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In this paper, we derive the dynamic formulation of a deployable cable-driven robot that
considers models of the actuator and power transmission systems, and we investigate
the challenges of structural uncertainty. To accommodate the inherent uncertainty of the
system, we propose a proper control topology based on a cascade structure. The inner loop
of the structure controls the cable forces, and the outer loop tracks the precise position of
the robot’s end-effector. For the design of the outer loop controller, we propose a robust
sliding mode controller with a stability analysis that is based on the Lyapunov direct
method. The main contribution of this paper is to analyze the stability of the system as a
whole considering both the inner and outer loop controllers. Finally, in order to illustrate
the performance of the proposed controller, we present the results of an experiment on a
deployable suspended cable-driven robot, which shows the effectiveness of the proposed
controller in the presence of the inherent uncertainties of the system.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

A cable-driven parallel manipulator (CDPM) is a robots whose end-effector pose is controlled by winding and unwinding
independent cables connecting the end effector to the fixed base [1]. These robots have several advantages, including a large
workspace, high speed and acceleration capabilities, and a simple mechanical structure. The idea of cable-driven robots that
are quick and easy to deploy was first proposed in [2–4], which targetted their applications in rescue missions. Due to the
aforementioned advantages, this class of robots are suited to many rescue-mission scenarios. [5]. Other potential applica-
tions include agriculture and automated farming [2].

For deployable suspended cable-driven robots (DSCRs), the kinematic parameters are not accurately measured, and as a
result characteristic parameters of the robot model are perturbed. This in turn, introduces many challenges in terms of con-
troller design and meeting the required performance [3,6–10]. Despite of these inaccuracies and because of their simplicity,
for the applications where fine precision is not required, these robots have proven to be useful. In fact, a family of cable-
driven robots known as Spider-cams are commonly used for video capturing applications at sport fields. As shown in
Fig. 1, ARAS-CAM robot as an example of a deployable suspended cable-driven robot (DSCR), is also specially designed for
video capturing applications. The simplicity of installation as the main characteristics of DSCR makes it extremely suitable
in the field of video capturing applications.
rical and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2019.03.010&domain=pdf
https://doi.org/10.1016/j.ymssp.2019.03.010
mailto:khalilpour@ee.kntu.ac.ir
mailto:taghirad@kntu.ac.ir
mailto:pcardou@gmc.ulaval.ca
https://doi.org/10.1016/j.ymssp.2019.03.010
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


Fig. 1. Prototype of a deployable suspended cable-driven robot called ARAS-CAM.
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In addition to kinematic uncertainty, DSCRs suffer from several dynamic uncertainties as well. These dynamic uncertain-
ties have different origins. They are related to robot geometry and structural uncertainty in addition to actuators and power
transmission systems, none of which can be accurately modeled. Both structural and non-structural dynamic uncertainties
have a profound effect on the robot trajectory tracking performance. Hence, a robust control structure is needed to minimize
the effect of these sources of errors.

Several successful robust controllers have been proposed in the literature for various applications of CDPMs. A category of
such controllers, called sliding mode controllers (SMCs), are known to be effective in many applications in the presence of
modeling uncertainty [11,12]. In this paper, we propose a robust sliding mode controller in order to overcome the problems
of kinematic and dynamic uncertainties. We implement this method via a cascade structure, in which the inner loop is
designed to control the cable forces and the outer loop is designed to control the end-effector position. We also achieve
simultaneous tracking of the desired end-effector position and cable forces by defining a new sliding surface, which is com-
posed of the position and force errors. A robust force tracking systemmakes it possible to mitigate the negative effects of the
complex, non-linear, high-order dynamics (like friction) that are often found in the actuators and power transmission
systems.

In the field of robotics, most of the common control systems are based on a cascade structure in which the inner con-
troller is assumed to be a fast high-bandwidth controller, and the outer controller (a user-specified control loop) is respon-
sible for the robot’s main objective: trajectory tracking. The effectiveness of such an approach depends on the assumption
that the inner loop controller is fast enough, and thus that its dynamics may be ignored. In practice, such an assumption gen-
erally cannot be made. Therefore, we analyze the whole structure of the cascade controller and investigate the effect of
selected structures and coefficients for the inner loop controller. Here, the inner loop controller is designed to mitigate
the adverse effects of dynamic uncertainty (of the actuators and power transmission systems, i.e. pulleys) on force tracking.
These effects are more notable when the cables are directly driven by the motors. To overcome the uncertainties caused by
an inaccurate kinematic structure, a robust controller based on the well-known dynamic sliding mode method is designed
[13–16].

The main contribution of this paper is to consider an inner-loop force control structure and to design and analyze the
overall system stability using Lyapunov’s direct method. In such a control system, the end-effector position can be derived
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by using either forward kinematics relations [17], or an accurate position sensor [18,19]. In either cases, The measured posi-
tion is then compared to the desired location of the end-effector. Next, the inner-loop control command—namely the desired
cable tension—is calculated. Finally, the cable force error is computed by comparing this command to cable forces directly
measured by the force sensors. Following that, using this error, control commands are computed and sent to the motors.

One of the most difficult aspects of implementing the cascade methods is selecting a appropriate gain for the inner loop
controller. A low gain controller cannot provide proper force tracking, but the presence of measurement noise in the force
sensors may prohibit high gains from being assigned. That is why we seek to investigate the issue of proper inner-loop gain
selection for a deployable cable-driven parallel robot.

The remainder of this paper is organized as follows. First, we present the kinematic formulation of a DSCR and its Jacobian
analysis. Next, we formulate the actuators and power transmission dynamics and present the dynamic model of the cable-
driven robot as a whole. Then, we introduce the proposed robust control law and analyze the robust stability of the closed-
loop system. Finally, we present the results of our experiments, which illustrate the proposed controller’s ability to achieve a
suitable level of performance.

2. Kinematics formulation

The kinematic modeling of DSCR is investigated in this section. In the first step, we derive the kinematic equations. Next,
through differentiation, the Jacobian matrix is also constructed. Fig. 2 illustrates a DSCR constrained by four cables, all of
which are attached to a single point on the end-effector. For driving the equations, the end-effector is treated as a lumped
mass at the intersection of the cables. Following this assumption, the loop closure method for this manipulator is applied as
shown in Fig. 2 and given as follows.
Li
!¼ P

!� PAi

�!
; i ¼ 1; . . . ;4: ð1Þ
In what follows, the inverse kinematics relations and the Jacobian matrix of the robot are derived.

2.1. Inverse kinematics solution

Writing the loop closer equations algebraically leads to
l2i ¼ P � PAi

� �T P � PAi

� �
; ð2Þ
in which li is the length of i’th cable. Decomposing the equations into their component-wise forms leads to:
li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xið Þ2 þ y� yið Þ2 þ z� zið Þ2

q
; ð3Þ
in which x; y; z and xi; yi; zi respectively denote the position of end-effector and i’th cables attachment points.

2.2. Forward kinematics solution

Having just three of the four equations of (3) for i ¼ 1;2; . . . ;4, the end-effector position can be directly calculated. For
instance, if cable 1–3 equations are chosen, the solution of the DSCR forward kinematic would be written as
Fig. 2. Kinematic schematics of a deployable suspended cable-driven robot.
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x ¼ 1
2a l22 � l23
� �

; y ¼ 1
2b l21 � l22
� �

;

z ¼ h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 � xþ a

2

� �� yþ b
2

� �
;

q ð4Þ
For the z component there are two solutions. However, based on the physics of the robot, the negative solution is correct.

2.3. Jacobian matrix

Holding an integral role at kinematic analysis of the robot, the jacobian matrix provides a map between the joint and
work spaces variables. Moreover, the Jacobian matrix relates the actuator torques to the forces represented in the workspace
[20]. On the other hand, singularity analysis can also be carried out through the studying of the Jacobian matrix’s character-
istics at different configurations. For the robot under study, the jacobian matrix is derived as follows. Let l denote the vector
represented in the joint coordinates and comprised of the cables’ lengths and x, denote the end-effector’s motion vector.
Thus, the kinematic equations could be derived as f l;xð Þ ¼ 0 which is an implicit function of vectors x and l. Next, using

the f l;xð Þ, the relation between joint and work space velocities, _l and _x, can be derived by calculating the derivatives as
follows:
Jx _x ¼ J l _l; ð5Þ

Jx ¼ þ
@f
@x

; J l ¼ �
@f
@l

: ð6Þ
Hence, the Jacobian matrix can be derived as follows:
_l ¼ J _x; ð7Þ

J ¼ J�1L Jx: ð8Þ

In the case of the robot shown in Fig. 2, the Jacobian matrix is derived by performing such calculations as follows:
J ¼

x�x1ð Þ
l1

y�y1ð Þ
l1

z�z1ð Þ
l1

x�x2ð Þ
l2

y�y2ð Þ
l2

z�z2ð Þ
l2

x�x3ð Þ
l3

y�y3ð Þ
l3

z�z3ð Þ
l3

x�x4ð Þ
l4

y�y4ð Þ
l4

z�z4ð Þ
l4

2
6666664

3
7777775: ð9Þ
3. Robot dynamic model

In some references like [21–23], cable flexibility effects have been investigated in detail and a complex model for the
robot’s dynamics has been presented. In these researches, the dimensions are so large that the effects of cable stiffness
can not be neglected. On the other hand the mass of a lenghthy cable leads to sagging effects. However in our project,
due to short length and high modulus of elasticity of the employed cables, the aforementioned effects are ignored. Following
this, the dynamic model of a DSCR may be written in the general form as
M xð Þ€xþ C x; _xð Þ _xþ G ¼ F ¼ �JTs; ð10Þ

where M;C, and G respectively denote the mass matrix, Coriolis and centripetal matrix, and gravity vector. Vectors x and F
respectively denote the generalized coordinates of the end-effector position and the Cartesian wrench applied to it. Finally, J
denotes the Jacobian matrix of the robot, and s is cable forces vector. In the case of ARAS-CAM in which all of the cables are
attached to the end-effector at one point, the kinetic energy ET of the moving platform can be computed as ET ¼ 1

2
_xTmI _x in

whichm stands for end-effector mass and I indicates a 3� 3 identity matrix. The potential energy EU of the moving platform
can be also calculated as EU ¼ mgh where g stands for gravity and h introduces relative height. Using calculated kinematic
and potential energy, Lagrange function can be written as EL ¼ ET � EU . Then, using Lagrange equation d

dt
@EL
@ _x

� �� @EL
@x ¼ �JTs and

considering the Eq. (10), we can derive the value of M;C and G for the ARAS-CAM. The dynamics of actuators and power
transmission systems shown in Fig. 3 are also represented by
IM€hM þ DM
_hM � rMsP1 ¼ rMu: ð11Þ
For the power transmission system, we have
IPi€hPi þ DPi
_hPi � rPisPiþ1 ¼ �rPisPi ; i ¼ 1 : n� 1; ð12Þ
and for the last pulley, we have



Fig. 3. Schematic of the power transmission systems.
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IPn€hPn þ DPn
_hPn � rPns ¼ �rPnsPn : ð13Þ
In which n denotes the number of pulleys, hM; hPi denote the angle vectors of the drum and ith pulley, Im; IPi denote the inertia

matrix of the drum and ith pulley, DM ;DPi denote the viscous friction matrix of the drum and ith pulley, rM; rPi denote the
radius of the drum and pulley, s denotes the cable tension applied to the end-effector, sPi denotes the cable tension vector

of the ith pulley, and u denotes the motor force vector.

We differentiate and use the manipulator Jacobian _l ¼ J _x to reach
_hM ¼ r�1M
_l ¼ r�1M J _x; €hM ¼ r�1M J€xþ r�1M

_J _x; ð14Þ

_hPi ¼ r�1Pi
_l ¼ r�1Pi

J _x; €hPi ¼ r�1Pi
J€xþ r�1Pi

_J _x: ð15Þ

After manipulating the above equations, we reach to:
MT€xþ CT _xþ G ¼ JTu; ð16Þ

in which
MT ¼ M þMPTS; CT ¼ C þ CPTS; ð17Þ

MPTS ¼ r�2M JT IMJ þ
Xn

i¼1
r�2Pi

JT IPi J; ð18Þ

CPTS ¼ r�2M JIM _J þ r�2M JTDMJ þ
Xn
i¼1

r�2Pi
JIPi

_J þ r�2Pi
JTDPi J: ð19Þ
Eq. (16) represents the robot’s dynamics as a whole, including consideration of the actuator and pulley dynamics.

4. Sliding surface definition

In this section, we use the position and force sensory data and desired trajectory as the basis for our proposal of the fol-
lowing sliding surfaces for robust control of the robot:
sr ¼ _x� _xr: ð20Þ

In the above equation, xr is defined as a nominal reference for motion control, and is designed as
_xr ¼ _xd � K~x� cr; ð21Þ

in which _xd is the desired velocity of the end-effector, and ~x ¼ x� xd; c 2 Rn�n. Furthermore, K ¼ diag K1;K2; � � � ;Knð Þ is a
symmetric positive definite diagonal matrix, and n denotes the robot’s degrees of freedom.

In the above equation, _r is defined as
_r ¼ ĴTsI � ĴTs; ð22Þ

in which s stands for the cable forces measured by the force sensors, and sI is the desired tension force in the cables. This
desired force should be positive to guarantee cable tensions in all configurations, and is stated as
�ĴTsI ¼ F I ¼ M̂€xI þ Ĉ _xI þ Ĝ � K Isgn sxð Þ: ð23Þ

In the above equation, M̂ , Ĉ, and Ĝ respectively denote the approximate mass matrix, Coriolis term, and gravity vector, and
function sgn �ð Þ stands for the input wise discontinuous signum function. Also, _xI is represented as
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_xI ¼ _xd � K~x: ð24Þ

Now, consider a second sliding surface as
sx ¼ _~xþ K~x: ð25Þ

Using the definition of sx, one can rewrite Eq. (22) as
_r ¼M _sx þ Csx þ K Isgn sxð Þ þ qx; ð26Þ

where qx is related to system uncertainty and can be encapsulated as
qx ¼ � ~M€xI þ ~C _xI þ ~G þ ~JTs
� �

; ð27Þ
in which ~J ¼ Ĵ � J; ~M ¼ M̂ �M, ~C ¼ Ĉ � C, and ~G ¼ Ĝ � G.
Some important properties of the derived dynamics equations are given as follows, which will be used in the stability

analysis of the overall closed-loop system.

Property 1. The matrix M xð Þ is symmetric, positive definite, and upper and lower bounded for all x, [24], as follows
km < jjM xð Þjj < kM; ð28Þ

in which km and kM respectively denote the minimum and maximum eigenvalues of the matrix M.
Property 2. The C x; _xð Þ matrix and the time derivative of inertia matrix M xð Þ satisfy
_xT 1
2

_M xð Þ � C x; _xð Þ
� 	

_x ¼ 0; ð29Þ
which reveals that the matrix _M xð Þ � 2C x; _xð Þ is skew-symmetric.
Property 3. The upper bounds of the Coriolis and centrifugal matrices are functions of _x, as follows:
jjC x; _xð Þjj < fcjjsr jj: ð30Þ
Property 4. The upper bound of the gravity matrix is
jjG xð Þjj < fg : ð31Þ
5. The proposed control law

Fig. 4 shows the proposed control topology. The proposed control law is formulated by
u ¼ �KP sd � sð Þ; ð32Þ

in which KP ¼ kPIm�m stands for the proportional controller gain matrix for the inner loop, m represents the number of actu-
ators, and I indicates the unity matrix. Next, consider
sd ¼ �sd þ aQ ; ð33Þ

where
�sd ¼ �ĴyFr : ð34Þ
Fig. 4. Proposed control structure.



S.A. Khalilpour et al. /Mechanical Systems and Signal Processing 127 (2019) 513–530 519
In the latter equation Q is the null space of the approximated Jacobian. Furthermore a is a scalar factor, which is selected so
that the actuator forces remain in the feasible range smin; smax½ �. Such a force distribution is necessary because of actuator
redundancy, which results in a non-square Jacobian matrix. Therefore, redundancy resolution algorithms must be used to
solve this problem. In the above equation, Fr can be determined as
Fr ¼ M̂€xr þ Ĉ _xr þ Ĝ � K rsr ; ð35Þ

in which K r is a positive definite matrix.

5.1. Stability analysis

To analyze the stability of the proposed control laws, consider the following Lyapunov function candidate:
Vr tð Þ ¼ 1
2
sTr MT þ KpnM
� �

sr; ð36Þ
where Kpn ¼ kpIn�n, and where n denotes the degree of freedom. We differentiate V tð Þ with respect to time,
_Vr tð Þ ¼ sTr MT þ KpnM
� �

_sr þ sTr CT þ KpnC
� �

sr : ð37Þ
To simplify, we find the equivalent of MT þ KpnM
� �

_sr as
MT þ KpnM
� �

_sr ¼ �CTsr � MT€xr þ C _xr þ Gð Þ þ JTu: ð38Þ

According to Eq. (32), we have
JTu ¼ �JTKP sd � sð Þ
¼ JTKP Ĵy M̂€xr þ Ĉ _xr þ Ĝ � K rsr

� �
þ aJTKPQ � Kpn M€xþ C _xþ Gð Þ

¼ �Kpn M _sr þ Csr þ K rsrð Þ þ JTKp Ĵy � Kpn

� �
Fr � a~JTKpQ þ Kpn

~M€xr þ ~C _xr þ ~G
� �

:

ð39Þ
Pursuant to Eq. (38), one may reach to
MT þ KpnM
� �

_sr ¼ �KpnCsr � KpnK rsr � CTsr � MT€xr þ C _xr þ Gð Þ
þ JTKp Ĵy � Kpn

� �
Fr � a~JTKpQ þ Kpn

~M€xr þ ~C _xr þ ~G
� �

:
ð40Þ
We substitute the above results in Eq. (37) to get
_Vr tð Þ ¼ sTr �KpnK rsr þ Kpnqr

� �
; ð41Þ
in which qr may be defined as
qr ¼ JT Ĵy � I
� �

Fr � a~JTQ þ ~M€xr þ ~C _xr þ ~G
� �

� K�1pn MT€xr þ C _xr þ Gð Þ: ð42Þ
It can be inferred from the above equation that by increasing the controller gain kp, the effect of uncertainty in dynamic
parameters likeMT ;CT , and GT is significantly reduced. Furthermore, assuming jqrj < a0 þ a1jsrj, in which a0 is a positive vec-
tor and a1 is a diagonal matrix with positive elements, we have
_Vr tð Þ < sTr �KpnK rsr þ Kpna0 þ Kpna1jsr j
� �

: ð43Þ

We simplify to find
_Vr tð Þ < Kpn �K r þ a1ð Þksrk2 þ Kpna0ksrk: ð44Þ

The above relation proves the UUB stability of sr . Therefore, it can be assumed that sr is bounded from above by sr < �sr .

This result will be used for the stability analysis in the next section.
Now, in order to show the stability of sx, we must determine an upper bound for _sr . To this end, and according to Eq. (40),

we have
_sr ¼ � MT þ KpnM
� ��1 KpnCsr � KpnK rsr � CTsr þ Kpnq

� �
: ð45Þ
Considering sr being bounded, an upper bound for _sr may be defined as
j _srj < kmax MT þ KpnM
� ��1� �

kmax Kpnfc þ fcT
� �

�sr þ kmax KpnK r
� �

�srKpna0 þ kmax Kpna1
� �

�sr
� �

: ð46Þ
In the next section, we will use the upper bound obtained for _sr to analyze the stability of sx.
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5.2. Stability of sx

Consider the following Lyapunov function candidate:
Vx tð Þ ¼ 1
2
sTx I þ cMð Þsx: ð47Þ
Differentiate Vx tð Þ with respect to time,
_Vx tð Þ ¼ sTx I þ cMð Þ _sx þ 1
2
sTx c _M
� �

sx: ð48Þ
Consider Eq. (29) and the above equation as
_Vx tð Þ ¼ sTx I þ cMð Þ _sx þ sTx cCð Þsx: ð49Þ

To simplify the above equation, we must find I þ cMð Þ _sx. Since
_sx ¼ _sr � c _r
¼ _sr � c M _sx þ C _sx þ K Isgn sxð Þ þ qxð Þ; ð50Þ
we may write
I þ cMð Þ _sx ¼ _sr � cCsx � K Isgn sxð Þ þ qx: ð51Þ

We substitute the above equation in (49) to find
_V tð Þ ¼ sTx _sr � cCsx � K Icsgn sxð Þð Þ þ sTxCcsx
¼ sTx _sr � K Icsgn sxð Þ þ qxð Þ: ð52Þ
According to the boundedness properties obtained in the previous section, by selecting a sufficiently large gain K I , one
may produce a negative value for the derivative of the Lyapunov function, and thereby guarantee the closed-loop stability
of the overall system.

5.3. Force inner loop characteristics

In the previous section, we showed that using a force sensor in the inner loop controller is highly beneficial for reducing
the effect of uncertainty on the robot tracking performance. In this section, we will examine this effect in the following cases.

� By selecting a high-gain inner loop controller, the actuator dynamics might be significantly reduced. Thus, in this situa-
tion, the structural dynamics are considered to be the dominant dynamics. When the structural dynamics are simple and
well known, the inner loop force controller is very beneficial to the overall tracking performance.
� In the presence of high measurement noise, not possible to freely increase the gains of the inner loop controller. Under
such conditions, it is not very beneficial to apply an inner loop force controller. As can be seen from Eq. (42), when Kp is
too small, it not only fails to eliminate the destructive effect of the actuator dynamics, but might also increase the uncer-
tainty profile.
� In the case of using a gearbox to increase actuator torque, actuator dynamics are dominant, and so the inner loop force
controller is very effective. On the other hand, when the power transmission system is directly derived, structural dynam-
ics are dominant and the proposed force controller will not be as effective as it would be in geared actuators.
� For the purpose of designing an integral controller for cable forces, we introduce a new sliding surface called sr . By apply-
ing such an algorithm alongside the proportional force controller, one may greatly improve the tacking efficiency. How-
ever, selecting inappropriate gains for this structure may lead to improper position tracking. In other words, there is a
trade-off between position tracking and cable force regulation.

6. Experimental setup

In this section, we verify the proposed controller’s effectiveness by implementing it on an ARAS-CAM suspended cable-
driven robot. ARAS-CAM is a deployable cable-driven robot. Table 1 gives its technical specifications. The ARAS research
group built this robot for applications that require a deployable robot with a large workspace, such as video-capturing
and building 3D printers. The structure of the current version of ARAS-CAM is fixed and is not reconfigurable. However,
in the next versions of the robot, the mechanical structure will be modified such that quick transferring and installation
would be feasible. This in turn, can provide the opportunity to extend the ARAS-CAM applications in scenarios where long
term operation of the robot is not an objective. For example, in the application of using the robot for the movie industry, the
movability of the robot from one filming site to another would be important. Now, owing to its easy calibration and control
procedure, the Deployable ARAS CAM can address this very problem.



Table 1
Kinematic and dynamic parameters of ARAS-CAM.

Parameter unit value

End-effector mass kg 1 or 4.5
End-effector inertia kg m2 ’ 0
Gear ratio Direct drive 1
Gravity acceleration m=s2 9.8
Drum radius cm 3:5
Number of pulleys – 4
Parameter a in Fig. 2 m 3.56
Parameter b in Fig. 2 m 7.05
Parameter h in Fig. 2 m 4.23
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ARAS-CAM has four actuators covering a workspace of 6m � 8m � 4m and 3 controlled degrees of freedom. Hence, the
robot is redundantly actuated and can ameliorate the force distribution in the cables in an enlarged workspace. The robot
implementation procedure is accomplished without using any complex or expensive measuring instruments. Because the
robot is deployable, there is up to a 5% dimension uncertainty in ARAS-CAM’s kinematic structure. In terms of measurement
systems, ARAS-CAM is equipped with three types of sensors, including motor encoders, force sensors, and a stereo camera
capable of providing accurate position measurements for the end-effector. The subsections below provide a brief represen-
tation of the designed system.

6.1. Cable length measurement system

We created a special design for the cable winches such that the drum moves along its axis with a pitch equal to the cable
width. This prevents cable cluttering. Fig. 1 shows this mechanism. By employing this method of cable control, the cable
lengths can be accurately inferred from encoder outputs. Because the encoders used in this robot are not absolute, measuring
the cable lengths requires us to first determine the cables’ initial lengths. This is achieved by equipments like a cheap laser
length measurer. It should be noted that the laser sensor is only used for measuring the initial cable lengths for the calibra-
tion procedure. In this step, the end-effector position is set to a given home point and the robot has no movement.

6.2. Force sensors

To measure cable tension, we designed a load cell sensor that is placed in a structure of three pulleys, as shown in Fig. 5.
Previous versions of this force-sensing mechanism are detailed in [17], in which low weight force sensors are attached to the
Fig. 5. System designed to measure cable force in a fixed location.
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cable near the end-effector. One major drawback of such a design is that weights of the sensors diverts the cable model from
a model for an ideal straight and weightless cable. Moreover, the wires from the sensors overhang and create operational
problems. However, the proposed force measurement system in this paper is designed such that the load cell sensors do
not impose any weight on the cables, and therefore, both wiring and sagging problems are avoided.

6.3. Vision sensor

The third sensor in our robot is a stereo camera. It has a resolution of 640� 480 pixels, and is capable of capturing data at
a rate of 100 Hertz. We constructed an extremely low-cost IR tracking system by attaching an infrared LED to the end-
effector and placing visible-light filters in front of the cameras. After capturing the images, we used the software we devel-
oped in order to perform a simple thresholding operation: two pairs of pixel coordinates corresponding to the image coming
from each camera are extracted and undistorted, and finally used for calculating the 3D world coordinate of the LED. Fig. 6
shows the infrared LED attached to the robot end-effector, and Fig. 6(a) shows the designed stereo vision set. By placing
physical light filters in front of the cameras, and performing the stereo image processing for just two individual extracted
pixels at each measurement step, we significantly reduced the computational load. Thus, we achieved real-time measure-
ments with relatively low-cost processors.

6.4. Real-time control system

Fig. 7 shows a block diagram of the control system. The host computer serves as the user interface and enables the user to
edit and modify the control structure and parameters. The target computer is a real-time processing unit on which the Simu-
link Real-time Target is installed. For the IO’s, we used a number of PCI input/output DAQ boards and developed the neces-
sary custom drivers for them to work within the Simulink real-time target framework.

6.5. Force redundancy resolution

The force distribution problem is one of the most challenging issues in cable-driven redundant robots. In this paper, the
redundancy resolution is addressed in the Eqs. (33) and (34).

According to the fact that the robot has a redundant in actuator, its Jacobian matrix is not square and invertible. In the
other words, there are infinite combinations of cable tension that produce the same desired Cartesian force Fr . Now, all of
these solutions can be achieved through changing the a parameter in Eq. (33). It is important to note that during the robot’s
maneuver, all the cables must stay tensioned thus, all cable forces must be positive. In order to achieve this, the value of a in
Eq. (33) should be selected carefully. Since the task of choosing a proper a value is a challenging one, a large number of stud-
ies has been carried out and published [25–27]. In all of these works, it is assumed that the robot is kept in its feasible work-
space. However, in this paper, without direct computation of a, a new fast algorithm applicable in real-time applications is
proposed. This method is based on the control allocation theory which is investigated in [28–30]. The procedure of the pro-
posed method is shown in Table 2. As represented in this table, the initial cable forces are determined by the Eq. (34). If one
of the cable forces obtained by Eq. (34) has a value less than smin,
sdi < smin; i ¼ 1; . . . ;4 ð53Þ

the force of this cable should be assigned to smin. To determine the other cable forces, the column of the Jacobian matrix cor-

responding to this cable, ith column, is multiplied by smin to produce the Cartesian force Fr . Next, the residual Cartesian force,

F 00r ¼ Fr � F 0r , would be distributed on the other cables except the ith one. Distribution of F 00r on these cables is done through a

square matrix called J 00r which is obtained by removing the ith column of the Jacobian matrix. Computing the inverse of F 00r and
using
s0d ¼ J 00�1r F 00r ; ð54Þ
Fig. 6. Prototype of a stereo vision system.



Fig. 7. Real-time control system.

Table 2
Redundancy resolution algorithm.

Input: (Jr ; Fr)
Output: sd

�sd  �ĴyFr

�sd ¼ sd1 ; . . . ; sdi ; . . . ; sd4

 �T i ¼ 1; . . . ;4

ĴT= bJ1; . . . ;bJ i; . . . ;bJ4h i
3�4

i ¼ 1; . . . ;4

if �sdi < smin

F 0r ¼ bJ ismin

F 00r ¼ Fr � F 0r
J 00r ¼ bJTwithout bJ i
s0d ¼inv(J 00r )F 00r
if s0di < smin

Robot is not in its feasible workspace
else
sd  s0d; smin

� �
end if

else
sd  �sd
end if
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the other cable forces can be calculated. It can be shown that Fr would not be applicable if one of these computed cable forces
is less than smin. In other words, the desired acceleration is out of the feasible workspace. Therefore in this case, redesigning
the end-effector trajectory would be necessary.
7. Experimental results

In this section, we examine the tracking performance of a circular trajectory of the closed-loop system by implementing
the proposed cascade controller. It is worth mentioning that in the experiments, the controller gains are set in such a way
that the stability of the system in the presence of model uncertainty is guaranteed. Table 3 presents all the parameter values
in the real-time controller proposed in Eqs. (24), (32) and (35). Furthermore, We conducted two experiments to investigate
the inner force controller in various robots with different dynamic characteristics. The first experiment uses a light 1 kg pay-
load. As expected, we observed that employing an inner force control loop here improved performance. In fact in this case,
where actuator dynamics are dominant, the application of an inner force controller greatly reduced the effects of nonlinear-
ities and resulted in better performance.

Fig. 8 illustrates the desired trajectory and the closed-loop tracking performance using the cascade control law. The track-
ing error is depicted in Fig. 9. As seen in these figures, the tracking errors are in the order of millimeters in all three direc-



Table 3
The proposed controller parameters.

Kp c K I K Kr

2 0.0005 10 0.1 100

Fig. 8. Performance of tracking a desired trajectory when end-effector mass is 1 kg.

Fig. 9. Tracking error of a desired trajectory when end-effector mass is 1 kg.
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tions. As shown in Fig. 9, the structural geometry of the robot is a cuboid with the dimensions of 4:56� 7:05 m2. Therefore,
the difference in the x and y response is expected. On the other hand, the four actuators used in the ARAS-CAM are not com-
pletely identical and do not perform similarly. These reasons lead to a different results in the two x and y axes. Fig. 10 pre-
sents the cable lengths in this experiment. As can be seen, the cables vary in length by about 0:3 m. Moreover, the measured
cable tension during a robot maneuver is shown in Fig. 11, which indicates that all the forces are positive and all the cables
are under tension. Finally, Fig. 12 illustrates the desired circular trajectory alongside the robot tracking performance. This



Fig. 10. Cable length variation in the experiment when end-effector mass is 1 kg.

Fig. 11. Measured cable forces when end-effector mass is 1 kg.
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figure also shows the tracking error for an SMC controller without any inner force controller in order to demonstrate the
effectiveness of the proposed method. As can be seen, employing the cascade control law has significantly increased the
tracking accuracy. This method is so effective because the inner-loop force controller handles complex nonlinearities such
as friction and motor dead-zone present in a real power transmission system. Moreover, employment of inner-loop force
controllers could lead to better performance in the case of implementing cable force distribution algorithms, which in turn
would prevent cables to become loose. during robot maneuvers. As depicted in Fig. 11, during the circular maneuver of the
robot, omitting the inner loop controller frequently caused the force applied by the second cable to become zero. In other
words, the robot often lost one actuator. Consequently, the tracking performance was much worse.

In the second experiment, the payload mass increased to 4.5 kg. As a result, in this case structural dynamics are domi-
nant; and as mentioned, an inner force controller is not expected to be very beneficial. This hypothesis is supported by



Fig. 12. Performance of tracking a desired trajectory in the x—y plane when end-effector mass is 1 kg.

Table 4
Comparison of robot performance.

End-effector mass Kp c RMS error

First test 1 kg 0 0 0.0084
1 kg 2 0.0005 0.0039

Second test 4.5 kg 0 0 0.0065
4.5 kg 2 0.0005 0.0039

Fig. 13. Tracking error of a desired trajectory when end-effector mass is 4.5 kg.
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the results in Table 4, which compares the results of these two tests in terms of RMS error. As can be seen, the use of an inner
force loop in CDPMs is generally useful, although its advantages are more significant when the end-effector is relatively light
and/or the actuators are gear-driven. As shown in Table 4, in the first test (where actuator dynamics are dominant), the RMS
error after applying Kp ¼ 2 and c ¼ 0:0005 is reduced by as much as 0:0045m. By contrast, in the second test (where struc-



Fig. 14. Measured cable forces when end-effector mass is 4.5 kg.

Fig. 15. Performance of tracking a desired trajectory in the x—y plane when end-effector mass is 4.5 kg.

Fig. 16. Implementation of the proposed algorithm without use of a vision sensor.
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Fig. 17. Implementation results showing cable robot repeatability when a vision sensor is not used.

Fig. 18. Trajectory tracking in the z axis when a vision sensor is not used.

Table 5
Tracking errors in the third test.

RMS error kexk keyk kezk
0.0137 0.0146 0.025
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tural dynamics are dominant), this reduction is just 0:0025m. These results clearly show that in the case of actuator dynamics
dominance, using the force controller is notably beneficial.

Figs. 13–15 illustrate the tracking error, the cable forces, and the desired circular trajectory in the horizontal plane and the
closed loop tracking performance of the SMC controller with and without the force inner loop. As can be seen from these
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figures, the proposed controller has provided suitable tracking performance, while keeping all the cables under tension. Fur-
thermore, we observe that the trajectory is more precisely tracked when the cascade control law is used.

In all the reported experiment results, the IR tracking device is employed as the robot positioning system in order to verify
the final absolute position tracking of the system via different control laws. However, such a measurement system may not
be feasible in a real outfield deployable robotic system (due to the required calibration process and limited field of measure-
ment space). Therefore, two other practical alternatives may be considered. In the first alternative, a block diagram of which
is shown in Fig. 16, the end-effector pose is obtained from a forward kinematics solution taking as inputs the cable-length
measurements from the motor encoders. The main advantage of this alternative is that it uses sensors that are generally
readily embedded in outdoor deployable robots. Its disadvantage is that due to the structural uncertainties of the system,
a non-vanishing tracking error will be seen in the outcome performance. This drawback is unavoidable, so this alternative
is best suited to applications where the absolute positioning is not vital, and robot repeatability is of greater importance.

The second alternative is to take advantage of simultaneous localization and mapping (SLAM) methods and visual odom-
etry techniques to provide a position measurement for the controller. In this approach, the camera may be installed on the
end-effector itself; consequently, workspace limitation is no longer an issue. No sophisticated calibration process is required,
making this a suitable method for deployable robots. However, there are also drawbacks, such as intensive processing power
demands and environment dependent measurement performance.

We chose to use the first alternative in this paper, since it is more economical and much faster compared to the intrinsic
visionary delay. To evaluate the repeatability criteria—one of the most important performance measures in industrial robotic
systems—we designed and implemented another experiment. In this experiment, the motor encoders and forward kinematic
solution are used to provide position feedback, and the robot is commanded to follow a desired circular trajectory with a
0.2 m radius for four turns. As shown in Fig. 17, the robot’s repeatability performance is quite acceptable and absolute posi-
tioning shows a non-vanishing errors in both directions. Fig. 18 also shows the robot performance in the z axis when the
vision sensor is not used. The norm of these errors are separately shown in Table 5 for three cartesian axes. As it can be seen
in Table 5 the error norms in all three axes are relatively large. This means that the path in which the robot end-effector
moves is far from the desired trajectory, but as shown in Fig. 17, this path for all four turns is identical.
8. Conclusions

This paper aimed to expand the applications of cable-driven parallel robots. We considered the idea of a deployable
design, and derived the kinematic and dynamic formulation of a cable-driven suspended robot. We showed that parameter
uncertainties in deployable cable-driven robots can have a strong effect on the kinematic equations, especially the Jacobian
matrix. We then showed that applying a cascade structure in CDPMs can greatly reduce the effects of uncertainty in the actu-
ator dynamics. We proposed a robust cascade controller that would control the robot in the presence of such kinematic and
dynamic uncertainties. Finally, we conducted three experiments to verify the stability criteria for such a controller. Results
showed that our controller achieved a suitable tracking performance and met the repeatability criteria.
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