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Abstract—Adding nonholonomic constraints in parallel manip-
ulators, allows reduction of the actuated-joint number without
affecting the reachable workspace. This principle applies to wrist
robot in some underactuated designs. This paper studies steady
state motion control for an nS-2SPU underactuated parallel wrist
robot. First, a suitable Euler angles representation is selected
and a new method for forward kinematic problem without extra
sensor is proposed. Next, differential kinematics of the robot
is analyzed considering first order nonholonomic constraint on
angular velocity of the robot. By some manipulations, the derived
equations are transformed into chain form, and a hierarchical
sliding mode controller is designed for the system. Closed-loop
performance of the proposed controller is compared to that
of a traditional controller reported in the literature through
simulations.

Index Terms—underactuated wrist, parallel robot, nonholo-
nomic constraint, motion control, sliding mode control.

I. INTRODUCTION

An Underactuated Mechanical System (UMS) is a nonlin-
ear system with fewer inputs than its Degrees Of Freedom
(DOF) [1]. Because of lower number of inputs than DOF,
control of this systems is challenging. There are many under-
actuated mechanical systems brought into real life application
such as unmanned aerial vehicles (UAV), unmanned ground
vehicles(UGV), underwater vehicles, mobile robots [2].

Two main situations lead to undeactuated mechanical sys-
tems [3], [4]. First case arise from dynamical property of
the systems like aircraft, helicopters, mobile robots. However,
in the second case the designer intentionally reduces the
unwanted number of actuators to reduce the cost. As an
example, the underactuated wrist proposed in [4] and satellites
with two thrusters could be mentioned as a representative of
such case. In general, UMS has nonholonomic constraints.
Nonholonomic constraints are categorized as first and second
order types, which are also called as velocity and acceleration
constraint, respectively [5]. UGVs and UAVs are examples of
first and second order nonholonomic systems, respectively.

Study on first order nonholonomic (FON) systems has been
extensively reported in the last decade. As a representative of
these researches, one may consider [6], in which a general
modelling method for FON systems is proposed. It is shown
that by satisfaction of the controllability rank condition, these
systems can be moved to any desired configuration. However,

because of velocity constraint, only special trajectories can be
followed between two desired configuration points.

While most of underactuated robots are serial or mobile,
underactuation is recently seen in parallel robots as well.
Since, parallel robot consist of one or more closed-loop
kinematic chain in its structure, It can provide higher precision,
faster motion, and lower mass compared to that of serial
structures. However, The closed-loop chains in parallel robots
make their design more challenging, and their workspace
much limited [12]. These design limitations may be removed
fully or partially, if unwanted actuators are omitted, and an
underactuated structure is used in applications where these
types of robot can be proposed. By this means the growing
application of parallel robots may be further extended [14]-
[16].

Only few studies have been reported for underactuated
parallel robots in recent years. In [17] motion planing for
a planar underactuated cable-suspended robot is introduced.
Grasp planning of an underactuated arm structure is proposed
in [18]. Both the robots mentioned in [17], [18] have second
order nonholonomic constraints. One parallel robot with first
order nonholonomic constraint is introduced in [4]. Inverse
kinematic and jacobian analysis of this robot is proposed in
[18], while no control strategy is given for such mechanism.

While limited control studies have been reported for under-
actuated parallel robots, some control methods are developed
for FON systems in general. In [6] a general algorithm to
transform the equation of motion of such systems to chain
form is introduced. Following this transformation, regulation
problem is investigated and some controllers are proposed
for these systems [7], [9], [10]. Furthermore, a discontinuous
control for nonholonomic constrained system is proposed
in [11]. While these general control algorithms have their
own merits, significant modifications shall be considered to
apply them to underactuated parallel manipulators. The motion
trajectory constraints, necessitate appropriate motion represen-
tation for such robots, in order for these control structures to
be applicable.

In this paper motion control for the nS-2SPU underactuated
parallel robot wrist is reconsidered [18]. First, a suitable
Euler angles representation is considered and then forward
kinematic analysis is performed without any extra sensors.
Then Differential kinematics of the robot is analyzed in this
framework, considering first order nonholonomic constraint



on angular velocity of the robot. By some manipulations, the
derived equations are transformed into chain form [9], and a
hierarchical sliding mode controller is designed for the system.
Finally the simulation studies verifies the promising behavior
of the proposed method being used in real implementations.

II. STRUCTURE OF THE ROBOT

Wrist robot is a fully parallel robot with three rotational
degrees of freedom, and the final position of its moving
platform is a function of pure orientation. A general case of
this structure is proposed in [19], while the proposed structure
has three prismatic actuator as inputs in a S-3SPU kinematic
structure. Hence, the robot moving platform is connected to the
base by spherical and universal joints in three similar limbs.
Furthermore, a passive limb connects the moving platform to
the fixed base by a spherical joint, by which the translations
of the moving platform are suppressed.

Underactuated manipulator may be constructed from an
ordinary robot based on some rules [20]. A three degrees of
freedom rotation can be generated in a spherical joint where
three axis of rotations are perpendicular. In order to suppress
one degrees of rotation and construct an underactuated robot,
one may constraint instantaneous rotation about any axes
which are parallel to the base. By this means, a fully parallel
wrist may be converted to a constrained one, if instantaneous
rotation about an axis parallel the base is constrained. This
may be accomplished by adding a roller to the spherical
joint, by which the robot cannot rotate about the roller axis.
This constraint does not limit the other two rotational degrees
of freedom parallel to the base plane. By this means a
nonholonomic spherical(nS) joint is constructed. In a three
DoF manipulator, only two limbs are sufficient to provide the
motion. Such structure which is schematically illustrated in
Fig. 1 generates a nS-2SPU wrist robot. Refer to [4] for more
details about sphere roller contact and nonholonomic spherical
joint in wrist robots.

III. KINEMATICS AND JACOBIAN

Figl illustrates the underactuated parallel wrist robot, and
the notations that are used in the kinematic analysis. As
explained before, this robot has two actuated limbs and an
unactuated one which connect base to the platform. An nS
joint is used to stabilized the constrained motion of the robot.
It will be shown in the following analysis, without these joints
forward kinematic has infinite number of solutions.

To perform kinematic analysis of the robot, two frames
are attached to robot. Frame B is fix and is attached to the
base while frame P is movable and is attached to the moving
platform, while both these frames coincide at point O. An
appropriate choice for center of frame might be considered at
the geometrical center of nS joint. A; and B; are the center
of the S and U joint of the i/ SPU limb respectively. Let us
use b index for the base and p index for that of the platform.
Consider the x,-axis as the bisector of angle ZA;OA; while z;,-
axis perpendicular to the base plane, and y;-axis perpendicular
to these two axes as illustrated in Fig. 1, and i, j, denote
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Fig. 1. The nS-2SPU underactuated wrist robot. The center of fixed frame B
and moving frame P coincide at O.

unit vector of coordinate axes. Axes of movable frame is
determined similar to that of the fixed frame, in which x,,y,
are located in the moving platform plane. Consider, aj,a, as
the unit vectors along the line passes through O and A;,A,
respectively. Furthermore, consider b,b, as the unit vector
along the line passing through O and By, B;, respectively. ¢;,d;
and e¢; are the length of OA;, OB; and A;B;, respectively.

A. Kinematics Analysis

A rotation matrix is used to define the orientation of the
moving platform with respect to the base frame. For this
means, we use fixed XYZ Euler angles. The importance
of this selection will be explained later. Considering this
representation, the rotation matrix is determined as:

"Ry = R:(Y)R,(B)Rx(a)
cBey sasPBey—casy casBcy+sosy (1)
= |cBsy sasPsy+cacy cosBsy—sacy
—spB sacP cacP
in which, ¢@ denotes cos(6) and sO denotes sin(6). « is

rotation angle about x;,. 8 is rotation angle about y, axis and
7 is rotation angle about z;. In the triangle A;OB; we have:

dihi = ejb; — cja; 2)

All three vector in 2 must be represented in one frame.

1) Inverse kinematic: In inverse kinematic problem, we
suppose that Euler angles are known, and therefore, rotation
matrix is specified, and length of two limbs are to be extracted.
It is clear that pb,-f’ a; are constant vectors. Note that Left su-
perscript b(p) denote, the corresponding vector is represented
in the base frame (platform frame). Hence, equation 2 may be
written as [18]:

d,' bh[ =€ bRp pb[ —Cj ba,- (3)
Dot multiply each side of 3 to itself:
d} = (e "Ry Pbi—ci "a;)" (e; "Ry Pbi—ci Pa;)  (4)



d; will be obtained:
di=| e; "Ry Pbi—c; "a; | (5)

And therefore, inverse kinematic problem has a unique solu-
tion.

2) Forward kinematic: In forward kinematic problem,
lengths of two limbs is known and rotation matrix (Euler
angles) must be specified. In parallel robots, its hard to find an
analytic solution for this problem. To solve this problem we
have two equation with three unknowns, and therefore, in gen-
eral it has infinite number of solutions. However, in practice,
robot has nS joint that keep it in a constant orientation. It is
shown that with two extra sensor, a unique forward kinematic
solution exists [18].

In what follows a unique solution is obtained without need
of any extra sensors. Suppose that initial orientation of the
robot (R(0)) is known. for an infinitesimal motion and in
the next sampling time, the rotation matrix of robot may be
calculated bt R(1)R(0), in which R(1) is unknown. Because of
nS joint, robot can instantaneously rotate only about any axis
parallel to the base plane. If we use screw representation, it
is clear that the z component of the screw coordinate is zero,
i.e. s; = 0. Hence,

di(1) =|| e; R(1)R(0) °b; —¢; “a; ||

s)zc—i—s}z,:]

0)
subject to (
Therefore, by this means two equations with three unknowns
and one constraint may be solved uniquely either analytically
or numerically. In k' sample, equations are in the following
form:

d,'(k) =|| e; R(k)RIﬁl bbi —¢; %a; ||

s)zc—l—sg:l

. @)
subject to

in which, R¥"! = R(k—1)R(k —2)...R(0) is known.
After finding rotation matrix, it is easy to find Euler angles:

B = Atan2(—rsy, im)
y=Atan2(ry /cB,ri1/cB) ®
o = Atan2(r3p/cB,r33/cB)

Equation 8 is valid when f3 # +x/2. This is one of the reason
why we select this Euler angles. It is clear that the robot
cannot rotate about X and Y axis more than 7/2 because of
its mechanical structure. Therefore, o, shall be bounded by
—n/2<a,p<xm/2

B. Jacobian Analysis

The Jacobian matrix relates angular velocity  to d; and d.
Therefore, dimension of Jacobian matrix is 2 x 3. However,
the robot has a nonholonomic constraint and cannot rotate
instantaneously about z;, axis. Hence, Jacobian matrix is 3 x 3.

Time derivative of equation 4 yields to:

did; = ciei(a; x b;)" @ ©9)

Furthermore, the nonholonomic constraint may be represented
by kga) = 0. These equations are collected as:

No = DA (10)
in which,
clel(al X b])T
N = |cea(an X bz)T (11D

ky

and D = diag(dy,d»,1),A = (dy,d»,0)". Further details of
Jacobian analysis is reported in [18]. The only important fact
worth to ne noted is that singular point in underactuated robot
is fewer than ordinary robot.

IV. DIFFERENTIAL KINEMATICS

In robots with first order nonholonomic constraint, dif-
ferential kinematic equations are derived from constraint on
velocity. Constraint is written in a matrix form and from null
space of matrix, kinematic equation may be derived [21]. Let
us drive the differential kinematic equations of motion of nS-
2SPU robot.

We know that time derivative of Euler angles is not equal
to the angular velocity of the moving platform. At first, we
drive this relation by using R = @, Rm where:

o
o=E|p (12)
4
and,
cfecy —sy O
JE=|cBsy ¢y O (13)
- 0 1
The nonholonomic constraint k;w =0 is equal to :
a
[-sB 0 1]|B|=0 (14)
14

The solution of equation 14 is equal to the null space of third
row of E which is determined by:

1 0
G= 0 1
sin(f) 0

Hence, the final differential kinematics relations are as follows.

5)

o=
B=w (16)
¥ =sin(B)v

v1,vy are arbitrary value and control inputs of system. The
second reason why we select this Euler angles representation
is now clear. By usung this representation which is found
from the physical properties of the constrained motion, the
null space specification is much simplified.



V. CONTROLLER DESIGN

Controller design at this stage ensures the motion control of
the robot from an initial configuration to its final destination.
Notice that because of the nonholonomic constrained this
motion cannot be performed at any desired trajectories, and
only trajectories satisfying the motion constraints can be
tracked. At this stage we present regulation control of the
robot, while trajectory tracking is being worked out currently
in the research group.

Equation 16 is in driftless form. We propose to transform
them into a chain form. Consider the following changes of
coordinates:

2=sin(f), =7
up = cos(f)vy.

:a7
<1 (17)

up =i,

By this means the transformed equation in chain form may be
derived by

21 =uj
Hh=u (18)
3 = 22U

The final reason of preferable motion representation by Euler
angles 1 is that equation 17 is valid when —7/2 < 8 < 7/2,
which is satisfied by the motion constrains of the robot in this
representation.

The controller objective is to converge all the states in 18
to zero. Here for a system in chain form, two controller is
designed. First, by using discontinues transformation proposed
in [11], all the states asymptotically converge to zero. Second,
by designing a sliding mode control law, a robust controller
is presented.

A. Discontinues Transformation
Use the following transformation:
23

wy = —,
21

wi =2z, w3 =2). (19)
Furthermore, use u; = —kz; = —kw; in which k denotes the
controller gain. The transformed equations are divided in two
parts, in which the first equation is inherently stable, and the

remaining equations are controllable.

w1 = —kw
Wy = kw1 —kw» 20)
W3 = up

By this means wp,w3 state representations are linear and
controllable, and can be easily controlled by u;. The advantage
of using linear controller is that control law is simple and
smooth, but it isn’t robust against uncertainty.

B. Sliding mode

In order to robustify the proposed controller proposed in
last section, a sliding mode control is proposed for the system
represented in 18. One of the main advantages of sliding mode
control is its robustness against modeling uncertainties.

The sliding mode control which is proposed here is hierar-
chical. Because of the structure of robot, o, § must be bounded
by:

—n/2<—c<a,fp<c<m/2 21

which c is a positive constant. In what follows the proposed
controller is stated in terms of a theorem, by which it is proven
that asymptotically convergence to zero is guaranteed while
the above mentioned bounds are satisfied.

Theorem. Consider system 18 with the following control law:

—klzjm if ze Q2\93
uy = —kaz1 if 7€Q; (22)
0 otherwise
B —kysign(z2) if 7€
o= { —kzsign(zo —25) otherwise 23)

in which, Q) ={z:z3 <€}, L ={z:20—25 =0}, Q3 ={z:
72 =0,z3 < €}, while 2} is a constant that satisfies:

z3(0
—c< —%4—&

2

(0)<ec (24
where, 71(0),z3(0) are initial values, and k; are the positive
controller gains.

Proof. First let us show asymptotically convergence of all
states to zero in four stages. Next boundedness of 71,z will
be shown.

S1 If z # 23, then set uy = 0,up = —kzsign(zo —z5). It is
easy to show that z, converges to z5 in finite time while
71,23 are constant. If it’s not, go to next stage.

S2 If z€Q, set uy = —kiz3z3 and up = —kzsign(zo —z3). By
this means z, remains constant and equal to z;, while z3
will converge to zero exponentially and z; = o satisfies
the required bound of 21.

S3 If z3 < &, z € Qp then set u; = 0,up = —kysign(z2).
Therefore, z;, 73 remain constant and z, converges to zero
in finite time.

S4 If zp =0,z3 < €, set u;y = —kyzy, then z € Q3 and z;
converges to zero asymptotically.

According to the above control law, it is clear that zp is
bounded with upper bound z < ¢, therefore B satisfy 21.
Furthermore, |z;1] < ¢ since in stage 2 when u; = —k;z3z3:

2
73 = z3(0)e 12

Therefore:
Z 0 %2 Z 0
7= 3(*)6 kizy"t 3(*)+Z1(0)
%) %)
The final value of z; is —Z‘*z& +2z1(0) which is lower than c.

Also in stage 1 and stage 3, z; is constant and in stage 4, z;
converge to zero exponentially. By this the proof is complete.
O

Remark 1. In this proof all states converge to zero. For
regulation to a desired nonzero values, the technique proposed
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Fig. 2. Closed-loop performance of discontinues controller: State convergence
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Fig. 3. Closed-loop performance of discontinues controller: Control effort

in [9] is recommended, by which after a change of coordinate,
new equations are in chain form, and the above controller
works well.

Remark 2. In sliding mode controller, uy is piecewise con-
tinues but up has a bang-bang form. It’s possible to drive a
control law without chattering but modeling uncertainties, and
external disturbance will be not totally rejected.

Remark 3. The sliding mode controller is robust against
disturbance that affect only zp. It is sufficient to choose k3, ky
larger than the upper bound of disturbance to reject it.

VI. SIMULATION RESULTS

In order to verify the performance of the proposed con-
trollers for underactuated wrist robot, a simulation is per-

formed. The initial values in this simulation is set to:

a(0) 1
B(0)| =105 (25)
y(0) 0.1

The final value is set to [0,0,0]7. A sinusoidal disturbance
with upper bound of 0.2 is added to v, in equation 16.
First we apply discontinues controller which is proposed in
subsectionV-A. The gain of controller is set to k = 0.5. up
is determined with state feedback so as the linear part of
equation20 becomes stable. Closed-loop simulation results are
shown in figures. 2 and 3. As it is seen in Fig2 it is evident
that B do not converge to zero while the other two states
converge to zero. This is because the disturbance is applied in
this channel and the controller can not reject it. However, the
advantage of this controller is its smooth control effort which
is shown in Fig3.

Next, we applied sliding mode controller proposed in
subsectionV-B. The value of ¢, the upper bound of a, 8 is set
to one. A suitable choice for z3 that satisfy inequality 24 is 0.2.
Furthermore, the controller gains are set to k; =20,k =2 and
k3, ks that shall be greater than the upper bound of disturbance,
are set to one. Simulation results with this controller are
shown in figures 4, and 5. As it can be seen in Fig. 4 at
first B reach to arcsin(zj) ~ 0.2 in a short time while other
states are constant. After this time period, z3 converge to zero
while z; is decreasing. Then z reach to zero very fast and
at last z; converges to zero exponentially. It’s clear that with
this controller, all states converge to zero while an bounded
external disturbance is applied to robot. This is the main
advantage of sliding mode controller. Fig5 shows the inputs
of wrist robot. it is seen in this figure that v; is piecewise
smooth while v, has chattering. in order to avoid chattering
notice Remark 2.

VII. CONCLUSIONS

In this paper a study on Kinematic analysis and control of an
underactuated wrist mechanism is performed. It is shown that
background literature on the analysis of this type of robot in
addition to the proposed controller in the area of underactuated
system can be well merge together to propose a suitable
analysis and control for this system. As reported in this paper,
a suitable Euler angles representation is proposed in the study
of inverse and forward kinematics of the system. Then a new
method to obtain unique forward kinematic solution of the
robot without need to any extra sensor is presented. Next
Differential kinematics of the robot is analyzed and through
some manipulations, these equations are transformed into
chain form. Finally and a hierarchical sliding mode controller
is designed for the system, and the closed-loop performance
of the proposed controller is compared to that of a traditional
controller reported in the literature through.

The study shall be completed by generalization of the
proposed controller for trajectory tracking, as well as adding
some effort to reduce chattering. This issues are currently
under investigation in our research group.
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