Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

We describe a counter-example which shows that (2) of theorem (11) in Algaba

et al. (2012) is not correct. This part of the theorem, pinpoints whether the origin

of quasi-homogeneous system (15) in Algaba et al. (2012) is a center or not. It is

shown in this note that the given necessary and sufficient conditions of theorem

Comment on: "Centers of quasi-homogeneous polynomial planar systems" [Nonlinear Anal. RWA 13 (2012) 419]

A. Rahimabadi^{*}, H.D. Taghirad

Industrial Control Center of Excellence (ICCE), Faculty of Electrical Engineering, K.N. Toosi University of Technology, P.O. Box 16315-1355, Tehran, Iran

ABSTRACT

ARTICLE INFO

Article history: Received 28 September 2015 Received in revised form 9 January 2017 Accepted 12 January 2017

Keywords: Quasi-homogeneous Center problem Monodromy Reversibility Integrability

1. Introduction

Let us first give some definitions about quasi-homogeneous vector fields [1].

• Let $\mathbf{t} = (t_1, t_2)$ be non-null, with t_1 and t_2 non-negative integer coprime numbers and $t_1 \leq t_2$. A function $p : \mathbb{R}^2 \longrightarrow \mathbb{R}$ is quasi-homogeneous of type \mathbf{t} and degree k if $p(\epsilon^{t_1}x, \epsilon^{t_2}y) = \epsilon^k p(x, y)$. The vector space of quasi-homogeneous of type \mathbf{t} and degree k will be denoted by $\mathscr{P}_k^{\mathbf{t}}$.

(11), in Algaba et al. (2012) are not complete.

- A polynomial vector field $\mathbf{F} = (P, Q)^T$ is quasi-homogeneous of type $\mathbf{t} = (t_1, t_2)$ and degree r (we denote it deg $(\mathbf{F}) = r$) if $P \in \mathscr{P}_{r+t_1}^{\mathbf{t}}$ and $Q \in \mathscr{P}_{r+t_2}^{\mathbf{t}}$. We will denote by $\mathcal{Q}_r^{\mathbf{t}}$ the vector space of the quasi-homogeneous polynomial vector fields of type \mathbf{t} and degree r.
- A singular point is called center-focus type, also called monodromic, when the orbits rotate around the singular point.

* Corresponding author.

LSEVIER

© 2017 Published by Elsevier Ltd.

E-mail addresses: arsalan.rahimabadi@ee.kntu.ac.ir (A. Rahimabadi), taghirad@kntu.ac.ir (H.D. Taghirad).

The system (15) in [1], depending on the type t, has been expressed as follows:

$$\mathbf{t} = (1,2), \qquad \begin{cases} \dot{x} = a_{20}x^2 + a_{01}y, \\ \dot{y} = b_{30}x^3 + b_{11}xy. \end{cases}$$
(15)

Furthermore, theorem (11) in [1] states the following:

- 1. The origin of (15) is monodromic if and only if $(b_{11} 2a_{20})^2 + 8b_{30}a_{01} < 0$.
- 2. If the origin of system (15) is monodromic, then it is a center if and only if $2a_{20} = -b_{11}$.
- 3. If the origin of system (15) is a center, then system (15) is reversible and analytically integrable.

2. Counter—Example

Consider the system

$$\mathbf{t} = (1,2), \qquad \begin{cases} \dot{x} = x^2 - y, \\ \dot{y} = x^3. \end{cases}$$
(1)

System (15) is reduced to (1), setting $a_{20} = 1$, $a_{01} = -1$, $b_{30} = 1$, and $b_{11} = 0$. Furthermore, notice that $(b_{11} - 2a_{20})^2 + 8b_{30}a_{01} < 0 \Rightarrow -4 < 0$ and $2a_{20} \neq -b_{11} \Rightarrow 2 \neq 0$. Hence, based on theorem (11), the origin of system (1) shall be a monodromic point and is not a center. However, based on its analytical solution, we illustrate that the origin of system (1) is a center.

Changing variable $z = x^2 y^{-1}$, equations of system (1) can be reduced to an equation with separable variables, as follows:

$$\frac{1}{y}dy = \frac{-z}{z^2 - 2z + 2}dz.$$
(2)

Integrating relation (2) gives:

$$F = \ln(y) + \frac{1}{2}\ln(z^2 - 2z + 2) - \tan^{-1}(1 - z).$$
(3)

Eq. (3) can be rewritten as follows:

$$W = (x^4 - 2x^2y + 2y^2)e^{2\tan^{-1}\left(\frac{x^2}{y} - 1\right)}.$$
(4)

According to the relation (4), the function V is defined as follows:

$$V = \begin{cases} (x^4 - 2x^2y + 2y^2)e^{2\tan^{-1}\left(\frac{x^2}{y} - 1\right)}, & y > 0, \\ x^4 e^{\pi}, & y = 0, \\ (x^4 - 2x^2y + 2y^2)e^{\left[2\tan^{-1}\left(\frac{x^2}{y} - 1\right) + 2\pi\right]}, & y < 0. \end{cases}$$
(5)

Now, it can be proven that the function V is continuous on \mathbb{R}^2 . For the domains $L^+ = \{(x, y) : y > 0\}$ and $L^- = \{(x, y) : y < 0\}$, it is obvious that V is continuous and also for $(x_c, 0) \in L = \{(x, y) : y = 0\}$ and $x_c \neq 0$, we have

$$\begin{cases} \lim_{\substack{(x,y) \to (x_c,0) \\ (x,y) \in L^+}} V = x_c^4 \lim_{\substack{(x,y) \to (x_c,0) \\ (x,y) \in L^+}} e^{2\tan^{-1}\left(\frac{x^2}{y} - 1\right)} = x_c^4 e^{\pi}, \\ \lim_{\substack{(x,y) \to (x_c,0) \\ (x,y) \in L}} V = x_c^4 e^{\pi}, \\ \lim_{\substack{(x,y) \to (x_c,0) \\ (x,y) \in L^-}} V = x_c^4 \lim_{\substack{(x,y) \to (x_c,0) \\ (x,y) \in L^-}} e^{\left[2\tan^{-1}\left(\frac{x^2}{y} - 1\right) + 2\pi\right]} = x_c^4 e^{\pi}. \end{cases}$$
(6)

According to the relations (5) and (6) hitherto, the function V is continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$. By the squeeze theorem [2] and $0 < e^{-\pi} < e^{2 \tan^{-1} \left(\frac{x^2}{y} - 1\right)} < e^{\pi}$, we conclude that

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in L^+}} V = 0, \qquad \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in L}} V = 0, \qquad \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in L^-}} V = 0.$$
(7)

Therefore, V is continuous at (0,0).

We now prove that the partial derivatives of V are continuous on \mathbb{R}^2 . For $\frac{\partial V}{\partial x}$ and $\frac{\partial V}{\partial y}$ at $(x, y) \in [\mathbb{R}^2 \setminus L]$, we have

$$\frac{\partial V}{\partial x} = \begin{cases}
4x^3 e^{2\tan^{-1}\left(\frac{x^2}{y} - 1\right)} & \text{if } (x, y) \in L^+, \\
4x^3 e^{\left[2\tan^{-1}\left(\frac{x^2}{y} - 1\right) + 2\pi\right]} & \text{if } (x, y) \in L^-, \\
\frac{\partial V}{\partial y} = \begin{cases}
(4y - 4x^2) e^{2\tan^{-1}\left(\frac{x^2}{y} - 1\right)} & \text{if } (x, y) \in L^+, \\
(4y - 4x^2) e^{\left[2\tan^{-1}\left(\frac{x^2}{y} - 1\right) + 2\pi\right]} & \text{if } (x, y) \in L^-.
\end{cases}$$
(8)

Hence, the partial derivatives of V are continuous on L^+ and L^- .

Furthermore, the partial derivatives of V at any point $(x, y) \in L$ are:

$$\frac{\partial V}{\partial x} = 4x^{3}e^{\pi},
\frac{\partial V}{\partial y} = \lim_{h \longrightarrow 0} \frac{V(x,h) - V(x,0)}{h} \Longrightarrow
\begin{cases} \lim_{h \longrightarrow 0^{+}} \frac{(x^{4} - 2x^{2}h + 2h^{2})e^{2\tan^{-1}\left(\frac{x^{2}}{h} - 1\right)} - x^{4}e^{\pi}}{h} = -4x^{2}e^{\pi}, \\ \lim_{h \longrightarrow 0^{-}} \frac{(x^{4} - 2x^{2}h + 2h^{2})e^{\left[2\tan^{-1}\left(\frac{x^{2}}{h} - 1\right) + 2\pi\right]} - x^{4}e^{\pi}}{h} = -4x^{2}e^{\pi}.
\end{cases}$$
(9)

Considering relations (8) and (9), it can be shown that $\frac{\partial V}{\partial x}$ and $\frac{\partial V}{\partial y}$ are continuous on \mathbb{R}^2 . Therefore, referring to the following theorem [2]:

If the partial derivatives $\frac{\partial V}{\partial x}$ and $\frac{\partial V}{\partial y}$ exist near (x, y) and are continuous at (x, y), then V is differentiable at (x, y).

V is differentiable on \mathbb{R}^2 .

Regarding to the equations of system (1), it can be easily shown that the derivative of V with respect to time is zero on \mathbb{R}^2 . Therefore, the contour which is determined by V(x, y) = c with constant c, is a union of orbits of system (1). On the other hand, through following inequality,

$$V \ge e^{-\pi} (x^4 - 2x^2y + 2y^2) = e^{-\pi} [(x^2 - y)^2 + y^2]$$
(10)

it is proved that V is coercive [3]. Hence, the origin of system (1) is a center. The phase portrait of this system is shown in Fig. 1, which verifies the proof of argument given in this note.

Acknowledgment

The authors would like to express their sincere appreciation to Reviewer #1 for valuable comments.

Fig. 1. Phase portrait of system (1).

References

- A. Algaba, N. Fuentes, C. Garcí, Centers of quasi-homogeneous polynomial planar systems, Nonlinear Anal. RWA 13 (1) (2012) 419–431.
- [2] J. Stewart, Multivariable Calculus, Cengage Learning, 2012.
- [3] D.P. Bertsekas, A. Nedi, A.E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, 2003.