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Abstract—Increasing the speed and precision of operation in
cable robots is crucial due to the flexibility of cables. On the
other hand, due to the frequent dynamical uncertainties present in
cable robots, providing a robust control method is necessary. The
performance of the fast terminal sliding mode (FTSM) controller
has been investigated in various systems, which ensures that
the state of the system is rapidly converged to the equilibrium
point at a finite time. In this paper, the FTSM controller has
been developed in such a way to be able to track the optimal
robot path in the presence of dynamic uncertainties at different
operating speeds. The main innovation of this paper is to provide
an adaptive robust control method for controlling cable robots
and analyzing the stability of the closed-loop control system
based on the Lyapunov stability theory. In order to demonstrate
the effectiveness of the proposed controller, simulation results,
as well as experimental implementation on ARAS–CAM, a four
cable suspended robot with three degrees of freedom, has been
investigated and it is shown that the proposed controller can
provide suitable tracking performance in practice.

Index Terms—suspended cable-driven parallel manipulator, fast
terminal sliding mode, finite-time convergence, robust control,
adaptive control

I. INTRODUCTION

In a cable–driven parallel manipulator (CDPM) the end

effector is driven by several actuated cables that are connected

to the base frame. Compared to other kinds of parallel robots,

which use rigid body links, CDPMs have numerous advantages

[1]. Large workspace, low stiffness, high accelerations, high

payload to weight ratio and fast employability alongside with

simple structure are just some of the features of these robots.

Usage of CDPMs in practical applications such as material

handling [2], instrumentation [3], rescue missions in dangerous

environments [4], medical rehabilitation equipment [5], posi-

tioning devices [6] has been growing.

The requirement of unilateral tension in cables of CDPMs

divides these kinds of robots into two groups: fully constrained

and suspended. Fully constrained cable robots are designed

Fig. 1. ARAS-CAM cable-driven parallel robot

using redundancy of actuators. In other words, actuators out-

number the degrees of freedom (DOF) of the system by at

least one [7]. Also, extra cables could be used to enlarge

workspace or optimize performance. In order to keep all the

cables under tension in suspended mechanisms, a passive force

such as gravity is used. These kinds of robots are known

as cable–suspended parallel manipulators (CSPM) [8]. Even

though researchers have developed various control techniques

such as iterative learning control [9], optimal control [10],

adaptive control [11], robust control [12] to control CDPMs,

development of a control system for this group of robots is

extremely complicated due to the characteristics of cables, and

kinematic and dynamic uncertainties. These challenges inhibits

finding an exact model for the system and limits the trajectory

tracking of the controller. Sliding mode controller (SMC) is an

effective control method that is used in linear and nonlinear

systems such as robotic manipulators [13], electrical motors

[14] and power systems [15] due to its simplicity, robustness,

reduced order and simple implementation [16]. However, in

this method system state approaches the equilibrium point
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just in an infinite time. As a solution, terminal sliding mode

(TSM) controller has been developed in the literature. By

using a fractional power term in the sliding surface [17], this

controller guarantees the convergence of the system state to

the equilibrium point in a finite time. The proposed solution

entails a new problem that being far away from the origin, the

system converges very slowly to the origin, even slower than

SMC [18]. To solve this problem, fast terminal sliding mode

(FTSM) controller was offered by Yu and Man [19]. In this

method when the system state is far away from the equilibrium

point, the controller approximates SMC dynamics. On the other

hand, by becoming close to the equilibrium point, the controller

behaves like a TSM controller.

The main contribution of this paper is develop an adaptive

fast terminal sliding mode (A-FTSM) controller for the cable

robot in order to obtain suitable the tracking performance in

the presence of dynamic uncertainties. Furthermore to ensure

closed-loop stability sufficient condition for the stability of the

closed-loop system is derived based on the Lyapunov stability

theorem. The proposed controller is implemented on ARAS–

CAM, a four cable suspended robot with three degrees of

freedom, illustrated in Fig1.

The remaining of the paper is organized as follows: Section II

describes the kinematic and the dynamic modeling of ARAS-

CAM. Section III is dedicated to the proposition and design

of the proposed adaptive fast terminal sliding mode control

scheme for the cable-driven robot. The real-time experimental

validations of the proposed control scheme are presented in

Section IV. Section V concludes this paper.

II. KINEMATICS AND DYNAMICS OF ARAS–CAM

A. Kinematics

In this section, kinematics, Jacobian and Dynamic equation

of the robot which is shown in Fig.2 are given. The loop closure

equation for this robot is given as follows

X = XAi
+ liŝi for i = 1, . . . , 4 (1)

in which X is position vector of end-effector (moving platform)

and XAi
, li and ŝi are position of i’th anchor point, cable

length and direction vector of the cable, respectively. Using

Eq.1, inverse kinematic is derived as:

l2i = (X−XAi
)T (X−XAi

) (2)

To derive Jacobian matrix, differentiate Eq.1 respect to time as

follows

Ẋ = l̇iŝi + liˆ̇si (3)

By dot multiple both sides of Eq.3 to ŝi, l̇i is equal to

Ẋ · ŝi = l̇iŝi .̂si + liˆ̇si .̂si (4)

we know that ˆ̇si · ŝi is zero because ˆ̇si = α̇(k̂ × ŝi) in which

k̂ = [0, 0, 1]T : is perpendicular to ŝi. Therefore, velocity loop

Fig. 2. The schematics of ARAS-CAM cable-driven robot

closure of the robot is l̇i = ŝi.Ẋ and Jacobian matrix is as

follows

L̇ = J(X)Ẋ L =

⎡
⎢⎢⎣
l1
l2
l3
l4

⎤
⎥⎥⎦ X =

⎡
⎣xy
z

⎤
⎦

J(X) =

⎡
⎢⎢⎢⎢⎣

(x−xA1
)

l1

(y−yA1
)

l1

(z−zA1
)

l1
(x−xA2

)

l2

(y−yA2
)

l2

(z−zA2
)

l2
(x−xA3

)

l3

(y−yA3
)

l3

(z−zA3
)

l3
(x−xA4

)

l4

(y−yA4
)

l4

(z−zA4
)

l4

⎤
⎥⎥⎥⎥⎦

(5)

B. Dynamics

Let us derive dynamic equations of the robot. Since the mass

of end-effector is dominant compared to the mass of cables,

we might neglect them. Thus with Newton-Euler equation for a

mass with four acting forces on it, dynamic equations is derived

as follows

M(X)Ẍ+C(X, Ẋ)Ẋ+G(X) = −J(X)Tτττ

M(X) =

⎡
⎣m 0 0
0 m 0
0 0 m

⎤
⎦ C(X, Ẋ) = 0 G(X) =

⎡
⎣ 0

0
mg

⎤
⎦
(6)

Some important properties of the dynamics equations are as

follows [20].

P1: The inertia matrix M(X) is symmetric and positive defi-

nite for all X.

P2: The matrix Ṁ(X)− 2C(X, Ẋ) is skew symmetric.

P3: The dynamic model is linear with respect to a set of

dynamical parameters and can be represented in a linear

regression form:

M(X)Ẍ+C(X, Ẋ)Ẋ+G(X) = Ym(Ẍ, Ẋ,X)θθθm, (7)

where Ym(Ẍ, Ẋ,X) denotes the regressor matrix and θm
denotes the vector of dynamic parameters.

III. ADAPTIVE FTSM CONTROL DESIGN

In this section an adaptive FTSM controller for 3-DOF sus-

pended cable driven robot with uncertain dynamics is designed.

In the proposed controller, trajectory tracking is guaranteed
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by combination of finite time sliding mode controller and

adaptation law for dynamic parameters. Before this, the concept

of terminal sliding mode and fast terminal sliding mode is

given.

Lemma 1. [21]: Suppose that a positive function γ(t) satisfies

the following inequality

γ̇(t) ≤ −μγη(t) ∀t ≥ t0 (8)

where μ is a positive constant and η = p
q

in which p, q are

positive constants and p < q. Then γ(t) satisfies the following

inequality

γ1−η(t) ≤ γ1−η(t0)− μ(1− η)(t− t0) t ≥ t0 (9)

and the upper bound of time for γ(t) to converges to zero is as

follows

t0 +
γ1−η(t0)

μ(1− η)
(10)

Lemma 2. [19]: The solution of differential inequality 8

reach to zero in finite time, but if initial condition is large, the

convergence rate is slow at the beginning. In order to overcome

this problem, the term −αγβ(t) in which β ≥ 1 is an odd

integer, is added to right hand side of 8. Therefore, for large

value of γ(t) the term −αγβ(t) is large and convergence rate

is much faster. Upper bound for γ(t) to reach to zero for β = 1
is equal to

t0 +
p

α(p− q)

(
ln(αγ(t0)

1−η + μ)− lnμ
)

(11)

According to the above lemmas, the sliding surface is defined

as what proposed in [22]:

s = ˙̃
X+ΓΓΓ1X̃+ΓΓΓ2X̃

p (12)

in which X̃ = X−Xd is difference between position and de-

sired position of the robot, ΓΓΓ1,ΓΓΓ2 are positive definite diagonal

constant matrices and 1/2 < p < 1. The reason why p should

be larger than 1/2 is as follows. Sliding surface proposed in

Eq.(12) may be interpreted as a a velocity error term

s = Ẋ− Ẋr (13)

where Ẋr = Ẋd − ΓΓΓ1X̃ − ΓΓΓ2X̃
p and Ẍr = Ẍd − ΓΓΓ1

˙̃
X −

pΓΓΓ2X̃
p−1 ˙̃

X. Notice that Ẍr on the sliding surface s = 0 is

equal to

Ẍr = Ẍd −ΓΓΓ1
˙̃
X− pΓΓΓ2diag[X̃p−1

1 X̃p−1
2 X̃p−1

3 ] ˙̃X =

Ẍd +ΓΓΓ1(ΓΓΓ1X̃+ΓΓΓ2X̃
p) + pΓΓΓ2diag[X̃p−1

1 X̃p−1
2 X̃p−1

3 ]

(ΓΓΓ1X̃+ΓΓΓ2X̃
p) = Ẍd +ΓΓΓ2

1X̃+ (1 + p)ΓΓΓ1ΓΓΓ2X̃
p + pΓΓΓ2X̃

2p−1

(14)

Therefore, p should be larger than 1/2 to ensure boundedness

of Ẍr.

Define the A-FTSM control law as follows

τ = −J(X)†(M̂Ẍr + Ĝ−K1s
α1 −K2s

α2) = −J(X)†
(
Y(Ẍr)θ̂m

−K1s
α1 −K2s

α2

)
(15)

where J(X)† = J(X)(J(X)TJ(X))−1 is the right pseudo

inverse of Jacobian matrix J(X), M̂ and Ĝ are estimate of

M and G, respectively, (K1,K2) are positive definite diagonal

matrices, α1 ≥ 1 is an odd integer and 0 < α2 < 1 is ratio of

two odd integers. The regressor form is equal to

Y(Ẍr)θ̂m =

⎡
⎣Ẍr1

Ẍr2

Ẍr3

⎤
⎦ m̂ (16)

and adaption law is as follows

˙̂
θm = −

s
T
Y(Ẍr)

γ
(17)

The block diagram of the proposed controller is shown in figure

3.

Theorem. Consider the 3-DOF redundant cable driven robot

with dynamics formulation 6, the control law 15 and the

adaptation law 17. Then, X̃r converge to zero in finite time.

Proof. Substitute the control law 15 in dynamics formulation 6:

M(X)Ẍ+C(X, Ẋ)Ẋ+G(X) = −J(X)T
(
− J(X)†

(
Y(Ẍr)θ̂m

−K1s
α1 −K2s

α2

))
= Y(Ẍr)θ̂m −K1s

α1 −K2s
α2

(18)

Add −Y(Ẍr)θm = −MẌr −G to both side of Eq. 18:

M(Ẍ− Ẍr) = Mṡ = Y(Ẍr)θ̃m −K1s
α1 −K2s

α2 (19)

in which θ̃m = θ̂m − θm.

Now consider the following Lyapunov function

V =
1

2
s
T
Ms+

1

2
γθ̃2 (20)

Time derivative of 20 is as follows

V̇ = s
T
Mṡ+ γθ̃m

˙̃
θm (21)

By replacing Mṡ from 19 and noticing the fact that θ is a

constant value, one may obtain the following equation

V̇ = s
T
(
Y(Ẍr)θ̃m −K1s

α1 −K2s
α2

)
+ γθ̃m

˙̂
θm = −K1s

α1+1

−K2s
α2+1 +

(
s
T
Y(Ẍr) + γ

˙̂
θm

)
θ̃m

(22)

By adaptation law 17, V̇ is equal to

V̇ = −K1s
α1+1 −K2s

α2+1 (23)

Considering Theorem 1 in [22], it can be shown that the sliding

surface s converge to zero in finite time with the upper bound

T according to lemma 1 as follows

T ≤ t0 +
max

(
s
1−α2(t0)

)
(1− α2)k∗2

(24)

in which k
∗
2 is the minimum element of K2.
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On the sliding surface, the equation of motion of the robot

reduces to
˙̃
X+ΓΓΓ1X̃+ΓΓΓ2X̃

p = 0

Again consider lemma 1 and lemma 2. Upper bound for

convergence time of X to Xd is

T ′ ≤ T +
max

(
X̃

1−p(T )
)

(1− p)γ∗
2

(25)

in which γ∗
2 is the minimum element of ΓΓΓ2.

Remark 1. It is obvious from equations 24 and 25 that in order

to reduce the convergence time, the gains ΓΓΓ2 and K2 shall

increase. Furthermore, as explained in lemma 2, by increasing

K1,ΓΓΓ1 the solution leads to faster convergence.

Remark 2. In contrast to previous works which select α1 =
1, we consider α1 ≥ 1, because for larger value of s, the

convergence time will be reduced.

IV. EXPERIMENTAL RESULTS

A. Description of the robot

ARAS–CAM robot is a four-actuator cable-driven robot with

3-DOF, which is shown in Fig. 1. In this robot, the end-effector

is constrained by four cables connecting it to the anchor points

on the base. The locations of these anchor points correspond

to upper vertices of a hypothetical cube with dimensions

3.56m×7.05m×4.26m. In fact, this cube represents the robot’s

workspace. The coordinates for these points along with the

parameters of the robot are as follows.⎡
⎣xA1

yA1

zA1

⎤
⎦ =

⎡
⎣3.56/27.05/2

4.26

⎤
⎦

⎡
⎣xA2

yA2

zA2

⎤
⎦ =

⎡
⎣−3.56/2

7.05/2
4.26

⎤
⎦

⎡
⎣xA3

yA3

zA3

⎤
⎦ =

⎡
⎣ 3.56/2
−7.05/2
4.26

⎤
⎦

⎡
⎣xA4

yA4

zA4

⎤
⎦ =

⎡
⎣−3.56/2
−7.05/2
4.26

⎤
⎦

m = 4.5Kg

Moreover, the actuators of ARAS-CAM are AC-servo motors

directly coupled to the cables trough a drum mechanism.

Capable of delivering a maximum of 24.4Kg.Cm of torque,

Fig. 3. Block diagram of the proposed adaptive FTSM controller.
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Fig. 4. Actual and desired position of the end-effector in the XY plane.
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Fig. 5. Tracking error of the desired circular trajectory with a radius of 0.4 m.

this motors can create tension as high as 80N in the cables. As

position sensor, a stereo camera modified to be strictly sensitive

to IR light is used. For the purpose of position measurement,

an infrared LED embedded on the end-effector is detected

by the aforementioned vision system. After undergoing some

geometrical transformations, coordinate systems of the vision

system and the robot are co-registered.

Furthermore the gains of the controller are set as follows

α1 = 1 α2 = 7/9 p = 7/9

ΓΓΓ1 =

[
6 0
0 6

]
ΓΓΓ2 =

[
1 0
0 1

]

K1 =

[
10 0
0 10

]
K2 =

[
2 0
0 2

]
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Fig. 6. Measured cable force during the execution of a circular trajectory.

As previously noted, cable tension is of paramount im-

portance in cable-driven parallel robots. For this reason, the

reference trajectory is designed to maneuver the robot within

feasible workspace [23] to ensure that the cable forces are

positive.

B. Results

In order to demonstrate the effectiveness of the proposed

adaptive FTSM controller, its performance on the ARAS-CAM

cable-driven parallel robot is experimentally evaluated and the

corresponding results are illustrated. This experiment has aimed

to evaluate the performance of the proposed controller under

dynamics uncertainties of the robot. It is assumed that the

precise knowledge of the mass of the end-effector and the

friction parameters of the actuators are not known in practice.

For this purpose, a challenging circular trajectory with a radius

of 0.4 m is considered in a constant height. Figure 4 shows the

reference path on the XY plane that the robot follows with a

suitable accuracy. Furthermore, figure 5 illustrates the tracking

errors, which are less than two centimeters in worst case in all

directions.

Figure 6 shows the cable’s tension variations during the

movement of the end-effector. As depicted in this figure none

of cable forces are negative and all the cables are in tension.

Therefore, the designed trajectory for the robot is within the

feasible wrench workspace. Figure 7 shows the cable lengths

within the robot’s path. As shown in this figure, due to the

circular path, length of all of the cables change sinusoidally as

expected.

V. CONCLUSION AND FUTURE WORK

Of paramount importance, trajectory tracking in the presence

of uncertainties is the ultimate goal for all practical robotic

applications. An FTSM-based adaptive controller for cable-

driven parallel manipulators is proposed in this paper, in such
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Fig. 7. Experimental results of cables length variation.

a way to track the desired robot trajectory in the presence

of dynamic uncertainties at different operating speed. In order

to further improve the tracking capabilities of FTSM control,

we have proposed to extend it with an adaptive control loop

based on the dynamic model of the manipulator. The extended

controller benefits from the advantages of both FTSM and

adaptive control. In order to evaluate the effectiveness of the

proposed controller, real-time experiments were conducted on

ARAS-CAM, a cable-driven suspended parallel robot. The

obtained results have shown that tracking performance of the

proposed controller is very suitable in practice. Our future work

focuses on the design of a robust adaptive FTSM in presence

of kinematic and Jacobian uncertainties as well as unmodeled

dynamics.
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