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a b s t r a c t 

In this paper, the multi-goal motion planning problem of an environment with some back- 

ground information about its map is addressed in detail. The motion planning goal is to 

find a policy in belief space for the robot to traverse through a number of goal points. This 

problem is modeled as an asymmetric traveling salesman problem (TSP) in the belief space 

using Partially Observable Markov Decision Process (POMDP) framework. Then, feedback- 

based information roadmap (FIRM) algorithm is utilized to reduce the computational bur- 

den and complexity. By generating a TSP-FIRM graph, the search policy is obtained and 

an algorithm is proposed for online execution of the policy. Moreover, approaches to cope 

with challenges such as map updating, large deviations and high uncertainty in localiza- 

tion, which are more troublesome in a real implementation, are carefully addressed. Fi- 

nally, in order to evaluate applicability and performance of the proposed algorithms, it is 

implemented in a simulation environment as well as on a physical robot in which some 

challenges such as kidnapping and discrepancies between real and computational models 

and map are examined. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Simultaneous localization and planning is the basis of many robotics applications such as exploration, search and cover-

age. A proper planning helps a robot to make use of the available information and generate or select right motion commands

and actions. Action selection criteria vary with the goals of the application [44] . For example, in an earthquake affected

building, motion commands should guide the robot to search and explore the environment in a rapid and successful way

using the information such as rough layout of the building [46] . As another example, consider a service mobile robot which

operates in an office-like environment and should do a sequence of tasks in different locations, e.g., different rooms. There-

fore, a proper action selection and planning, based on the overview-map, is necessary to overcome its tasks successfully and

efficiently [28,40] . In this paper, we assume some prior information is available about the environment, e.g., the layout of

the environment or an initial map. 

In the absence of uncertainty, the planning for search, exploration, and coverage is mainly concerned with investigating

the methods to speed up and improve the robot’s performance [24,36,47,49] . Xu and Stentz [47] propose a graph based

method to find a short path for the coverage of an environment and the problem is modeled as a rural postman problem.
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Additionally, it suggests an algorithm for updating the graph in the case of discrepancy between the actual and the initial

map. Pasqualetti et al. [36] use a graph-based solution for patrolling in an environment. Yehoshua et al. [49] study the

coverage problem, and the cell decomposition method with high-risk cells is used to find a low-risk path for the robot. A

prevalent approach to cope with these kinds of problems is formulating them as a traveling salesman problem (TSP) and

exploiting the background information to make a proper plan in order to guide the robot to search the environment faster

[7,15,26,35] . Kulich et al. [26] and Faigl et al. [15] model the exploration problem by a single and multi-robot as a TSP

which its edges’ costs are proportional to the distance between goal points. In the method proposed by Oßwald et al. [35] ,

the robot explores the environment based on a policy obtained by solving a TSP to speed-up the exploration, but there is

not a predefined and certain path, and the robot moves between manually selected goal points using a local exploration

algorithm. It also suggests a solution for replanning and updating TSP solution in the case of finding a difference between

the initial and the actual map. 

More importantly, what makes planning more difficult and sophisticated is the presence of motion and observation un-

certainties which are usually ignored in most studies. Uncertainty is closely tight to robotics problems and ignoring it may

lead to choosing a short path with the low probability of success. Motion and observation uncertainties cause the lack of

full state information for decision making and planning. However, a filter (e.g., Kalman and particle filter) can estimate a

probability distribution function (PDF) over all possible states, called belief or information state, using the dynamical model

of states and measured values by sensors [1,3] . This means the planning and decision making in the aforementioned exam-

ples should be done in the belief space. Freundlich et al. [16] study the path planning and the resource allocation for the

multi-goal problem, under motion and sensor uncertainties, but it is restricted to the discrete space and is not applicable

in large and real environments as well as long-term operations. Faigl et al. [14] study the autonomous multi-goal inspection

by adding auxiliary navigation way points around each goal to reduce the uncertainty and applying self-organizing map

algorithm to the TSP [13] . In this method, the uncertainty and the probability of colliding obstacles on the path between

every two goals are not considered. 

Another major challenge in multi-goal motion planning is the necessity of online replanning ability. In situations such as

a change in the map or an update in the robot’s belief (localization), it is required that the robot make a replanning online

which are not considered in [14,16] . This challenge is more evident in a real application where the computational models

of the system such as motion, sensor and map differ from real models. Replanning in belief space is more challenging and

requires an approach which is suitable for a real application in the sense of time and complexity. 

Motion Planning Under Uncertainty (MPUU) is the basis of the multi-goal motion planning, and many studies recently

have been done in this area [21,22,37,39] . Pilania and Gupta [37] propose a sampling-based algorithm for motion planning

of a mobile manipulator under uncertainty and consider effects of uncertainty on the manipulator motion. Janson et al.

[22] present the MCMP (Monte Carlo Motion Planning) approach that considers probabilistic collision avoidance constraints,

and is suitable for the real-time implementation. The MPUU problem is extended to the multi-robot belief space planning in

unknown environments by Regev and Indelman [39] , and a decentralized sampling-based planning is proposed to address

this problem. Owing to successful performance of sampling based methods in motion planning problems, they are expanded

to motion planning under uncertainty problems [5,10,37] . In LQG-MP algorithm presented by Berg et al. [8] , the best path

is chosen from a group of path obtained by RRT, based on their performance in the presence of an LQG controller. Bry and

Roy [9] also use RRT ∗ to find the nominal optimized path. Prentice and Roy [38] and Huynh and Roy [20] use breadth-first

search method on the roadmap constructed by PRM, to find the best path. The aforementioned methods suffer from the

lack of optimal substructure property meaning the cost of each edge affects the travel cost of other edges. Consequently,

the constructed roadmap depends on the start point and in every query should be reconstructed. In other words, they are

single query algorithms. Moreover, in the case of deviation from the nominal path, constructing a new roadmap is necessary

which makes mentioned algorithms unsuitable for real applications. 

MPUU, i.e., motion and sensor uncertainty, is an instance of sequential decision making under uncertainty. This prob-

lem can be formulated as a Partially Observable Markov Decision Process (POMDP) [23] . POMDP is a prevalent framework

for modeling the sequential decision process. Many real-world problems in fields such as industry, ubiquitous computing,

business, ecology, control and robotics [11,12,25,27,30] can be modeled as a POMDP problem. The curse of dimensional-

ity and history make the POMDP problem arduous and computationally intractable [23] . They are even more troublesome

in the continuous state space. Many methods have been proposed for solving POMDP problem [42,45,48] . However, they

are mostly restricted to the problems with a small set of states, they are not applicable in the continuous space or they

are computationally expensive. In order to mitigate the abovementioned problems and extending the POMDP applications

to real-world and long-term operations, methods such as [3,18,41] have been proposed. Agha-mohammadi [2] propose the

Feedback-based Information RoadMap (FIRM) algorithm where the optimal substructure property is held. FIRM turns the in-

tractable POMDP problem into a tractable DP on the FIRM graph. The optimal substructure property of FIRM and the ability

to solve the POMDP online enable online replanning in FIRM. Furthermore, the FIRM feedback-based structure makes it a

robust algorithm. FIRM also considers all possible future observations in decision making, which provides a reliable plan.

FIRM algorithm has been used successfully in motion planning problems and has been implemented on a physical robot

and results show its efficiency [4,31] . 

Although much theoretical work exists on the MPUU, the multi-goal MPUU is not well studied, and the uncertainty

is omitted in the most of them which may well cause an improper planning and increase the probability of failure. In

addition, they have not consider any approach for online replanning to cope with unpredicted events such as finding new



166 A. Noormohammadi-Asl, H.D. Taghirad / Information Sciences 471 (2019) 164–184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obstacles which are prevalent in a real environment. In this paper, therefore, we involve the uncertainty in planning, and we

model the search and exploration problem as an asymmetric TSP in the belief space. In addition, environment uncertainty is

considered as high-risk areas. There are, however, some limitations which make the problem challenging and intractable to

solve: (i) the path between two goals point is not the direct line connecting them, because the length of the path is not the

only factor in the planning, (ii) the edges’ costs is not deterministic, (iii) the cost of moving between nodes is not symmetric

meaning the cost of moving from node A to B is not equal to the cost of moving from node B to A and (iv) the planning to

move from a goal node to another goal node should be done in the belief space. 

Briefly, the problem is a combination of a decision making and multi-goal motion planning in the belief space. The first

challenge is to simplify the problem in order to obtain an optimal policy. Then, it is necessary to propose an approach for

implementing the policy and provide tools for the robot to cope with the challenges of a real environment. Consequently,

toward reducing the difficulty of the problem and achieving a proper policy in both offline and online phase: 

• the problem is formulated as an asymmetric TSP in the belief space. 

• a graph including a set of sampled nodes and goal nodes is constructed. 

• an offline algorithm based on the FIRM is proposed to find an optimal search policy. In this paper we also consider the

environment uncertainty in planning. 

• an online algorithm is presented to enable the robot to execute the generated policy. In addition, we propose an algo-

rithm for online replanning to overcome issues such as map changes. 

• Finally, the proposed algorithms are modified for nonholonomic unicycle robots in the real and simulation experiments

and a switching based controller is designed for the posture stabilization. 

The outline of this study is as follows. In Section 2 , we explain a brief introduction of POMDP problem, FIRM algorithm,

and TSP. In Section 3 , the multi-goal motion planning problem is presented as an aTSP in the belief space and the TSP-FIRM

graph is presented to simplify it. In Section 4 , we extend the TSP-FIRM to the unicycle nonholonomic robots. Section 5 pro-

vides the implementation details and results in the simulation and real environment. Finally, the paper is concluded in

Section 6 . 

2. Preliminaries 

The presentation and the notation of POMDP problem and FIRM algorithm in this section follow that of Agha-

mohammadi et al. [3] . 

2.1. POMDP problem 

Partially observable Markov decision processes is a general framework for sequential decision making under uncertainty.

POMDP is the generalization of the Markov Decision Process (MDP) in which only imperfect state information is available.

A POMDP problem can be formulated as a belief MDP problem where the state is a belief state. As mentioned earlier, the

motion planning under uncertainty can be formulated as a POMDP problem. To clarify the POMDP problem, we illustrate

it with a simple example. Consider a temperature control system in which the temperature value is measured with an

imperfect sensor. The heater accuracy is inversely proportional to the heater temperature, and the probability of its damage

increases as works with high power for a long time. The goal is that the system temperature reaches and maintains in a

desired range with a high probability of success and in a short time (the minimization of fuel consumption can also be

added). In the following, some required notations for expressing the POMDP problem are presented. 

State, control, and process model: By discretizing the time into equal sections, x k ∈ X and u k ∈ U show the system state

and control at time k , respectively. X and U are state space and control space which can be continuous. The control history,

u 0: k := { u 0 , u 1 , . . . , u k } , includes all of the control actions up to step k . The state evolution of the system, called process

model (motion model), x k +1 = f ( x k , u k , w k ) , show s the ev olution of the states after applying a control action in the presence

of process noise with probability density function w k ∼ p ( w k | x k , u k ). This evolution also can be shown by the transition pdf

p 
(
x ′ | x, u 

)
: X × U × X → R ≥0 where R denotes the Euclidean space. In the mentioned example, the temperature (state) of

the system is x , and the input, u , is the heat generated by the heater. The process noise depends on the generated heat and

may well increase if generated heat increases. This means p ( x ′ | x, u ) will probably have a lower value if the heater works

with high power. 

Observation and observation model: Unlike the MDP problem, in POMDP, the states of the system are unknown, and

decision-making should be done based on the imperfect measurement of the states. z k ∈ Z denotes observation of the sys-

tem, measured by the sensors, at time step k . Z is observation space of the system and can be continuous. The observation

model, z k = h ( x k , v k ) , describes how the system state x k is related to the measured value by sensors. v k is the observa-

tion noise distributed according to the pdf v k ∼ p ( v k | x k ). p ( z | x ) : X × Z → R ≥0 is another representation of the observation

model. In the temperature control example, z is the measured temperature value by the sensor. The observation model

describes how the system temperature value can be related to the measured value by the noisy sensor. 

Belief and belief evolution: In the partially observable system, where the states of the system are unknown, the history of

observations and control actions are the set of available data for decision making. The set of this available data is shown
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by H k = { z 0: k , u 0: k −1 } . However, the compressing of H k in a conditional probability distribution will preserve required infor-

mation for decision making, meaning b k = p ( x k | H k ) . b k is the system belief or information state at time step K . In other

words, the planning is done in the belief space or space of probabilistic state estimations. To obtain the belief evolution

model a recursive state estimation method such as Bayes filter can be used. Thus, based on the Markov assumption and

using bayesian filters, b k = p ( x k | H k ) can be rewritten as a function of the last belief, last control action and the current

observation: 

b k +1 = p ( z k +1 | H k , u k ) 
−1 

p ( z k +1 | x k +1 ) ∫ 
X 

p ( x k +1 | x k , u k ) b k dx k =: τ ( b k , u k , z k +1 ) 
(1)

In the mentioned example, based on the observation and motion model, a filter (e.g., Kalman filter) can be used to estimate

the temperature value. 

Policy and cost-to-go: In a partially observable system, the policy, π k ∈ �, is a function that uses the available history of

data for generating an action, u k , as its output. � is the space of all possible policies. As mentioned before, compressing

of H k in a conditional probability distribution will preserve required information for decision making. Thus, the policy can

be defined as a function returning the action u k based on the belief b k , u k = πk ( b k ) . In order to obtain an optimal policy, a

cost function called cost-to-go is required. To determine a cost function, first we need to define the one-step-cost, c(b, u ) =
E [ c ( x, u ) |H ] = 

∫ 
X 

c ( x, u ) p ( x |H ) dx , which is the cost of taking action u at belief b . Now, the cost-to-go can be defined as: 

J π ( b 0 ) = 

∞ ∑ 

k =0 

E [ c ( b k , π( b k ) ) ] 

s.t. b k +1 = τ ( b k , π( b k ) , z k +1 ) , z k ∼ p ( z k | x k ) 
(2)

where E is the expectation operator. The cost-to-go in the temperature control example can be simply defined as zero when

the system is in the desired range and a positive value when the system is out of the desired range. 

POMDP problem: Subsequently, the POMDP problem challenge is finding an optimal policy to minimize the cost-to-go

function from every belief in the belief space. In other words, the solution of the POMDP, called optimal policy π ∗, is as

follows: 

J ( ·) = min 

�
J π ( ·) 

π ∗ = argmin 

�

J π ( ·) , (3)

where J is the optimal cost-to-go function. Using dynamic programming, the optimal solution of this problem can be ob-

tained. The DP equations for the MDP in the belief space are as follows: 

J ( b ) = min 

u 

{ 

c ( b, u ) + 

∫ 
B 

p 
(
b ′ | b, u 

)
J 
(
b ′ 

)
db ′ 

} 

, ∀ b ∈ B 

π ∗( b ) = argmin 

u 

{ 

c ( b, u ) + 

∫ 
B 

p 
(
b ′ | b, u 

)
J 
(
b ′ 

)
db ′ 

} 

, ∀ b ∈ B . 

(4)

Solving this DP equation is extremely difficult due to the definition over the entire belief space and the curse of history. In

many problems such as motion planning, it is necessary to add some constraints such as obstacles and time limitation to

the cost function, which makes the problem more difficult. We can take these constraints as a failure set, F , meaning the

policy fails if the system state hits it. 

2.2. Review on FIRM 

FIRM is a multi–query graph based algorithm for path planning under uncertainty. FIRM helps to simplify the complex

POMDP problem into a tractable MDP problem. The DP equation in (4) is defined over an infinite dimensional belief space

and thus is extremely difficult to solve. 

2.2.1. FIRM graph 

In the first step, it is assumed that there is no constraint and obstacle, F = ∅ , and the motion planning over the entire

belief space is reduced into a graph constructed in the belief space. Therefore, the main MDP problem can be rewritten as

a tractable MDP over a graph. 

In order to construct this graph, the first step is sampling a set of stabilizers { μj }. A stabilizer is a closed-loop controller

that helps to stabilize in a predefined belief. A stabilizer is a combination of a filter (e.g. Kalman filter) and a separated

controller, and is a mapping from belief space to control space. To construct stabilizers, an underlying PRM (Probabilistic

Roadmap) is formed in the state space with a set of nodes and edges, { v, e } and then the stabilizer corresponding to each

PRM node is produced. A unique FIRM node, B , is obtained for each PRM node which is a small region B = 

{
b : ‖ b − b ′ ‖ ≤ γ

}
around the sampled belief b ′ , and γ determines the size of this region. V = 

{
B i 

}N 

i =1 
is the set of all FIRM nodes. The FIRM

nodes should be chosen such that satisfy the reachability condition. To define the reachability in this concept, the region
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B j is called reachable under the stabilizer μj starting from b if P 

(
B j | b, μ j 

)
= 1 . The reachability condition is discussed in

detail by Agha-mohammadi [2] . Each edge of the FIRM graph is a closed loop local controller referred as a local controller,

μij . Local controller’s task is to steer a belief from the FIRM node B i to the target node of the edge, B j . M = 

{
μi j 

}
is the set

of all local controllers. Local controller design is problem-dependent and will be later explained in detail. 

The constructed graph is known by the set of nodes V = 

{
B i 

}N 

i =1 
, and the set of edges or local controllers M = 

{
μi j 

}
. In

the FIRM, the policy is formed by the concatenation of local policies performing in continuous space. The feedback feature

of the local policies provides this ability to compensate the deviation of the belief from the planned path and drive it to a

stopping region. 

2.2.2. Belief semi-Markov decision process (SMDP) 

In a Semi-Markov Decision Process (SMDP) actions take a random amount of time. In FIRM graph the transition time

from a belief to a graph node is random. Thus, with the construction of the FIRM graph, the motion planning over the

entire belief space is reduced to planning over a subset of the belief space, i.e., the union of graph nodes. The one-step-cost

c(b, u ) : B × U → R ≥0 is changed to one-step SMDP cost C s ( b, u ) : B × M → R ≥0 which is defined as follows: 

C s ( b, μ) := 

T ∑ 

t=0 

c ( b t , μ( b t ) | b 0 = b ) , (5) 

where T represents the time when the belief hits � = ∪ j B 
j by starting from b and invoking local controller μ. Now, the

POMDP problem defined in (4) as a DP problem is reduced to the following semi-Markov decision process in belief space,

called SMDP belief or Semi-POMDP: 

J s ( b ) = min 

μ∈ M ( i ) 
C s ( b, μ) + 

∫ 
�

p 
(
b ′ | b, μ

)
J s 
(
b ′ 

)
db ′ , ∀ b ∈ B 

i , ∀ i (6) 

and unlike Eq. (4 ) where the integration is over the entire belief space, the integration is reduced to over the sampled nodes.

2.2.3. FIRM MDP 

Although the DP equation in (6) is more tractable than the initial POMDP, it is difficult to solve due to the integration

over the continuous neighborhood of the nodes. For sufficiently small and sufficiently smooth cost functions, it can be

assumed that the cost-to-go of all beliefs in B i are approximately equal. Therefore, the transition cost C g can be defined on

the FIRM graph which is the cost of applying local controller μij at the FIRM node B i . Similarly, the transition probability,

P 

g 
(
B j | B i , μi j 

)
, is defined on the FIRM graph which is the transition probability from B i to B j under the local controller μij .

Thus, 

∀ b ∈ B 

i , ∀ i, j 

{ 

C g 
(
B 

i , μi j 
)

:= C 
(
b i c , μ

i j 
)

≈ C 
(
b, μi j 

)
P 

g 
(
· | B 

i , μi j 
)

:= P 

(
· | b i c , μi j 

)
≈ P 

(
· | b, μi j 

)
, 

(7) 

where b i c is a point in B i (e.g., center of B i ). Using this approximation, b i c will be a representative of every belief in the region

B i . Consequently, it can be shown that the DP Eq. (6) is simplified to the following DP equation in which obstacles are also

considered: 

J g 
(
B 

i 
)

= min 

μ∈ M ( i ) 
C g 

(
B 

i , μ
)

+ J g ( F ) P 

g 
(
F | B 

i , μ
)

+ 

∑ 

j 

P 

g 
(
B 

j | B 

i , μ
)
J g 
(
B 

j 
)
, ∀ i 

π g 
(
B 

i 
)

= argmin 

μ∈ M ( i ) 

C g 
(
B 

i , μ
)

+ J g ( F ) P 

g 
(
F | B 

i , μ
)

+ 

∑ 

j 

P 

g 
(
B 

j | B 

i , μ
)
J g 
(
B 

j 
)
, ∀ i (8) 

where J g ( F ) is the cost-to-go of the failure region and is set to a high value. P 

g 
(
F | B i , μ)

is the probability of hitting obstacles

or generally the failure set before reaching to the stopping region. Consequently, the original POMDP equation is simplified

to a finite N v -state (over FIRM nodes V = 

{
B i 

}N 

i =1 
) MDP in (8) , referred as FIRM MDP. The following is the overall policy of

FIRM which is a combination of the global and local policy 

u k = π( b k ) = 

{ 

μ∗
k ( b k ) , μ

∗
k 

= π g 
(
B 

∗
k −1 

)
if b k ∈ B 

∗
k −1 

μ∗
k ( b k ) , μ

∗
k 

= μ∗
k −1 

if b k / ∈ �
(9) 

meaning that the active local controller μ∗
k +1 

is chosen based on the global policy on the graph if the belief hits a stopping

region, else it continues to be unchanged μ∗
k +1 

= μ∗
k 
, and generates the control input according to the belief at that time

step. 

The algorithm of generic construction of the FIRM graph and the generic planning (replanning) on the constructed graph

are presented by Agha-mohammadi et al. [3 , Algorithm 3] and Agha-mohammadi et al. [3 , Algorithm 4], respectively which

are omitted for the sake of brevity. Replanning is an important ability of the FIRM algorithm. There are situations such as a

large deviation from the planned path, or discrepancies between the actual and computational models and map where the
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robot should do replanning to overcome them. Therefore, the robot should be able to move from any new node to a node

of the graph. Proposed algorithm by Agha-mohammadi et al. [4 , Algorithm 1] and Agha-mohammadi et al. [4 , Algorithm 2]

help the robot to do replanning. 

2.3. Traveling salesman problem (TSP) 

Traveling salesman problem (TSP) is a well-known problem in the graph theory concerning with finding the most effi-

cient Hamiltonian cycle that a salesman can visit every city once and returns to the starting point (Gutin and Punnen [19] ).

One type of TSP problem is known as asymmetric Travelling Salesman Problem (aTSP) in which the anti-parallel edges do

not have same weights. An aTSP can be defined on a complete directed graph G = ( V, A ) . V = { 1 , . . . , N } is the set of vertex

and A = { ( i, j ) : i, j ∈ V, i � = j } is its corresponding arc set. The cost matrix of the graph is defined as C = c i j on A and satisfies

the triangularity meaning c i j ≤ c ik + c k j , ∀ i, j, k ∈ V . aTSP can be formulated as: 

min 

X 

∑ 

i � = j 
c i j x i j 

s.t. 

N ∑ 

j=1 

x i j = 1 ( i � = j, i ∈ V ) 

N ∑ 

i =1 

x i j = 1 ( i � = j, j ∈ V ) 

∑ 

x i j ≤ | s | − 1 ( s ⊂ V , 2 ≤ | s | ≤ N − 2 ) 

x i j ∈ { 0 , 1 } ( i, j ) ∈ A 

(10)

where the two first constraints mean that salesman can reach each city only from one other city and left it once. The third

constraint is the subtour elimination constraint, which also can be written as MTZ formulation 

u i − u j + Nx i j < = N − 1 ; i, j ∈ { 2 , . . . , N } , i � = j 

u i ∈ R; i ∈ V, i > 1 . 
(11)

3. TSP-FIRM for multi-goal motion planning 

In the multi-goal motion planning problem discussed in this paper, we assume there exists background information about

the environment helping the robot in decision making. In other words, we are seeking a method to exploit available data

not only to speed up the environment search or exploration but also to increase the success probability. It is obvious that

if more data of the environment is available, better decision making will be possible. In a search environment, some parts

have priority over others due to the more information they provide for the robot. Therefore, goal points are selected based

on the importance and information they provide. For instance, in a floor of a building, rooms can be considered as goal

points. After selecting the goal points, the robot should find a policy for searching them. In this paper, choosing the goal

points is done manually. However, there are some algorithms for this purpose [15,26,29] . As mentioned before, if the robot

knows its location and position of the goals exactly, then it can move on its path precisely. This case can be modeled as a

simple TSP, but in a real situation the motion and sensing uncertainty cannot be ignored, and the data is available in the

belief space. 

3.1. Problem formulation 

At first, we consider the problem in an obstacle free environment, F = ∅ . Assuming N g goal points, the sets V and A can

be defined as V = { 1 , . . . , N g } and A = { ( i, j ) | i, j ∈ V, i � = j } , respectively. Note that, b i , i ∈ V is the belief of i th goal point and

the set of these beliefs is B = { b i | i = 1 : N g } . B i 
goal 

is the i th goal region that the system stops when belief enters it. Each

b i belongs to a goal region, meaning b i ∈ B i 
goal 

. The set B goal = { B i 
goal 

} i =1: N g shows all the goal regions of the goal points. The

one-step-cost in the belief space is defined by ⎧ ⎪ ⎨ 

⎪ ⎩ 

c i ( b, u ) = 0 , i f b ∈ B 

i 
goal 

c i ( b, u ) = E [ c ( x, u ) |H ] 

= 

∫ 
X 

c ( x, u ) p ( x |H ) dx ≥ ε > 0 

, i f b / ∈ B 

i 
goal 

(12)

where x is the state of the robot and ε is a positive value. The one-step-cost is set to a zero value in the goal region, and

to avoid infinite cycles and stopping before reaching the goal, the cost of taking action is positive until the system satisfies
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the stopping condition. Now we can formulate the problem as: 

min { p , �} 

N g ∑ 

i =1 

N g ∑ 

j=1 

p i j 

∞ ∑ 

k =0 

E 

[
c j 

(
b i k , π

(
b i k 

))]

s.t. 

N g ∑ 

j=1 

p i j = 1 ( i ∈ V ) 

N g ∑ 

i =1 

p i j = 1 ( j ∈ V ) 

∑ 

p i j ≤ | s | − 1 ( s ⊂ V, 2 ≤ | s | ≤ N g − 2 ) 

p i j ∈ { 0 , 1 } ( i, j ) ∈ A 

b k +1 = τ ( b k , π( b k ) , z k ) 

(13) 

where p determines the sequence of searching goal points and � is the policy of searching these goal points, based on p .

b i 
k 
, k � = 0 is the belief changes started from b i 

0 
≡ b i . The inner summation presents the POMDP formulation where the goal

is to steer the belief started from b i 
0 

to the goal region B 
j 

goal 
. According to (12) , c j 

(
b i 

k 
, π

(
b i 

k 

))
becomes zero when the belief

started from b i 
0 

∈ B i 
goal 

, reaches to the j th node goal region, B 
j 

goal 
. Two outer summations are for TSP formulation. The goal

is to find a sequence for searching these goal points and a policy to move between each of them. As stated before, solving

this problem is too complex and intractable. Hence, we break it down into the two subproblems. The first and basic step is

finding a path between every two goal points using FIRM algorithm. In the next step, a sequence and a policy for searching

goal pints are obtained. 

3.2. Belief space aTSP via FIRM 

3.2.1. Multi-path TSP on the TSP-FIRM graph 

The first step in the construction of TSP-FIRM graph is sampling a set of stabilizers, μj . Therefore, we construct the un-

derlying PRM with the nodes V = {{ v j } N s 
j=1 

, { v i 
goal 

} N g 
i =1 

} where { v i 
goal 

} N g 
i =1 

is the goal points set and { v j } N s 
j=1 

is the sampled nodes

set. Then, for each PRM nodes in V a stabilizer is constructed. Briefly, a TSP-FIRM graph with the set of nodes { B i } N t = N s + N g 
i =1 

and the edges (local controllers), M = { μi j } , is obtained in which N t is the total number of TSP-FIRM nodes consisting goal

nodes. In this graph, the assumption (7) is held. 

By constructing this graph, the main aTSP in the entire of the belief space and with the nondeterministic paths, is

simplified to an aTSP in the finite space with N t states defined on the TSP-FIRM graph nodes. In this new aTSP, there is not

necessarily only one way between every two TSP nodes, in other words a multi-path TSP is generated. Q ij is the set of all

paths between the goal points i and j , on the TSP-FIRM graph. Consequently, the aTSP defined in (13) can be written as: 

min 

{ p , y , �g } 
N g ∑ 

i =1 

N g ∑ 

j=1 

p i j 

∑ 

q ∈ Q i j 

∞ ∑ 

k =0 

E 

[
C g 

j 

(
B 

i 
k 
, π g 

(
B 

i 
k 

))]
y q 

i j 

s.t. 
N g ∑ 

j=1 

p i j = 1 ( i ∈ V ) 

N g ∑ 

i =1 

p i j = 1 ( j ∈ V ) ∑ 

p i j ≤ | s | − 1 ( s ⊂ V , 2 ≤ | s | ≤ N g − 2 ) 

p i j ∈ { 0 , 1 } ( i, j ) ∈ A 

y q 
i j 

∈ { 0 , 1 } q ∈ Q i j , ( i, j ) ∈ A ∑ 

q ∈ Q i j 
y q 

i j 
= 1 for each ( i, j ) 

P 

(
B 

i 
k +1 

| B 

i 
k 
;π g 

(
B 

i 
k 

))

(14) 

where y is a matrix with maximum of one non-zero element in each row, and it determines which path is chosen between

every two goal nodes. B i 
0 

is the i th goal node and B i 
k 
, k � = 0 shows the belief node change on the TSP-FIRM graph started from

node B i 
0 
. q ∈ Q ij is a path between the goal points i and j , and y 

q 
i j 

shows whether this path is selected or not. C 
g 
j 

(
B i 

k 
, π g 

(
B i 

k 

))
is the transition cost and shows the cost of taking local controller obtained from π g 

(
B i 

k 

)
, at B i 

k 
, and the goal is to reach

j th goal node, B j . The fifth and sixth constraint indicate that between every two goal nodes only one path should be chosen

and the last constraint shows the transition probability. The goal of two inner summations is to find the best policy and

path between every two goal-points. 
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3.2.2. Asymmetric TSP on FIRM 

The obtained aTSP in the previous section is more simple and tractable than the main aTSP. However, the problem

is difficult to solve still due to nonunique paths between the aTSP nodes and defining optimal policy as a decision vari-

able. Therefore, the TSP-FIRM is used to find the optimal policy and choose the best path between the goal nodes. The DP

Eq. (8) is solved between every two goal nodes and the optimal path and the policy between them is obtained. As a result,

a multi-path aTSP expressed in (14) is changed to a simple aTSP problem: 

min 

{ p } 

N g ∑ 

i =1 

N g ∑ 

j=1 

p i j J 
g 
j 

(
b i 
)

s.t. 

N g ∑ 

j=1 

p i j = 1 ( i � = j, i ∈ V ) 

N g ∑ 

i =1 

p i j = 1 ( i � = j, j ∈ V ) 

∑ 

p i j ≤ | s | − 1 ( s ⊂ V , 2 ≤ | s | ≤ N g − 2 ) 

p i j ∈ { 0 , 1 } ( i, j ) ∈ A 

(15)

where J 
g 
i 

(
b i 
)

is obtained by Eq. (8) and is the cost-to-go value of starting from node b i when the goal is node B 
j 

goal 
. This

aTSP can be solved using methods such as Concorde, LKH or metaheuristic optimization algorithms [6,43,50] . 

3.2.3. Incorporating obstacles in aTSP 

In this paper, we have considered three types of obstacles. In the first type, the position of them is known based on the

initial information of the environment. Second, the regions which are potentially obstacle and there is no certain information

about them, F sus , and the robot prefers to avoid this area. Finally, the unknown obstacles which there is no information about

them and the robot will detect them during its movement (online phase). In order to consider the second type of obstacles

in the robot’s decision making, the one-step-cost is defined as: ⎧ ⎪ ⎨ 

⎪ ⎩ 

c i ( b, u ) = 0 , 
if 

((
b ∈ B 

i 
goal 

)
or ( F happens ) 

)
and ( b / ∈ F sus ) 

c i ( b, u ) ≥ β > ε > 0 , if ( b ∈ F sus ) 
β > c i ( b, u ) ≥ ε > 0 , if otherwise 

(16)

where ε and β are positive values. Like Eq. (12) , the one-step-cost is set to a zero value in the goal or failure region, and

a positive value for other situations. However, a higher one-step-cost value is selected for potential obstacle areas to help

the robot to avoid these regions as possible. Now, the cost-to-go between every two goal points is calculated using (8) , and

then they are used in solving the aTSP in (15) . 

4. TSP-FIRM For nonholonomic robots 

In this section, the generic TSP-FIRM is adapted to the group of nonholonomic systems with unicycle dynamics. Here, we

assume Gaussian noise for the system and design the estimator and controllers based on this assumption. The challenging

part is to design controllers for the point to point stabilization and the path tracking in the belief space. 

4.1. Controllability of nonholonomic systems 

In the roadmap based algorithm such as PRM, it is assumed that there exists a controller to drive the robot on an edge

from the starting point to the end point or its vicinity. The discrete model of a unicycle robot is 

X k +1 = f ( X k , u k , w k ) = 

( 

x k + ( V k + n v ) δt cos θk 

y k + ( V k + n v ) δt sin θk 

θk + ( W k + n w 

) δt 

) 

(17)

where X k = ( x k , y k , θk ) is the r obot state at the time step k . u k = ( V k , W k ) 
T is the control vector where V k and W k are the

linear and angular velocity of the robot, respectively. δt is the time step and the vector w k = ( n v , n w 

) T ∼ N ( 0 , Q k ) is the

motion noise of the robot. The noise of the system is assumed to be Gaussian. It can be shown that for the posture sta-

bilization of the robot a discontinuous or time-varying controller is required [34] . However, for trajectory tracking a linear

controller can be used if V k � = 0 or W k � = 0. 

In the belief space, the posture stabilization and the trajectory tracking are more challenging, because the controller

should drive the robot to a neighbor of the belief node. Considering a unicycle robot with sensors to measure the range and

bearing from landmarks, linearizing the motion and observation model provide an observable but uncontrollable system for
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the posture stabilization. Therefore, in this paper, we use a Kalman filter and a switching controller to drive the system to a

belief node. 

4.2. Switching based TSP-FIRM algorithm 

For implementing the TSP-FIRM algorithm for a nonholonomic robot, it is necessary to determine proper nodes and

local controllers. It is also required to compute the transition probabilities and costs. In the following, we describe the

construction of the TSP-FIRM graph, based on the Kalman filter and switching controller. 

4.2.1. Estimator design 

The extended Kalman filter is used for the state estimation or in other words, for the localization of the robot. Thus, the

belief dynamics is obtained as b k +1 = τ
(
b k , u k , z k +1 

)
. 

State space model: By linearizing the system around the PRM node v , the state space model can be represented by 

x k +1 = A x k + B u k + G w k , w k ∼ N ( 0 , Q ) 

z k = H x k + M v k , v k ∼ N ( 0 , R ) 
(18) 

where w k and v k are motion and observation noise, respectively, having a zero mean Gaussian distribution with covariances

Q and R . 

By defining the matrix Q̆ such that , GQG 

T = Q̆ ̆Q 

T 
and choosing systems with the controllable pair 

(
A, Q̆ 

)
and observable

pair ( A, H ), it can be concluded that using the Kalman filter and according to its stationary behavior (stationary Kalman

filter), the estimation covariance converges to the following matrix P s which is independent of its initial covariance 

P s = P −s − P −s H 

T 
(
H P −s H 

T + MRM 

T 
)−1 

H P −s , (19) 

where P −s is the unique, symmetric and positive semidefinite solution of the Discrete Algebraic Riccati Equation (DARE) 

P −
k +1 

= A 

(
P −

k 
− P −

k 
H 

T 
(
H P −

k 
H 

T + MRM 

T 
)−1 

H P −
k 

)
A 

T + GQG 

T 
. (20) 

The estimation mean is computed as follows at each time step 

ˆ x + 
k +1 

= ( I − KH ) A ̂

 x + 
k 

+ ( I − KH ) B u k + K z k +1 + ( I − KH ) ( I − A ) v , (21) 

where K = P −s H 

T 
(
H P −s H 

T + MRM 

T 
)−1 

. It is clear from (21) that the estimated mean is a function of observations, thus it

evolves randomly. 

4.2.2. Switching based controller in the belief space 

As stated before, the estimation covariance of the system using an stationary Kalman filter (SKF) converges to P s . There-

fore, by designing a feedback controller to control the estimation mean and assuming that the system remains in the valid

linearization region, the belief will reach to b c = ( v , P s ) where b c is in the stopping region of the belief space. 

In order to design a feedback controller, a switching controller is adopted as follows to steer the belief, ˆ X + 
k 

=(
ˆ x + 
k 
, ˆ y + 

k 
, ˆ θ+ 

k 

)
, to the PRM node v = 

(
v x , v y , v θ

)
{

DFL Controller , if e p ≥ e th 

Heading-Angle Controller , if e p < e th , 
(22) 

where e p is defined as e p = 

√ 

( ̂  x + 
k 

− v x ) 2 + ( ̂  y + 
k 

− v y ) 2 and e th is a positive value that depends on the robot size and the

stopping region radius. Details about Dynamic Feedback Linearization (DFL) controller can be found in [34] . In the heading

angle controller, the following control inputs are proposed: 

V = 0 ; W = K θ tanh k θ θ̆
+ 
k 

(23) 

where K θ and k θ are positive values. 

4.3. TSP-FIRM nodes 

The first step in constructing the TSP-FIRM graph is choosing the goal points in the environment. Then, the underlying

PRM including the goal points is constructed, which is known by its nodes and edges, {{ v }, { e ij }}. The next step is to linearize

the system about the PRM nodes, v j , and then designing a stationary Kalman filter and a switching based belief controller

called as j th node controller. Consequently, the belief node B j is generated. B j is an ε-ball in the belief space with the center

b 
j 
c ≡ (v j , P 

j 
s ) where P 

j 
s is the covariance of the SKF obtained in (19) . Mathematically, B j can be defined as follows: 

B 

j = 

{
b ≡ ( x, P ) : 

∥∥x − v j 
∥∥ < δ1 , 

∥∥P − P j s 

∥∥
m 

< δ2 

}
, (24) 

where ‖ · ‖ and ‖ · ‖ m 

are proper vector and matrix norms, respectively. δ1 and δ2 determine the TSP-FIRM nodes size and

should be chosen sufficiently small that the approximation (7) stablishes. 

Since the goal points are chosen manually and independent of the TSP-FIRM construction algorithm, it is possible that

the system is not observable at that point. We will describe shortly how to cope with this limitation. 
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4.4. Local controllers 

The local controller μij is the integration of the edge controller and the node controller, which is responsible for steering

the belief from the node B i to the node B j . The edge controller μ̄i j 

k 
is responsible for driving the belief from B i to the vicinity

of the node B j . Then, the switching based node controller described earlier, is activated. Unlike the posture stabilization, the

unicycle robot is linearly controllable along the PRM edge if the linear or angular velocity is greater than zero. A linear

time-varying LQG controller is adopted in order to track the PRM edge e ij . For this purpose, a sequence of nominal inputs

U 

p = 

{
u 

p 

k 

}
are designed firstly to drive the robot from the PRM node v i to the node v j . By applying the inputs u 

p 

k 
, a series

of nominal states, X p = X k p , are produced. The cost function of the LQR controller for tracking nominal states is as: 

J LQR = E 

[∑ 

k ≥0 

(
ˆ x + 

k 
− x p 

k 

)T 
W x 

(
ˆ x + 

k 
− x p 

k 

)
+ 

(
ˆ u k − u 

p 

k 

)T 
W u 

(
ˆ u k − u 

p 

k 

)]

= E 

[ ∑ 

k ≥0 

(
ˆ e + 

k 

)T 
W x 

(
ˆ e + 

k 

)
+ ( δu k ) 

T 
W u ( δu k ) 

] 

. 

(25)

By defining W̆ 

T 
x W̆ x = W x , if the pair ( A, B ) is controllable and the 

(
A, W̆ x 

)
is observable, the linear controller input minimizing

the above cost function is obtained as follows: 

δu k = −L k ̂  e + 
k 

, (26)

where the feedback gain L k is obtained using the following equations: 

L k = 

(
B 

T 
k S k +1 B k + W u 

)−1 
B 

T 
k S k +1 A k (27)

S k = C T W x C + A 

T 
k S k +1 A k − A 

T 
k S k +1 B K L k . (28)

Eq. (28) is the Discrete Algebraic Riccati Equation (DARE) computed recursively. The initial condition of the Eq. (28) is

, S N = W x where N is the length of the nominal path. The final control input in the online phase can be computed as: 

u 

p 

k 
+ δu k = u 

p 

k 
− L k ̂  e + 

k 
= u 

p 

k 
− L k 

(
ˆ x + 

k 
− x p 

k 

)
. (29)

4.5. Transition probabilities and costs 

Although computing the transition probability P 

(
· | B i , μi j 

)
and transition cost C ( B i , μij ) is time-consuming, it can be

tolerated due to the offline construction of TSP-FIRM graph. In order to compute the collision and absorption probabilities,

the sequential Monte Carlo method is adopted. In defining the transition cost function, estimation accuracy has the main

role because not only does the estimator operate better but also the controller can have better performance. To involve the

estimation accuracy in the cost function, we use the weighted trace of the estimation covariances as �i j = E [ 
∑ T 

k =1 tr(λP 
i j 

k 
) ]

where P 
i j 

k 
is the estimation covariance at the k th time step during running the local controller μij and λ is defined as λ =

diag 
(
[ λx , λy , λθ ] 

)
. Another factor that should be considered in the cost function is the mean stopping time of local controller,

ˆ T i j = E 

[
T i j 

]
, to speed-up the search. Finally, we consider the mean time of spending in the high-risk area, i.e potential

obstacle area, ˆ T i j 

obs 
= E 

[
T i j 

]
, to reduce it. By a linear combination of the mentioned factors with the proper coefficients ξ P ,

ξT and ξO the cost of invoking μij at B i (transition cost), is obtained as: 

C 
(
B 

i , μi j 
)

= ξP �
i j + ξT ˆ T i j + ξO ̂  T i j 

obs 
. (30)

4.6. Switching-based TSP-FIRM construction and planning 

Algorithm 1 presents the details of the TSP-FIRM graph construction and solving the aTSP. After constructing TSP-FIRM

graph, the DP Eq. (8) is solved between every two goal points, and the cost-to-go and policy is computed. The com-

puted cost-to-go values are used to form aTSP cost matrix. By solving the aTSP, the overall search policy is obtained.

Algorithm 2 presents the steps for executing the search policy obtained in the Algorithm 1 . If the initial belief b 0 be-

longs to the TSP-FIRM graph, but not to any goal nodes, first we find the best path to one of the goal nodes. If the initial

belief b 0 does not belong to any TSP-FIRM graph nodes, first we connect it to the graph. The outgoing edges from the corre-

sponding node, B 0 , are denoted by M ( 0 ) . Then, the transition cost C g ( B 0 , μ) , the transition probabilities P 

g 
(
B j | B 0 , μ)

and

the failure probability P 

(
F | B 0 , μ)

for invoking each local controller, μ ∈ M ( 0 ) , is computed. Then the following equation is

solved for each goal node 

π g 
(
B 

0 
)

= argmin 

μ∈ M ( 0 ) 

C g 
i 

(
B 

0 , μ
)

+ J g ( F ) P 

g 
(
F | B 

0 , μ
)

+ 

∑ 

j 

P 

g 
(
B 

j | B 

0 , μ
)
J g 
(
B 

j 
)

. (31)



174 A. Noormohammadi-Asl, H.D. Taghirad / Information Sciences 471 (2019) 164–184 

Algorithm 1: TSP-FIRM graph construction for a nonholonomic robot. 

input : Free space map, X f ree 

output : TSP-FIRM Graph G 
Get the set of search points, 

{ 

v i 
goal 

} 

; 

Construct a PRM with nodes V = 

{
v j 

}
and edges ε = 

{
e i j 

}
where i, j = 1 , . . . , N s ; 

Add search points to PRM nodes V ← 

{ 

v i 
goal 

, V 
} 

and update the edges ε = 

{
e i j 

}
where i, j = 1 , . . . , N g + N s ; 

forall the PRM nodes v j ∈ V do 

Design the switching-based node-controller μ j for stabilizing the system at v j ; 

Generate TSP-FIRM node B j using Eq. (24) with the center b 
j 
c = 

(
v j , P 

j 
s 

)
(Computed using Eq. (19)) ; 

end 

Collect all TSP-FIRM nodes V = 

{
B i 

}
; 

forall the 
(
B i , e i j 

)
pairs do 

Design the edge-controller μ̄i j 

k 
; 

Concatenate edge controller μ̄i j 

k 
and node-controller μ j 

k 
to construct the local controller μi j 

k 
; 

Set the initial belief b 0 equal to the center of B i (based on the approximation in Eq. (7)); 

Compute transition probabilities P 

g 
(
B j | B i , μi j 

)
, transition cost C g 

(
B i , μi j 

)
and failure probabilities P 

g 
(
F | B i , μi j 

)
; 

end 

Collect all local controllers M = 

{
μi j 

}
; 

forall the 

{ 

v i 
goal 

} 

do 

Solve the graph DP in Eq. (8) for all j � = i to compute pair S i = 

(
π g ∗

i 
, J 

g ∗
i 

)
to take the robot to the B 

j 

goal 
; 

end 

Collect all pairs S = 

{
S ∗

i 

}
; 

Construct TSP cost matrix and solve it, T our ∗; 

G = ( V , M , S , T our ∗) ; 
return G 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Afterwards, the best initial policy is chosen to drive the robot to one of the goal points. Then, based on the policy obtained

from the aTSP, the robot starts searching goal points. 

During the online phase execution, Algorithm 2 , it is possible that the robot finds new obstacles. Algorithm 3 is pre-

sented to handle this situation which can be executed online. In this algorithm, if the transition cost, transition probability

and failure probability changes are more than αmin or an edge of the graph hits the obstacle, replanning is required. If these

changes are more than αmax or a goal node is in the obstacle region, resolving the aTSP is required too. 

Remark 1. In Algorithm 3 , in the case of resolving the TSP, if it is required that the robot returns to its starting position, the

TSP cost matrix should be changed. We show the current position and initial position of the robot by B r and B s respectively.

A dummy node, B d , is added to the TSP where the cost of connecting edge of this node to B r and the connecting edge of

B s to B d are zero. The cost of other outgoing and incoming edges of B d are set to a high value. The solution of this TSP will

be a route including the B s − B d − B r . Therefore, by starting from B r , the robot reaches the starting point. In another case, if

returning to the start point is not important, the cost of connecting edges of other nodes to B r are set to zero. 

Remark 2. Current belief of the robot in the replanning can be added to the graph permanently (to extend the graph) if its

current belief covariance is close to the covariance of the robot system at that point. 

5. Experimental results 

In this section, the algorithms presented in the previous sections are implemented in a robotic simulation software and

on a physical robot in order to illustrate their applicability and performance. These experiments are designed such that the

ability of the algorithms in finding the search and exploration policy as well as its robustness and flexibility in situations like

finding new obstacles, deviation from the planned path, observation loss, and kidnapping can be assessed. The simulation

is done in Webots, a robot simulator, and on the e-Puck robot. The real experiment is performed in a floor of the Electrical

Engineering department at K. N. Toosi University of Technology and on a robot named Melon. 
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Algorithm 2: Planning on the TSP-FIRM graph for a nonholonomic robot. 

input : Initial belief b 0 , TSP-FIRM Graph G, Underlying PRM graph 

if ∃ B i ∈ V such that b 0 ∈ B i then 

Invoke the best policy to take the robot into one of the goal nodes, B start = B i 
goal 

; 

else 

Generate a new TSP-FIRM node B 0 based on b 0 ; 

Connect B 0 to the graph, design its local planners and collect them in set M ( 0 ) = 

{
μ0 j 

}
; 

forall the μ ∈ M ( 0 ) do 

Compute the transition cost C g 
(
B 0 , μ

)
, the transition probabilities P 

g 
(
B j | B 0 , μ)

and the failure probability 

P 

(
F | B 0 , μ)

; 

end 

forall the Goal nodes do 

Solve Eq (31) for the B 0 to choose the best initial local planner μ0 j ; 

end 

Invoke the best policy to take the robot into one of the goal nodes, B start = B i 
goal 

; 

end 

Cur _ Goal ← The neighbor of B start in the T our ∗ as the next goal; 

forall the Goal nodes do 

while B � = Cur _ Goal do 

while ( � ∃ B j , s.t.b k ∈ B j ) and ”no collision” do 

Apply the robot the control input u k = μi j 

k 
( b k ) ; 

Get the sensor measurement z k +1 ; 

if Collision happens then return Collision; 

Update belief: b k +1 = τ
(

b k , μ
i j 

k 
( b k ) , z k +1 

)
; 

end 

Modify the current FIRM node B i = B j ; 

Assign the next local controller based on the policy, μi j = π g 
(
B i 

)
; 

end 

Cur _ Goal ← The neighbor of Cur _ Goal in the T our ∗ as the next goal; 

end 

 

 

 

 

 

 

 

 

 

 

 

5.1. Implementation details 

5.1.1. TSP-FIRM elements 

Environment: The map of the environment is generated by MATLAB, and it generates a similar one in Webots. The markers

in the experiments are black and white patterns based on a modified Hamming code and each one has a unique id. The

ArUco library, provided by Garrido-Jurado et al. [17] , detects each visible marker’s id and provides the relative range and

bearing from it. 

Motion model: Both the e-Puck and the Melon robot have the unicycle dynamics as Eq. (17) . The vector w k = ( n v , n w 

) T ∼
N ( 0 , Q k ) is the motion noise of the system and is a combination of a fixed uncertainty and a term proportional to the

control input values. The motion noise covariance is 

Q k = diag 

((
ηv V k + σV 

b 

)2 
, 
(
ηw 

W k + σ w 

b 

)2 
)

(32)

where ηv , ηw 

, σV 
b 

and σ w 

b 
are constant values. 

Sensor model: As mentioned before, the robot can compute its relative range and bearing from the markers. Therefore, if

we show the j th landmark in the global coordinate by j L , the sensor model can be written as follows: 

j z k = 

[∥∥ j d k 

∥∥, atan 2 

(
j d 2 k , 

j d 1 k 
)

− θ
]T + 

j v , j v ∼ N 

(
0 , j R 

)
, (33)

where j d k = 

[
j d 1 k , 

j d 2 k 

]T 
:= [ x k , y k ] 

T − L j . The random vector j v represents the measurement noise in the measurement of

the j th landmark which is proportional to the relative distance to the landmark and the angle between the wall and the line

connecting the camera to the landmark, φ ∈ 

[
−π

2 , 
π
2 

]
. Consequently, the sensor noise is a zero mean Gaussian noise with

the following covariance: 

j R k = diag 

((
ηr d 

∥∥ j d k 

∥∥ + ηr φ | φk | + σ r 
b 

)2 
, 
(
ηθd 

∥∥ j d k 

∥∥ + ηθφ
| φk | + σ θ

b 

)2 
)
, (34)
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Algorithm 3: TSP-FIRM graph updating in finding new obstacles. 

Estimate obstacle position; 

Update map; 

F ← Retrieve surrounding edges of the obstacles; 

forall the edges, μ ∈ F do 

f = 

[
C g 

(
B i , μ

)
, P 

g 
(
B j | B i , μ)

, P 

g 
(
F | B i , μ)]

; 

Recompute the transition cost , transition probability and collision probability 

f new 

= 

[
C 

g 
new 

(
B i , μ

)
, P 

g 
new 

(
B j | B i , μ)

, P 

g 
new 

(
F | B i , μ)]

; 

end 

if any TSP-FIRM edge intersect obstacles then 

if any search node is in the obstacle area then 

Delete all TSP-FIRM nodes in the obstacle area ; 

newT SP ← true ; 

end 

Delete all edges and nodes intersect obstacles; Update F and corresponding f ; 

newP lanning ← true ; 

end 

if exists μ ∈ F such that | f new 

− f | ≮ αmin then 

if exists μ ∈ F such that | f new 

− f | ≮ αmax then 

newT SP ← true ; 

end 

newP lanning ← true ; 

end 

if newP lanning then 

Replace previous transition costs, transition probabilities and collision probabilities with new computed values; 

if newT SP then 

Recompute π g ∗ and its corresponding J g 
∗

between each search node; 

Construct TSP cost matrix, solve it and assign new goals sequence; 

end 

Replan(b current ); 

else 
Graph does not change 

end 

 

 

 

 

 

 

 

 

 

 

 

 

where ηr d 
, ηθd 

, ηr φ
, ηθφ

, σ r 
b 

and σθ
b 

are constant values. Owing to the independence of the measurements, the full vector

of measurements z = 

[
i 1 z T , . . . , i r z T 

]T 
is the concatenation of visible landmarks 

{
L i 1 , . . . , L i r 

}
which its model can be written

as z = h ( x ) + v where v ∼ N ( 0 , R ) and R = diag 
(

i 1 R , . . . , i r R 

)
. 

One-step-cost: The one-step-cost is defined as (30) and if the robot hits an obstacle the cost-to-go is set to a high value.

TSP-FIRM node: As mentioned in Section 4 , the TSP-FIRM node can be defined mathematically as (24) . In the experiments,

the TSP-FIRM node must satisfy two following conditions: ∣∣x − v j 
∣∣ < �1 ∣∣diag(P − P j s ) 

∣∣ < �2 , 
(35) 

where �1 and �2 are proper vectors. The | A | < | B | operator here means the element-wise comparison of the absolute value

of A and B. 

Local controller: For tracking nominal states (path) the LQG controller described in (4.4) is used and the switching based

controller explained in (4.2) is adopted for designing stabilizers. 

5.1.2. Algorithm robustness 

There are some situations, including finding new obstacles, deviating from planned path, kidnapping and becoming

highly uncertain about the position that the robot has to leave the execution of the policy obtained in the offline mode

and update its map, graph, and policy. 

Highly uncertain about position: As mentioned before, it is possible that the observability condition in a TSP-FIRM node

(explained in (4.2) ) is not met . In this situation, we take the worst possible observation and design the stabilizers based

on it. Consequently, it cannot be guaranteed that the robot converges to the P s . Moreover, it is probable that the robot

cannot observe any marker in its way due to reasons such as covered markers by objects or the camera fault. Therefore,
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Fig. 1. Environment map in: (a) Matlab. (b) Simulation. (For interpretation of the references to color in this figure, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W  
the covariance matrix P s grows up. To handle these situations, the robot stops the local controller and starts gathering

information from its environment and continues it until to get a better certainty about its position and the P s decreases. 

Information gathering phase: In the information gathering phase, the robot moves slightly to observe landmarks while

avoiding obstacles. The information gathering continues until the covariance matrix decreases and the mean of estimation

improves. This condition can be checked by a suitable norm of matrix P s . When the robot exits from this phase, does a

replanning in its new belief (resolves aTSP if required) and continues to move based on the graph policy. 

Remark 3. In the information gathering phase, the system is linearized around the estimated mean of the robot. 

Deviation from the planned path: During the robot movement, it is probable that the robot deviates from its path due

to the poor localization, slipping or sensor error. In order to check the occurrence of this situation, the difference between

the desired state X 
p 

k 
, and the estimation mean ˆ x + 

k 
, | ̂ x + 

k 
− X 

p 

k 
| is computed in each step. If an element of this vector exceeds

the threshold value for more than a specific time, | ̂  x + 
k 

− X 
p 

k 
| ≮ δmax , the deviation is detected. Then, a replanning is done to

steer the robot toward the goal. 

Finding new obstacles: In the online phase, if the robot detects a new obstacle, it should estimate the obstacle position,

update its map and graph, and finally update its policy. In the experiments, we use an identical marker for unknown ob-

stacles. After updating the map, the edges near to the obstacle are selected and according to the Algorithm 3 the graph

is updated. The obstacle may affect the robot’s observation too, thus the transition probability, failure probability and the

transition costs are recomputed. If resolving the TSP is not required, the robot only does a replanning, else it must resolve

aTSP before replanning. 

Kidnapping: In order to assess the robot ability in recovering from a catastrophic localization failure when the robot is

suddenly moved to an arbitrary location, the kidnapping is considered in our implementations. To handle this situation, the

robot should detect the kidnapping, localize itself and do the replanning. In the kidnapping, we do not consider resolving

TSP; however, it is easy to check its condition and resolve it to get a new policy for searching the goal points. 

5.2. Simulation in webots 

In the following, we present the simulation results which is done in Webots software and on the e-Puck robot. In this

simulation, the robot finds a policy to search all the goal points and starts from the initial node and returns to it at the end

of the search. 

Environment map: The Fig. 1 a shows the constructed environment which its size is 2m × 2m. The blocks in black, blue,

green and red show the known obstacles, potentially true obstacles, potentially false obstacles and completely unknown

obstacles, respectively. The red points are the markers mounted on the wall, and the black points are markers with the

same id to detect the unknown obstacles. Fig. 1 b shows the corresponding environment in the Webots. 

Motion and sensor model: The motion model of the robot is as (17) and the motion noise is as (32) with the parame-

ters ηv = 0 . 1 , ηw 

= 0 . 01 . σV 
b 

= 1 cm/s and σ w 

b 
= 0 . 02 rad/s . The sensor model and the measurement noise are as (33) and

(34) with the parameters ηr d 
= 0 . 1 , ηθd 

= 0 . 001 , ηr φ
= 0 . 1 , ηθφ

= 0 . 01 , σ r 
b 

= 6 and σ θ
b 

= 0 . 06 . 

TSP-FIRM elements: The transition cost is according to (30) and the weighting factor λ is diag ( [ 0 . 5 , 0 . 5 , 20 0 0 ] ) . The com-

putations in this simulation are based on the cm and rad . TSP-FIRM nodes are obtained by Eq. (35) in which �1 = [ 5 , 5 , 0 . 2 ]

and �2 = [5 2 , 5 2 , 0 . 2 2 ] . 

Local controller: The LQG controller weights are set as S N = diag ( [ 0 . 0 03 , 0 . 0 03 , 0 . 03 ] ) , W x = diag ( [ 0 . 0 03 , 0 . 0 03 , 0 . 03 ] ) and

 u = diag ( [ 0 . 1 , 0 . 1 ] ) . In the switiching controller (stabilizer), the orientation controller parameters are K θ = 2 , k θ = −1 . The
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Fig. 2. Map and graph updates in simulation. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DFL controller is proposed in [34] and its parameters are set as k p1 = 2 , k p2 = 12 , k d1 = 3 , k d2 = 7 . e th = 4 cm also deter-

mines when the switching should happen. 

Later, in the implementation on the physical robot, we will discuss more about setting parameters. 

5.2.1. Simulation results 

Offline phase: The Fig. 2 a shows the constructed graph including the sampled nodes, the goal nodes and the edges. The

goal nodes are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] shown by the red points in the graph. The transition cost, transition

probability and the failure probability are computed using Monte Carlo method. Then, based on the Algorithm 1 , the TSP

matrix is formed and solved. By solving the aTSP, the route [1, 2, 3, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 1] is obtained. Consequently,

the robot motion sequence is obtained as following in the offline mode. 

[ 1 , 14 , 16 , 2 , 3 , 38 , 13 , 37 , 12 , 29 , 30 , 11 , 30 , 31 , 32 , 10 , 32 , 33 , 34 , 

9 , 34 , 33 , 29 , 27 , 8 , 27 , 25 , 7 , 24 , 23 , 6 , 20 , 5 , 20 , 4 , 18 , 17 , 14 , 1 ] 

Online phase: The robot is placed approximately near node 1. It starts moving toward node 2 and continues up to node 16,

according to the offline policy. During moving on the edge connecting node 16 to 2, the robot is kidnapped. The robot detects

the kidnapping situation and starts gathering information, thus localize itself. Node 39 is added to the graph temporarily

( Fig. 2 b) and the replanning is done. Then, the robot moves toward node 2 on the route [39,13,18,2]. After reaching node 2,

the robot moves toward node 3, but it detects some unknown obstacles. Therefore, the edges on the obstacle are removed,

and the current belief is added as permanent node 39 to the graph (according to the Remark 2 ). The TSP-FIRM graph is

updated ( Fig. 2 c) and the transition cost, the transition probability and the failure probability of the new edges and the

edges surrounding the obstacle is computed. By computing the cost-to-go value from node 39 to node 3, it is concluded

that resolving aTSP is required to find a new policy for searching the goal nodes. aTSP matrix is formed by considering

returning to the start point condition (explained in Remark 1 ) and solved. The new search policy is obtained as [39, 13,

3, 12, 11, 10, 9, 8, 7, 6, 5, 4, 1]. According to the new policy, the robot visits node 13 and 3 respectively. Then, it moves

toward node 12, but near this point, detects a new obstacle. Node 40 is added to the graph permanently and the graph is

updated ( Fig. 2 d). The replanning is done and the robot continues its way (resolving aTSP is not required). After reaching

node 2, the next goal is node 11. However, on the connecting edge between node 12 and 37, the robot deviates from the

planned path. The current belief is added to the graph as a temporary node 41 ( Fig. 2 e). After replanning, the robot moves

toward node 11 and returns to its path and visits nodes 11, 10, 9, 8 and 7, respectively. It also detects some new obstacles

and updates its map ( Fig. 2 f). Since these new obstacles do not change the transition probability and cost as well as the

failure probability significantly, replanning is not required. Afterward, the robot moves from node 7 to 6. Near node 6, new

obstacles are detected and after updating the map, permanent node 41 is added to the graph ( Fig. 2 g). The robot does

replanning without resolving aTSP, then moves toward nodes 6, 5 and 4, respectively. Near node 4, the robot detects new
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Fig. 3. Robot’s beliefs and real positions during online phase. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.) 

Fig. 4. Real experiment environment: (a) layout (b) overview. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

obstacles and updates its map. Permanent node 42 is added to the graph ( Fig. 2 h). After replanning (resolving aTSP is not

required), the robot visits node 4 and returns to the start point, node 1. Fig. 3 shows the real path traversed by the robot

(blue) and its belief (red). In kidnapping situation, their difference is more clear. The video of this simulation is available in

[32] . 

5.3. Experiment on a physical robot 

In the real experiments, the robot starts from in front of the laboratory and searches the goal points in the hallway and

returns to the laboratory. We consider the kidnapping and unknown obstacles in this experiment. 

Environment map: The map of the floor of Electrical Engineering department where the experiment is done, is shown

in Fig. 4 a. Fig. 4 b depicts an overview of the real environment. The environment size is approximately 14m × 14m, and the

green area shown in Fig. 4 a is used for the experiment. The sizes that are given in Fig. 4 a are not accurate that causes more

uncertainty in the map. 

Motion and sensor model: The motion and sensor model of the robot should be close to the real models. The motion

model and its noise model are as Eqs. (17) and (32) , respectively. The large values of ηV and ηw 

mean that noise of linear/

angular velocity significantly increases as the linear/angular velocity increases. σV 
b 

and σ w 

b 
also show the fixed uncertainty

in the model. In the sensor model, the measurement noise increases as the robot observes the markers from long distance

and tight angle of view. Higher ηr d 
, ηθd 

, ηr φ
and ηθφ

values show that uncertainty significantly increases with the distance
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Fig. 5. Map and graph updates in real experiment. (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and angle of view value. By setting higher values to the mentioned parameters and considering higher uncertainty values,

results into more conservative planning. In contrast, parameters that produce less uncertainty makes planning unreliable. In

this experiment, the motion model parameters are ηv = 0 . 1 , ηw 

= 0 . 01 , σV 
b 

= 6 cm/s and σ w 

b 
= 0 . 08 rad/s . The sensor model

parameters are ηr d 
= 0 . 1 , ηθd 

= 0 . 001 , ηr φ
= 0 . 1 , ηθφ

= 0 . 01 , σ r 
b 

= 6 and σ θ
b 

= 0 . 06 , which represent a moderate values for

uncertainty. 

Transition cost: In the transition cost (30) , parameters ξ P , ξT and ξO represent the importance of the estimation accuracy,

the algorithm runtime and the time the robot moves on high-risk areas, respectively. The main goal of TSP-FIRM is to obtain

a policy that has a high probability of success. Hence, �ij has a more important role in the transition cost in comparison

with the runtime. In addition, the runtime, ˆ T i j , is more important than 

ˆ T i j 

obs 
, in the planning. Although it is preferred that

the robot avoids high-risk areas, the replanning ability of TSP-FIRM algorithm enables to cope with the map uncertainty such

as new obstacles. Selecting ξ P , ξT and ξO depends on the importance of the aforementioned factors in the cost function. 

TSP-FIRM nodes: In order to define the TSP-FIRM nodes, based on (35) , �1 and �2 should be selected small enough that

condition (7) is satisfied. These parameters’ values depend on the size and the noise of the robot and the environment. For

example, in the real implementation for the robot with diameter 55cm, �1 = [ 25 , 25 , 0 . 35 ] and �2 = 

[
25 2 , 25 2 , 0 . 35 2 

]
are

considered, but in the simulation for the robot with diameter 7.4cm �1 is set to �1 = [ 5 , 5 , 0 . 2 ] . 

Replanning: In Algorithm 3 , αmin and αmax determine when it is necessary to do replanning and resolve the TSP. Small

αmin and αmax increase the probability of replanning and resolving TSP. Although replanning and resolving TSP cause more 

reliable plan, they are time-consuming and in most cases are not necessary. In contrast, the large values of αmin and αmax 

cause that the robot does not consider new obstacles in its planning that makes it unreliable. 

Local controller: The LQG controller (edge controller) weights are S N = diag ( [ 0 . 0 03 , 0 . 0 03 , 0 . 03 ] ) , W x =
diag ( [ 0 . 0 03 , 0 . 0 03 , 0 . 03 ] ) and W u = diag ( [ 0 . 1 , 0 . 1 ] ) . In the switching controller (stabilizer) the parameters related to 

the DFL controller are k p1 = 2 , k p2 = 12 , k d1 = 3 , k d2 = 7 , K θ = 2 , k θ = −1 , and for the orientation controller the parameters

are set as K θ = 2 and k θ = −1 . In the switching controller the parameter e th = 14 cm determines when to switch. In the

absence of uncertainty, this parameter may be set to a very small value. However, in a real application this parameter

depends on the size of the robot and environment and most importantly to the size of the stopping region. e th shall be

small enough to stabilize the robot in the stopping region. 

5.3.1. Results 

Offline: The first step is selecting goal points and sampling PRM nodes. Then, the transition cost, the transition probability

and the failure probability are computed using Monte Carlo method, and subsequently the TSP-FIRM graph is generated.

Fig. 5 a illustrates the constructed graph with the goal nodes [1, 2, 3, 4, 5, 6, 7, 1] (red nodes). The black and gray blocks

are known and potential obstacles (false), respectively. The red points are markers position. The markers’ positions are not

accurate which increase the localization uncertainty. In the next step, the path between every two goal nodes and its cost-

to-go is computed and used in forming the aTSP matrix. Solving aTSP provides the route between the goal nodes as [1, 2, 3,

5, 6, 7, 4, 1]. Consequently, the nominal path, i.e. nodes sequence, is obtained as follows which is possible to change in the

online mode. 

[ 1 , 10 , 9 , 8 , 2 , 11 , 12 , 3 , 14 , 5 , 15 , 6 , 22 , 7 , 21 , 17 , 16 , 4 , 13 , 3 , 12 , 11 , 2 , 8 , 9 , 10 , 1 ] 

In this sequence, the robot moves from node 6 to node 22, meaning it prefers to move from high-risk regions due to the

uncertain and time-consuming alternative paths. 

Online: The robot is placed near goal node 1, close to the laboratory entrance. The robot starts to move and passes

through the goal points 1, 2, 3, and 5 respectively according to the route obtained in the offline phase. Then, the robot

moves toward goal node 6. However, near node 15, there is an unknown obstacle. When the robot gets close to this obstacle,

detects it and then stops and estimates its position. Node 15 is deleted because it is in the new founded obstacle area. Then,

the current belief of the robot is added to the graph, node 23, permanently (according to remark 2 ). The graph and map are
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Fig. 6. Map and graph in simulation experiments. (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article.) 

Table 1 

Comparison of shortest path based policy with TSP-FIRM based policy (simulation in swebots). 

Algorithm � ˆ T ˆ T obs Succes % TSP solution 

Exp 1 Shortest path 71.6651 3.0435 min 3.594 sec 70 [1, 2, 3, 13, 12, 11, 9, 10, 8, 4, 5, 7, 6, 1] 

TSP-FIRM 51.4981 3.1667 min 2.736 sec 97 [1, 2, 3, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 1] 

Exp Shortest path 247.97 2.27 min 2.3 sec 75 [1, 2, 10, 3, 6, 5, 4, 7, 8, 9, 1]] 

TSP-FIRM 63 2.4 min 0 sec 97 [1, 2, 10, 3, 6, 5, 4, 7, 8, 9, 1] 

Exp 3 Shortest path 445.38 1.98 min 7 sec 53 [1, 2, 3, 4, 6, 5, 9, 7, 8, 1] 

TSP-FIRM 36.4216 2.27 min 1 sec 97 [1, 2, 8, 4, 3, 6, 5, 7, 9, 1] 

Exp 4 Shortest path 445.38 1.98 min 7 sec 53 [1, 2, 3, 4, 6, 5, 9, 7, 8, 1] 

TSP-FIRM 45.65 3.12 min 0 sec 97 [1, 9, 7, 5, 8, 2, 4, 3, 6, 1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

updated ( Fig. 5 b) and the transition cost, the transition probability as well as the failure probability of the new edges and the

edges near to the obstacle is computed. According to their large changes, aTSP is resolved (based on remark 1 ). Therefore, the

new route is obtained as [6, 7, 4, 1]. Afterward, the robot moves toward goal node 6 through the path [23, 5, 17, 16, 6]. After

reaching goal node 6, the robot moves toward goal node 7 on the path [6, 22, 7], but it observes only some few markers and

gets highly uncertain about its position, thus covariance matrix, P s , grows. The robot starts information gathering phase and

continues it until P s decreases. Then, the new belief is added to the graph temporarily, node 24, ( Fig. 5 c), and replanning

is done to steer the robot to goal node 7. After reaching goal node 7, the robot moves toward goal node 4 on the [7, 21,

17, 16, 4] path. Then it starts to return to the start point, goal node 1, but on the edge connecting node 8 to node 9, the

robot is kidnapped and placed in a point between nodes 11 and 12. The robot detects the kidnapping and starts gathering

information phase and continues it until the conditions to exit this phase is met. Then, temporary node 24 is added to the

graph and replanning is done ( Fig. 5 d). Thereafter, the robot moves toward node 11 and then moves toward node 1 based on

its policy. These experiments were repeated many times successfully and the robot is able to detect kidnapping in different

positions, localize itself and complete its task successfully. The video of this experiment is available in [33] . 

5.4. TSP-FIRM highlights 

5.4.1. Uncertainty impact on planning 

In order to have a better understanding of the necessity of considering uncertainty in the planning, we compare the

TSP-FIRM search policy with a policy obtained based on merely shortening the path. To obtain a short path we use obtained

TSP-FIRM graphs, but the distance between nodes is the only factor considered in planning. To have a fair comparison, the

same control method is employed in both methods to drive the robot on the planned path. In addition, in order to make

the comparison more conclusive two more simulation experiments are performed with different scenarios. Fig. 6 shows the

maps of these experiments. The TSP solutions are provided in Tables 1 and 2 . Experiments 3 and 4 have the same map, but

in experiment 4, the ξO in Eq. (30 ), is set to a high value to increase the effect of the time the robot moves on the potential

obstacle area. According to the TSP solution, in experiment 4 the robot prefers to travel a longer way to avoid potentially

obstacle area. 
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Table 2 

Comparison of shortest path based policy with TSP-FIRM based policy (real experiments). 

Algorithm � ˆ T ˆ T obs Success % TSP solution 

Shortest path 1.3515 × 10 3 17.2703 min 18.2 sec 67 [1, 2, 3, 4, 7, 6, 5, 1] 

TSP-FIRM 821.6526 18.4887 min 18.2 sec 97 [1, 2, 3, 5, 6, 7, 4, 1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are three main factors, including �, ˆ T and 

ˆ T obs , which are considered in this analysis and are reported in

Tables 1 and 2 . �, ˆ T and 

ˆ T obs are the summation of �ij , ˆ T i j and 

ˆ T i j 

obs 
of all edges forming the path obtained from TSP

solution. In all of the experiments, the � value in the shortest path method is more than the path obtained by TSP-FIRM

which means TSP-FIRM provides more reliable and informative path with regard to the localization uncertainty. The � value

in the real experiment is more than the simulation experiment owing to the bigger environment size and the greater motion

noise of the real experiment. In all experiments, the shortest path runtime is less than TSP-FIRM path runtime as expected.

However, there is not a significant difference because the shortest path policy spends more time for stabilization (node

controller) due to the weak localization. Furthermore, in TSP-FIRM algorithm, the robot spends less time in the potential

obstacle area, which is more evident in experiment 4, where the robot travels a longer path to avoid the potential obstacle

area. 

The obtained policies for real and simulation experiments are executed in the MATLAB thirty times and their success

percentages are reported in the last column of tables. Although the runtime of TSP-FIRM is slightly more than the policy

obtained based on shortest distance, TSP-FIRM provides a reliable policy with a high probability of success which is the

main goal of the TSP-FIRM. 

5.4.2. Key features 

The TSP-FIRM graph has exploited the practical and theoretical merits of the FIRM algorithm such as breaking the curse

of history, probabilistic completeness, efficient planning, robustness, reliability, scalability, which are discussed in [3] thor-

oughly. In Section 5.1.2 , the robustness of the algorithm is discussed completely. In the following, some of the abovemen-

tioned features are discussed for TSP-FIRM algorithm. 

Efficient planning: The TSP-FIRM graph is constructed offline, and subsequently, the solution for finding a sequence (mod-

elled as aTSP) and a policy for moving between goal points can be obtained offline. This feature enables online planning

viable and workable, especially in a real implementation. 

Reliability: In the construction of TSP-FIRM graph the success probability of the robot is considered. The probability of

colliding obstacles is also computed offline helping to find a more reliable plan for traversing goal points. 

Scalability: TSP-FIRM graph is a multi-query roadmap in the belief space that enables it to operate for a long period of

time in the same environment. In addition, in the proposed algorithm, the constructed graph can be extended, meaning

that new nodes and edges can be added to it during online execution. The complexity of the TSP-FIRM graph construction

is a constant multiplier of the complexity of the PRM construction like the FIRM algorithm, and in contrast to the most of

belief-space planner that have exponential planning complexity. The TSP is an NP-hard problem, but solving it is executed

offline. There are also algorithms, such as LKH and Concorde, that can provide an acceptable solution in a reasonable time. 

These features enable TSP-FIRM algorithm to be used in a real application. 

6. Conclusions 

The underlying motivation of this paper is planning for a service or a rescue robot with goals such as search and explo-

ration in an environment. Multi-goal motion planning is an approach to cope with this problem which is becoming increas-

ingly attractive. Much effort, however, is put into planning without considering the motion and sensor uncertainties. This is

while, many real robotic applications are involved with uncertainty and ignoring it has a significant impact on planning. This

paper introduces TSP-FIRM, a novel framework for multi-goal motion planning under motion and sensor uncertainty. In the

first step, we integrate the POMDP and TSP to formulate the problem as an asymmetric TSP in the belief space. However, the

problem is notoriously difficult to solve in this form. Therefore, we break it down to a single-goal motion planning among

goal nodes and planning for searching them. The FIRM algorithm is utilized to overcome the motion planning problem. Then

an algorithm is proposed for the TSP-FIRM graph offline generation which helps to reduce the problem to planning over the

nodes of the graph and thus obtaining an offline search policy. Moreover, an algorithm is proposed for the online execution

of the obtained policy. The general TSP-FIRM is modified for nonholonomic mobile robots using a switching-based controller

and the EKF estimator. To assess the capability of the proposed algorithms, they are implemented on a nonholonomic mo-

bile robot in both simulation and real environment. Furthermore, we provide solutions to enable the robot to handle the

challenging situations such as changes in the map, a large deviation from the planned path and getting highly uncertain. The

experiment results and the comparison with a short path policy verify the TSP-FIRM efficiency. In addition the efficiency,

reliability, robustness and scalability of TSP-FIRM are discussed. In future research, we address solving TSP online, handling

dynamic obstacles and multi-hypothesis belief distributions in decision making. 
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