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Abstract—Despite of bing intensively developed, cable driven
parallel manipulators are not yet vastly used due to their require-
ments for accurate assembly and installation. The main goal of
this paper is to propose a suitable control method by which the
robot could be suitably controlled without the requirement for
undergoing any accurate calibration process. Here this robot is
called deployable cable driven manipulator, in which the positions
of the cable attachment points are not accurately known. This
uncertainty in measurements will affect many parameters in the
kinematic model especially the Jacobian matrix which is used as
a force distributer in the Cartesian-space control strategies. In
this paper in order to overcome this problem, a robust dynamic
sliding mode controller is proposed. Then robust stability of
the closed-loop system is analyzed through the Lyapunov direct
method and by accordingly appropriate controller gain selection
is performed. In order to illustrate the performance of the
proposed controller, the robot is simulated in ADAMS software
and it is shown that a suitable controller performance could be
achieved.

Index Terms—Uncertain Jaconian, Cable Driven Parallel Ma-
nipulator, Robust control, Dynamic sliding mode control.

I. INTRODUCTION

In a Cable Driven Parallel Manipulator (CDPM), the end
effector is linked to the actuators installed on the fixed frame
using several flexible cables. Large work space, great speed
and high acceleration alongside with the simple mechanical
structure are among the advantages of this robots. The idea
of cable robots being easily and rapidly deployed was first
proposed in [1], [2], [3] to be utilized in help and rescue
missions. In fact, large workspace, capability of carrying heavy
loads and possibility of rapid installation make this classes
of robots suitable in many rescue missions [4]. Agriculture
and automated farm lands are also potential applications in
which the concept of deployable cable driven robots could be
utilized.[1].

In Deployable Suspended Cable-driven Robots (DSCRs),
the kinematic parameters are not accurately measured, and as a
result, characteristics of the robot’s model is perturbed. This in
turn introduces many challenges in terms of controller design
and meeting the required performance [2], [5], [6], [7], [8],
[9].
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Fig. 1. Prototype of a deployable suspended cable driven robot called ARAS-
CAM.

Nowadays, a family of cable driven robots known as Spider-
cams are commonly used for video capturing of sport games.
As shown in the Figure 1, ARAS-CAM robot is an example of
a Deployable Suspended Cable driven Robot (DSCR) which
is specially designed for imaging purposes. The simplicity
of installation as the main characteristic of DSCR makes it
extremely suitable for the field of imaging.

There is several successful robust controllers applied to
various applications in the literature. As an example, sliding
mode controllers are well-known for their effectiveness in
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Fig. 2. Kinematic schematics of deployable suspended cable robot.

many problems [10], [11]. Therefore, in this work a robust
sliding mode controller is proposed in order to account for
the kinematic uncertainties. As reported in many references
[12], [11], despite of proper designed controllers, undesired
oscillations could still manifest in the system outputs. This
phenomenon, called chattering, is generally caused by discrete
implementation, unmodeled actuator dynamics and presence of
disturbances [13], [14].

The main goal of this work has been to develop a dynamic
sliding mode robust controller by which The DSCR could
be suitably controlled without any requirements for accurate
calibration processes. In dynamic sliding control method, a
new switching function[15], [16], [17] composed of the first
or higher order derivatives of the control input is utilized [18],
[19] and the discontinuities in control inputs are shifted to
the first or high order derivatives. As a result a continuous
dynamic sliding mode control law could be obtained in which
the chatting phenomenon is significantly reduced [19].

The remaining of this paper is constructed as follows: first
the kinematic model of a DSCR is studied and the Jacobian
matrix is derived. In the next section, the proposed robust
control law is introduced and then robust stability of the closed
loop system is analyzed. Finally in the last section, the ability
of the proposed controller to achieve suitable performance is
illustrated through simulation.

II. KINEMATIC MODELING

This section is devoted to deriving the kinematic model of
DSCR. To this end, first the inverse kinematics of the robot is
derived then by differentiation, the Jacobian matrix is formu-
lated. Fig. 2 illustrates a DSCR with four cables. As shown
in Fig.2, all cables are attached to a single point on the end-
effector and using the tension in the cables, the end-effector
could be controlled. Typically, the end-effector is modeled as
a lumped mass located at the point of cable intersections. The
loop closure for this manipulator is formulated as shown in
Fig. 2 is given as follows.

L=P Py, i=1,...4 )

In what follows, inverse kinematics relations and the Jaco-
bian matrix are derived.

A. Inverse Kinematics Solution

Algebraically rewriting the loop closure equation gives:
(li)zz(P_PAi)T(P_PAi) 2)

where /; is the length of i’th cable. Rewriting this equation
componentwise leads to:

= \/(x—xi)2+(y—yi)2+(z—zi)2 €))

in which, the x,y,z and x;, y;, z;, respectively denote the position
of end-effector and attachment points of the i’th cable.

B. Jacobian Matrix

The Jacobian matrix plays an important role in the kinemat-
ics problem analysis due to the fact that it reveals important
relationships between the work and joint space. In other words,
Jacobian matrix performs a mapping between the joint and
task space variables. The jacobian matrix constructs a trans-
formation which maps the actuator forces to the forces and
moments acting on the moving platform [20]. Furthermore,
an important kinematic problem, the singularity analyses, can
be studied through the Jacobian matrix. So considering the it’s
importance, in what follows, the Jacobian matrix of DCSR is
derived.

Letting / denote the vector of joint coordinates containing
the lengths of the cables and x, the vector of end-effector
motion variables, the kinematics equations can be derived as
f(l,x) =0, an implicit function of vectors x and /. Through
derivative of f(I,x), the relation between the joint space and
work space velocities I, i is achieved:

Jek =)l 4)
af af
Jy=4+==, Ji=—=- 5
o T ©)
So the jacobian matrix can be derived as follows:
1=Jk (6)
J=J; ', (7

Finally, The analytical form of Jacobian matrix of the robot
shown in Fig. 2 is as follows:

(x—x1)  O—y) (z—z)
T i 1T
(x72xz) (y72yz) (Z]?)
T=1 ) 65 (n) (®)
3 3 3
(x—x4)  O—ya) (z=za)
[z T4 T4

III. DYNAMIC SLIDING MODE

Neglecting the flexibility of the cables, the dynamic model
of DSCR may be written as:

M(x)i+Cx,x)i+G=F =—-Jt )

in which M, C and G denote respectively mass matrix,
Coriolis term and gravity vector. Also x and F are vectors
respectively denoting the generalized coordinates of the end-
effector position and the Cartesian wrench applied to it. also
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J denotes the Jacobian matrix of the robot and 7 the vector of
cable forces.

Some important properties of the derived dynamics equation
are as follows:

property 1: The matrix M(x) is symmetric and positive
definite and upper and lower bounded for all x [14]

An < ||IM(x)|] < Am (10)

where A, and A, denote the minimum and maximum eigen-
values of the matrix M, respectively.

property 2: The C(X,X) matrix and the time derivative of
inertia matrix M (X) satisfy

1.
i {EM(x) — C(x,x)} i=0 an
which shows that the matrix M(x) — 2C(x,%) is skew-

symmetric.
property 3: The upper bounds of Coriolis and centrifugal
matrices are functions of i:

ICCe )] < Gl x| (12)
property 4: The upper bound of gravity matrix is limited:
G < & (13)
The cartesian error manifold is defined as:
Sp=X—% (14)

where x, is defined as a Cartesian nominal reference for
motion control and is designed as

% =iy — AX+54— YO (15)

6 = sgn(sy) (16)

in which X, is the desired velocity of the end-effector and X =
X—xg4,7 € R¥". The function sgn(.) stands for the inputwise
discontinuous signum function. Also A =diag(A1,Aa, -+ ,Ay)
is a symmetric positive definite diagonal matrix and n denotes
the degrees of freedom of the robot. A sliding surface vector
is defined as follows:

s =X+Ax% (17)

and
Sy =S—58y (18)
sq = s(tg)e 0) (19)

in which & is a positive number and s(t) is the value of s(z)
at the time 7y. Thus, s.(fp) = 0 and sy(¢) are exponentially
converged to s(¢). It can be shown that the relation between

s, and s, is derived as follows:
Sy =Sy + YO 20)

The equation 9 can be written in terms of a nominal
reference x,, and its derivative X, , as follows:

M3, +Ci,+G=Y0 1)

as proved in [15], [16], [17], the equation 21 bounded, Y0 <
n(t), because the nominal reference k,, and its derivative are
also bounded as ||| < Bi + B2|[X|| + yo and |[%.|| < B3+
Ba||X||, respectively.

A. The proposed control law
Let the control law to be defined as follows:

F = —Kys, +Mx, +Cx, +G (22)

where K, is a symmetric diagonal positive definite matrix and
J is the roughly approximate Jacobian matrix. For the fully
actuated robots, the actuator forces are calculated as T = —J'F,
But due to the redundancy in redundant robots like ARAS-
CAM, the jacobian is not a square matrix. Therefore, the
actuator forces, T, should be obtained by solving a redundancy
resolution problem. Also, #/ , C and G respectively denote
the approximate mass matrix, coriolis term and gravity vector.
Furthermore, the tension in the cables are:

T=T+aQ (23)

where

t=-J'F (24)

where J' =7 (jTj)’1 and Q is the null space of the approxi-
mated jacobian. Also, « is a scalar factor which is selected so
that actuator forces remain in the feasible range [Tin, Tmax-
B. Stability Analysis

To analyze the stability of the proposed control laws,
consider the following Lyapunov function candidate

1
V(t) = =s' Ms,

= 35! (25)
differentiating V' (¢) with respect to time gives:
V(t) = s;Ms, +5,Cs, (26)
According to 14, it can be written:
§p=X—J 27)
By substituting 27 in 9
Ms, = —Cs, — (M3, +Ci, +G)—J't (28)
using 28, 26 becomes
V(t) = s,(Mi, +Cit, +G—J" 1) (29)

substituting T = J'F + Q in equation 31
V = 5,(— (M, +Ci, + G) —J" (-1 F + 0))
= 5,(— (M3, +Cit, + G)+JT ) F—Q+ F—F+JT Q)

= 5p(— (Mt + Ci, + G) — (I J"T)F — (4" =10 +F)
(30)

considering F = —Ks, —|—M5&r + Cx, + G, we have:

V = s,(03%, + Tt + G) — (1 —JTTYVF = (0" =)")0 - Ks,)
(31)
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where

M=M-M, C=C-C, G=G-G (32

Based on uncertain Jacobian matrix J7 , and the internal
forces being bounded, the following equation may be assumed
to be bounded:

I —TTTYF|| < &s, (33)

10T =T00l < Lo (34)

Taking the equations 33 and 34 into account, the equation
31 can be rewritten in an inequality form as:

v < —Kllss|[* = &llse > = (7 + o)l s

where 7 is the upper bound of YO —Y® = M, + Ci, + G.
Therefore, selecting a large enough value for k and assuming
s¢(to) < €, the tracking error is upper bounded and converges
to €.
Now we prove that the sliding surface s, also converges to
a bounded limit. To this end, first it is shown that the §, is
bounded.

(35)

5, =M"'(—Cs, — (Ms, +Cx, +G)+---
—JT (=)' F+Q+F—-F+J0Q)
=M NCs, + (M, +Cito +G) + ([~ JTTVF + -
+ T -1 Ks,)
<A (M) (Am (K) + el %[ + 8r)e+ Eo + 1)
<&, (1)

Thus, §, is upper bounded as §, < ,(¢). Now consider the
following Lyapanov candidate V, as

- (36)

1
Ve = Es/{sx (37)

Differentiating V, with respect to time and substituting s,
from differentiation of equation 20 yields:
Ve =sLysgn(sy) +sLs,
< = Vlsall + sl |13
< = Yllsal |+ sl
<(C=)llss]

where é: denotes the supremum of {. Thus, in order to prove
that s, converges in a finite time, we can choose

(38)

y>¢ (39)

IV. SIMULATIONS

This section is devoted to the simulation of the proposed
control method. To this end, first the characteristics of the dy-
namics modeling implemented in the ADAMS is introduced.
Then the performance of the presented algorithm is illustrated.

A. Model Characteristics

In order to model the DSCR in ADAMS software, cables
and pulleys structures are used from the machinery toolbox.
The considered physical parameters for the cables and pulleys
are shown in table I. Also, according to Fig. 2 geometrical
parameters of the robot are selected as a =3", b=4" and h =
3. These physical parameters describe the real world ARAS-
CAM robot features.

B. Results

In order to verify the effectiveness of the proposed con-
troller, the simulations are performed and the results of the
proposed robust dynamic sliding mode controller are shown.
It should be noted that the considered uncertainty in the
attachment points positions and the mass of the end-effector
is 10 percent. Also the gains of the controller are chosen in
such a way that the stability of the system in the presence
of model uncertainty is granted. So k,; = [100,100, 100],
Y=10.1,0.1,0.5] and o = [50,50,50] are chosen.

As shown in Fig. 3, the desired trajectory of the end-effector
is generated using a cubic trajectory generation algorithm.
Figure 3 indicates that the robot has accurately followed the
desired trajectory. Also, Figure 4 illustrates the tracking error
and figures 5 and 6 depict the variation of manifolds s, and
Sx.

Fig. 7 shows how & carries out a dynamic displacement of
the solution manifold s, = 0, which, in turn, induces a sliding
mode at s, = 0.

Figure 8 shows the tensions in the cables during the ma-
neuver of the end-effector. As depicted in Figure 8 all of the
forces are positive so all the cables are in tension. Therefore
the designed trajectory is in the feasible wrench workspace.

Figure 9 depicts the variations of cables lengths within the
robot trajectory. As seen in the figure 9, there is a minimum
of one meter variation, in the length of two cables.

V. CONCLUSIONS

In this paper, an easy deployable cable driven parallel robot
is introduced. Due to its easy installation process the cost of
utilization is decreased and transporting it from a place to
another introduces no considerable effort. However, the lack
of absolute accuracy in installation process would lead to a no
perfect operation for the robot. The kinematics uncertainty will
influence the performance and degrade the level of achievable

TABLE I
THE KINEMATIC AND DYNAMIC PARAMETERS OF THE ARAS-CAM.
Parameter Symbol | value
end effector mass kg 30
cable density kg 1076
Young’s modulus of cable % 10'!
pulley friction Coefficient - 0.6
pulley stiffness % 107
Preload N 0
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Fig. 3. Performance of Tracking a desired trajectory.
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Fig. 4. Tracking error of a desired trajectory.

accuracy. So in this paper a robust dynamic sliding mode
controller is proposed to control the robot in the presence
of such uncertainties. The proposed controller is designed in
Cartesian coordinates, as a result, utilization of the inverse
kinematics is not required in order to synthesis the trajectory
for executing a given task. In addition, the controller keeps all
cables in tension for the whole wrench feasible workspace.
Finally, the suitable tracking performance of the proposed
controller is verified through some simulations.
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