA and PVO. For PVO as it is mentioned in 

[13], only integer values for the robot velocity 

is considered. Besides, s5  is selected as the 

time horizon as it is in [13]. Using these values, 

the complexity of EA is extremely lower than 

PVO and it is in compliance with the reported 

values in Table I. The concept of 

“Step/Running time” is a rough measure of 

complexity in the absence of mathematical 

analysis of complexity. Here, our measured 

values confirm that the complexity of EA is 

less than PVO and it makes EA suitable for 

online implementation.  

It is possible to choose some of PVO 

parameters such that it has lower complexity. It 

can be done by 1- decreasing number of control 

input samples and 2- by reducing the time 

horizon. By choosing option 1, the precision of 
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control input selection decreases and may 

result to improper results in the term of 

obstacle avoidance and running time. 

Decreasing time horizon in option 2 is not 

suitable since this enlarges the danger of 

collision. Hence, mindful selection of the 

variables is a must to have the desired 

behavior. 

 
Table II- Selected Parameters in Escaping Algorithm (EA) and Probabilistic Velocity Obstacle (PVO) 

EA PVO 

an  vn  rv  
ov  ht  

31 21 -10< ·<10 -10<·<10 5 

5. Discussion and Conclusion 

This paper deals with two challenging issues 

in the navigation problem. First, the method 

introduced in this paper provides solution for 

handling unknown observations of dynamic 

environment and determining the source of 

observations. This is achieved by defining the 

three-state map and categorizing data into 

static and dynamic. As dynamic obstacles 

move, the trajectory of them is required to 

completely describe their motion through time. 

Hence, Kalman filter is used to track and 

predict the dynamic obstacle motions. The 

motion prediction of dynamic obstacles helps 

us to address the second challenging issue and 

that is using Escaping Algorithm strategy for 

navigation in dynamic environment. As it is 

mentioned before, EA is modeled based on 

force field approach. EA concept originates 

from the common behavior of human; it is a 

frequent behavior for us to turn another person 

in the opposite direction of his movement to 

avoid collision. 

The performance of EA is checked under 

different metrics. First, several simulation tests 

in several environments with different number 

of robots are checked. Some of the considered 

environments are U  shape environment to 

check the performance of the system in local 

minimum situations. Then, the proposed 

method was implemented on Mellon platform 

to assure the performance of the algorithm in 

the real implementation. After that, EA is 

compared to Probabilistic Velocity Obstacle 

method in the required number of steps for 

finishing the task and the complexity of 

computation. Our results show that using 

typical parameters in PVO, our algorithm has 

lower complexity and smaller time for 

completing the mission. 

To compare PVO and EA fairly, instead of 

assuming the velocity and trajectory of 

dynamic obstacle as a priori, which is one of 

the basic assumptions in PVO, we predicted 

them by Kalman filter. This helped us to 

evaluate two algorithms neutrally. However, 

substituting the prediction values instead of 

exact values caused some problem in PVO. 

Due to use of imperfect knowledge about 

moving obstacles, PVO failed in situations that 

the prediction precision is not good enough. 

Similarly, EA may fail in a situation such that 

moving objects start their motions in a close 

vicinity of the robot and Kalman filter does not 

predict their motion precisely. 

Even though the performance of EA is 

checked through different scenarios, the next 

step is providing concrete stability analysis of 

the proposed framework and finding the exact 

conditions for performance guarantee. Another 

possible direction of future work is developing 

this method for navigation of swarm of robots 

toward their goals considering the global and 

limited communication links. 
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