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a b s t r a c t

We describe a counter-example which shows that (2) of theorem (11) in Algaba
et al. (2012) is not correct. This part of the theorem, pinpoints whether the origin
of quasi-homogeneous system (15) in Algaba et al. (2012) is a center or not. It is
shown in this note that the given necessary and sufficient conditions of theorem
(11), in Algaba et al. (2012) are not complete.

© 2017 Published by Elsevier Ltd.

1. Introduction

Let us first give some definitions about quasi-homogeneous vector fields [1].

• Let t = (t1, t2) be non-null, with t1 and t2 non-negative integer coprime numbers and t1 ≤ t2. A function
p : R2 −→ R is quasi-homogeneous of type t and degree k if p(ϵt1x, ϵt2y) = ϵkp(x, y). The vector space of
quasi-homogeneous of type t and degree k will be denoted by Pt

k.
• A polynomial vector field F = (P,Q)T is quasi-homogeneous of type t = (t1, t2) and degree r (we

denote it deg(F) = r) if P ∈ Pt
r+t1 and Q ∈ Pt

r+t2 . We will denote by Qt
r the vector space of the

quasi-homogeneous polynomial vector fields of type t and degree r.
• A singular point is called center-focus type, also called monodromic, when the orbits rotate around the

singular point.
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The system (15) in [1], depending on the type t, has been expressed as follows:

t = (1, 2),

ẋ = a20x

2 + a01y,

ẏ = b30x
3 + b11xy.

(15)

Furthermore, theorem (11) in [1] states the following:

1. The origin of (15) is monodromic if and only if (b11 − 2a20)2 + 8b30a01 < 0.
2. If the origin of system (15) is monodromic, then it is a center if and only if 2a20 = −b11.
3. If the origin of system (15) is a center, then system (15) is reversible and analytically integrable.

2. Counter—Example

Consider the system

t = (1, 2),

ẋ = x2 − y,
ẏ = x3.

(1)

System (15) is reduced to (1), setting a20 = 1, a01 = −1, b30 = 1, and b11 = 0. Furthermore, notice that
(b11 − 2a20)2 + 8b30a01 < 0⇒ −4 < 0 and 2a20 ̸= −b11 ⇒ 2 ̸= 0. Hence, based on theorem (11), the origin
of system (1) shall be a monodromic point and is not a center. However, based on its analytical solution,
we illustrate that the origin of system (1) is a center.

Changing variable z = x2y−1, equations of system (1) can be reduced to an equation with separable
variables, as follows:

1
y
dy = −z

z2 − 2z + 2dz. (2)

Integrating relation (2) gives:

F = ln(y) + 1
2 ln(z2 − 2z + 2)− tan−1(1− z). (3)

Eq. (3) can be rewritten as follows:

W = (x4 − 2x2y + 2y2)e2 tan−1

x2
y −1

. (4)

According to the relation (4), the function V is defined as follows:

V =


(x4 − 2x2y + 2y2)e2 tan−1


x2
y −1

, y > 0,

x4eπ, y = 0,

(x4 − 2x2y + 2y2)e


2 tan−1

x2
y −1


+2π

, y < 0.

(5)

Now, it can be proven that the function V is continuous on R2. For the domains L+ = {(x, y) : y > 0} and
L− = {(x, y) : y < 0}, it is obvious that V is continuous and also for (xc, 0) ∈ L = {(x, y) : y = 0} and
xc ̸= 0, we have 

lim
(x,y)−→(xc,0)

(x,y)∈L+

V = x4
c lim

(x,y)−→(xc,0)
(x,y)∈L+

e
2 tan−1


x2
y −1


= x4
ce
π,

lim
(x,y)−→(xc,0)

(x,y)∈L

V = x4
ce
π,

lim
(x,y)−→(xc,0)

(x,y)∈L−

V = x4
c lim

(x,y)−→(xc,0)
(x,y)∈L−

e


2 tan−1


x2
y −1


+2π


= x4
ce
π.

(6)
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According to the relations (5) and (6) hitherto, the function V is continuous on R2 \{(0, 0)}. By the squeeze
theorem [2] and 0 < e−π < e2 tan−1


x2
y −1

< eπ, we conclude that

lim
(x,y)−→(0,0)

(x,y)∈L+

V = 0, lim
(x,y)−→(0,0)

(x,y)∈L

V = 0, lim
(x,y)−→(0,0)

(x,y)∈L−

V = 0. (7)

Therefore, V is continuous at (0, 0).
We now prove that the partial derivatives of V are continuous on R2. For ∂V∂x and ∂V∂y at (x, y) ∈ [R2 \L],

we have

∂V

∂x
=

4x3e
2 tan−1


x2
y −1


if (x, y) ∈ L+,

4x3e


2 tan−1


x2
y −1


+2π


if (x, y) ∈ L−,

∂V

∂y
=

(4y − 4x2)e2 tan−1

x2
y −1


if (x, y) ∈ L+,

(4y − 4x2)e


2 tan−1

x2
y −1


+2π


if (x, y) ∈ L−.

(8)

Hence, the partial derivatives of V are continuous on L+ and L−.
Furthermore, the partial derivatives of V at any point (x, y) ∈ L are:

∂V

∂x
= 4x3eπ,

∂V

∂y
= lim
h−→0

V (x, h)− V (x, 0)
h

=⇒
lim
h−→0+

(x4 − 2x2h+ 2h2)e2 tan−1

x2
h −1

− x4eπ

h
= −4x2eπ,

lim
h−→0−

(x4 − 2x2h+ 2h2)e


2 tan−1

x2
h −1


+2π

− x4eπ

h
= −4x2eπ.

(9)

Considering relations (8) and (9), it can be shown that ∂V∂x and ∂V
∂y are continuous on R2. Therefore,

referring to the following theorem [2]:

If the partial derivatives ∂V∂x and ∂V∂y exist near (x, y) and are continuous at (x, y), then V is differentiable
at (x, y).

V is differentiable on R2.
Regarding to the equations of system (1), it can be easily shown that the derivative of V with respect to

time is zero on R2. Therefore, the contour which is determined by V (x, y) = c with constant c, is a union of
orbits of system (1). On the other hand, through following inequality,

V ≥ e−π(x4 − 2x2y + 2y2) = e−π[(x2 − y)2 + y2] (10)

it is proved that V is coercive [3]. Hence, the origin of system (1) is a center. The phase portrait of this
system is shown in Fig. 1, which verifies the proof of argument given in this note.

Acknowledgment

The authors would like to express their sincere appreciation to Reviewer ♯1 for valuable comments.



216 A. Rahimabadi, H.D. Taghirad / Nonlinear Analysis: Real World Applications 37 (2017) 213–216

Fig. 1. Phase portrait of system (1).
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