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Abstract—Despite being vastly investigated for underactuated
serial robots, there is less attention paid to controller design of
underactuated parallel robots in the literature. This paper studies
regulation of an underactuated planar parallel cable-driven robot
with three degrees of freedom. First, kinematic and dynamic
equations of the robot are derived, then equilibrium points of
the robot are investigated. By analyzing dynamics of the under–
constrained robot, it is shown that zero dynamic is oscillatory,
thus a control law is proposed by a composition of damping
injection and sliding mode control. One of the greatest advantages
of the proposed controller is that after convergence of the robot
to the desired point, which is proven by Lyapunov theorem, it is
chattering free. Finally, simulation results shows the effectiveness
of the controller in practice.

Index Terms—cable driven parallel manipulator, underactu-
ated robot, regulator, damping injection.

I. INTRODUCTION

Cable Driven Parallel Manipulator (CDPM) is a mechanism
where the End-Effector(EE) is connected to the fixed frame by
the means of several cables which are controlled by motors.
Large work space, great speed and high acceleration are just a
few adventures of these robots. Moreover, because of cable’s
low weight, the actuators require forces of lower magnitude
in order to control the EE. However, cables can only pull, and
therefore, in many applications they contain more actuators
in numbers than the required Degrees Of Freedom (DOF)
to enable ensuring positive tension in all cables [1]. This
needs accurate kinematic parameters which makes CDPMs
less enticing [2].

In order to conquer this drawback and expand the range of
applications of cable-driven robots, underactuated structures
have recently been the focus of researchers. Underactuated
systems have fewer inputs than degrees of freedom and
as a consequence, they can track special trajectory which
complies with their dynamic equations. Fortunately point to
point motion in which the trajectory between two points is
undefined can be implemented [3], [4]. Therefore, cable-driven
robots such as one with a pick and place application have
both advantages and are agile, light and also have simple
mechanism and fewer actuators.

Regulation control of underactuated robots is a challenging
issue for researchers. There is not a global method to control
every robot of this kind. Partial Feedback Linearization (PFL)

which was proposed by Spong in [5] is one of the basic tools
to control underactuated systems. Olfati Saber has classified
some benchmark underactuated systems into eight classes with
respect to specific features of shape variables and external
variables [6]. This method is based on order reduction and
leads to some special structures. Interconnection and Damping
Assignment Passivity Based Control (IDA-PBC) is an alterna-
tive approach which was proposed by Ortega in [7]. In this
method the dynamic equation of the robot is written in port-
Hamiltonian form, then a new kinetic and potential energy
is assigned to closed loop equation and by adding suitable
interconnections and damping terms, asymptotic stability is
ensured. The disadvantage of this method is that it leads to
partial differential equations which are intractable in solution.
Controlled Lagrangian method based on Lagrange equation
which is similar to port-Hamiltonian method was presented in
[8] and [9]. Because of the difficulty in control of underactu-
ated robots, most of the papers focus on a specific robot. For
example, cart-pole system [10], acrobat [11], VTOL aircraft
[12] and underactuated serial robots [13]–[16].

In contrast to serial robots, fewer researchers consider de-
sign or control of underactuated parallel robots. Lefrançois and
Gosselin have studied design and motion control of a planar
serial cable–driven robot [17]. The control algorithm is based
on the use of dynamic equations to plan the trajectory using the
natural frequency of the system. In [18] a 2-DOF cable-driven,
pendulum-like robot was considered. The control algorithm
is based on an off-line trajectory planning, which requires
specific initial conditions. Motion planing for a suspended
mass from a car was proposed in [19]. In [20] design and
optimal control of an underactuated cable-driven micro-macro
robot is presented. Motion control of 3-DOF underactuated
planar cable-driven robot was proposed in [21] and [22].
Sinusoidal and polynomial functions are generated for desired
value of cable’s length respectively. None of the mentioned
papers, has presented no proof of convergence.

In this paper regulation control of an underactuated sus-
pended cable-driven robot is proposed. This planar robot is
under–constrained, this means the EE preserves some freedom
once actuators are locked. The mechanism is similar to the one
proposed in [21] and [22]. First, a simple model is exploited
by ignoring cable dynamics. Then positions in which the
robot can stay with constant inputs are derived. The main
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contribution of this paper is to develop a Lyapunov based
controller to ensure convergence to desired values. Based on
the behavior of zero dynamics, the control law is designed
by composition of PFL, sliding mode control and damping
injection in IDA-PBC method; which leads to asymptotic
stability. The major advantage of this work is that the proof
of convergence is presented, as well as the control law being
chattering free.

The structure of this paper is as follows. Section II presents
kinematic, Jacobian and dynamic equations of the robot.
Equilibrium points of the robot, where the position remains
unchanged by constant inputs, are exploited in section III.
Section IV presents control law and proof of asymptotic
stability. In section V utilizing some simulations, it is shown
that the proposed control algorithm is able to regulate the robot
to a desired value with a chattering free control law. Finally
conclusion and future works are presented in Section VI.

II. KINEMATIC, JACOBIAN AND DYNAMIC ANALYSIS

Fig. 1 illustrates the underactuated planar cable driven robot
and the notations that are used in the kinematic analysis.
As mentioned before, this robot has two cables which are
controlled by motors. The EE has two translational and one
rotational degree of freedom which are determined by [x, y]T

and θ, respectively, thus the robot has 3-DOF with two
actuators.

Loop closure equation of the robot is as follows
−→
P = l1

−→̂
s1 −−→E1 =

−→
B + l2

−→̂
s2 −−→E2 (1)

where
−→
P = [x, y]T is the position vector of EE, ŝ1, ŝ2 are

direction of cables,
−→
E1,

−→
E2 are the position of cable’s attach-

ment points to EE, l1, l2 are length of cables and
−→
B = [b, 0]T .

Eq. (1) can be rewritten in the following form

x = l1 cos(α1) + a cos(θ) = b+ l2 cos(α2)− a cos(θ)

y = l1 sin(α1) + a sin(θ) = l2 sin(α2)− a sin(θ)
(2)

Inverse kinematic and direction of cables are obtained using
the following equations

l1 =
√
(x− a cos(θ))2 + (y − a sin(θ))2

l2 =
√
(x− b+ a cos(θ))2 + (y + a sin(θ))2

cos(α1) =
x− a cos(θ)

l1
sin(α1) =

y − a sin(θ)

l1

cos(α2) =
x− b+ a cos(θ)

l2
sin(α2) =

y + a sin(θ)

l2

ŝ1 =

[
cos(α1)
sin(α1)

]
ŝ2 =

[
cos(α2)
sin(α2)

]
(3)

Forward kinematic has infinite solutions, since the number
of equations is less than that of unknowns.

In order to derive the Jacobian matrix, time derivative of
Eq. (1) is obtained:

v = l1 ˙̂s1 + l̇1ŝ1 − Ė1 = l2 ˙̂s2 + l̇2ŝ2 − Ė2 (4)

Fig. 1. Underactuated Planar cable-driven robot

which is equal to

l̇1ŝ1 = v − l1α̇1k+ θ̇(k×E1)

l̇2ŝ2 = v − l1α̇2k+ θ̇(k×E2)
(5)

where k = [0, 0, 1]T . Dot multiplying the above equation by
ŝ1 and ŝ2, the corresponding Jacobian matrix is found.

[
l̇1
l̇2

]
= J(X)

⎡
⎣ẋẏ
θ̇

⎤
⎦

J2×3 =

⎡
⎢⎢⎢⎣

x−a cos(θ)
l1

y−a sin(θ)
l1

− cos(θ)(y−a sin(θ))
l1

+
sin(θ)(x−a cos(θ))

l1

x−b+a cos(θ)
l2

y+a sin(θ)
l2

cos(θ)(y+a sin(θ))
l2

−
sin(θ)(x−b+a cos(θ))

l2

⎤
⎥⎥⎥⎦

(6)
Dynamics formulation of the robot is given by [21]:

M(X)Ẍ + C(X, Ẋ)Ẋ + G(X) = F = JT(X)τ (7)

X =

⎡
⎣xy
θ

⎤
⎦ M =

⎡
⎣m 0 0
0 m 0
0 0 I

⎤
⎦ C = 0 G =

⎡
⎣ 0
mg
0

⎤
⎦
(8)

In the above equation it is assumed that cables are massless
and infinitely stiff.

Equilibrium Points(EP) of a robot are obtained by solving
equation G(X) = 0. In our robot, G is constant and therefore
it doesn’t have any EP. In the next section we extend the notion
of EP to a general case and then a regulation control law based
on partial feedback linearization and damping injection will be
proposed.

III. EQUILIBRIUM POINTS OF THE ROBOT

In this section a general definition for EP of a nonlinear
system is proposed.

Definition 1. Consider nonlinear input affine system in the
form ẋ = f(x) + g(x)u, then x∗ is an equilibrium point if

f(x∗) + g(x∗)u∗ = 0

in which u∗ is a constant and also a function of x∗.
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Fig. 2. Geometric description of Eq.(9)

We know that in EP, velocity and acceleration of the robot
are zero. Thus according to definition 1, in EP the following
equation must be held.

G = J(X
∗
)T τ∗ (9)

It is clear that equation (9) represents three equations with two
variables τ∗1 , τ

∗
2 . The geometric description of this equation

is shown in Fig.2. Two of the equations pass through the
origin whereas the other one has a bias. For Eq.(9) to have
a solution, the slope of the first and third equations must be
equal. Therefore, the following equation is obtained.

cos(θ∗)
(
2x∗y∗ − by∗ + ab sin(θ∗)− a2 sin(2θ∗)

)
=

2 sin(θ∗)
(
x∗

2 − bx∗ + ab cos(θ∗)− a2 cos2(θ∗)
) (10)

On the manifold shown in Fig.3, (Eq.9) has two equations
with two variables, thus it is solvable if determinant of the
first and second row (or equivalently second and third row) of
JT is not equal to zero. Therefore X∗ is an EP of the robot
if

• X∗ satisfies Eq. 10
• det[J(1),J(2)] �= 0 (det[J(2),J(3)] �= 0) where J(i) is

ith column of J(X)

IV. CONTROLLER DESIGN

In this section a regulator is proposed based on composition
of PFL [23] and Sliding Controller (SC) [1] As explained
before, underactuated robots can track only specific trajectories
which comply with their dynamic equations, however, since
these kind of robots are capable of moving from any point to
a desired point, regulator design is chosen as the subject of
this paper.

Since there are fewer actuators than the DOF, all of the
configuration variables can not be controlled simultaneously,
resulting in the necessity for studying the behavior of in-
ternal dynamic. Based on stability (not asymptotic stability)
of zero dynamics, a damping injection term is added in
order to achieve asymptotic stability at equilibrium point
X∗ = [x∗, y∗, θ∗]T .

At the first stage onlyX′ = [y, θ]T is controlled. The control
law is as follows

[
τ1
τ2

]
=

⎡
⎢⎢⎢⎣

y−a sin(θ)
l1

− cos(θ)(y−a sin(θ))
l1

+
sin(θ)(x−a cos(θ))

l1

y+a sin(θ)
l2

cos(θ)(y+a sin(θ))
l2

−
sin(θ)(x−b+a cos(θ))

l2

⎤
⎥⎥⎥⎦
−T

[
τ ′1
τ ′2

]
(11)

in which τ ′1, τ
′
2 are new inputs. By replacing (11) in (7)

dynamic equation of X′ is given by:

mÿ +mg = τ ′1
Iθ̈ = τ ′2

(12)

Define
ν = Ẋ′d + ΓX̃′, X̃′ = X′ −X′∗. (13)

Then, the sliding surface is as follows

s = Ẋ′ − ν = ˙̃X′ − ΓX̃′ (14)

where Γ ∈ R
2×2 is a PD matrix. The new inputs are designed

as follows[
τ ′1
τ ′2

]
=M′(X′)ν̇ +C(X′, Ẋ′)ν +G(X′)−Ks−K ′sgn(s)

=

[
m 0
0 I

]
ν̇ +

[
mg
0

]
−Ks− k′sgn(s)

(15)

in which K is PD and k′ is a positive integer. Assume that the
exact values of kinematic and dynamic parameters in control
laws (11) and (15) are available. Replacing (15) in (12) closed
loop dynamic is[

m 0
0 I

]
(Ẍ′ − ν̇) +Ks+ k′sgn(s) =M′ṡ+Ks

+ k′sgn(s) = 0

(16)

Consider the Lyapunov function V = 1
2s

TM′s, time deriva-
tive of V is

V̇ = sTM′Ṡ = −sTKs− k′|s| (17)

Fig. 3. Manifold of possible equilibrium points of the robot referring to
definition 1 with a = 0.25, b = 7.9.
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(a) The overall form of the
function φ(x)
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(b) Two level sets of Lyapunov func-
tion in Eq.(21) with φ(x) =
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initial conditions x0 = 20 and x0 = 2
respectively.

Fig. 4. General form of φ(x) and level sets of V (x).

It is clear that s converges to zero, resulting in the convergence
of X̃′ to zero.

Now investigate internal dynamics of the closed loop sys-
tem. Internal dynamic of configuration variable x is deter-
mined by substituting (11) in (7):

ẍ =

[
x−a cos(θ)

l1
x−b+a cos(θ)

l2

]T

·
[

y−a sin(θ)
l1

− cos(θ)(y−a sin(θ))+sin(θ)(x−a cos(θ))
l1

y+a sin(θ)
l2

cos(θ)(y+a sin(θ))−sin(θ)(x−b+a cos(θ))
l2

]−T [
τ ′1
τ ′2

]
(18)

Zero dynamics is obtained from above equation by substituting
y = y∗, θ = θ∗ and τ ′∗1 = mg, τ ′∗2 = 0. After some
manipulation one may find zero dynamics as:

ẍ =
−gζ(x)
η(x)

(19)

where

ζ(x) = 2 sin(θ∗)x2 +
(− 2y∗ cos(θ∗)− 2b sin(θ∗)

)
x+

ab sin(θ∗) cos(θ∗) + by∗ cos(θ∗)

η(x) = −2y∗ sin(θ∗)x+ 2y∗
2

cos(θ∗) + by∗ sin(θ∗)−
ab sin2(θ∗)

(20)

It should be noted that ζ represents the manifold in Eq.(10).
Therefore, the EP of zero dynamic is equal to the EP of the
robot. Now in the following proposition, we prove that the
zero dynamics is stable but not asymptoticly stable.

Proposition 1. Consider a system such as (19) in the form
ẍ+ φ(x) = 0, then its equilibrium point is stable.

Proof. There are various ways to prove this. For example
in [24] the general form of second order systems is analyzed.
In this paper we use Lyapunov theorem to prove it. Consider
the Lyapunov function candidate

V (x) =
1

2
ẋ2 +

∫ x

x∗
φ(x)dx (21)

in which, φ(x) is an ascending function since dφ(x)
dx is positive

in the workspace of the robot. Thus V is positive definite.
The overall form of φ(x) and two level sets of V (x) are
shown in Fig.4. φ(x) is the ratio of two polynomials, nomi-
nator and denominator are second and first order polynomials
respectively. The root of denominator is always between the
roots of nominator, that’s the reason why derivation of φ(x)
is positive. As shown in Fig.4(b), because of the nonlinear
form of

∫ x

x∗ φ(x)dx the level set of Lyapunov function are not
necessarily ellipsoid.

Time derivative of (21) is as follows:

V̇ = ẋẍ+ φ(x)ẋ = ẋ
(
ẍ+ φ(x)

)
= 0 (22)

Thus the EP is stable and V remains in a level set.

The simplest idea for x∗ to become asymptotically stable is
to switch to a linear controller like LQR which was initially
proposed by Spong in [5]. In contrast to some underactuated
benchmark problems, our linearized system is not controllable
about X∗. Thus a new method is required to be developed to
asymptotically stabilize the robot about its EP.

Eq.(19) is similar to a nonlinear mass-spring system which
can be asymptotically stabilized by adding a damper. Like
a pendulum without friction which can be asymptotically
stabilized about downward EP by adding a damping term,
in this paper, usage of a damping term is proposed in the
controller structure. This term is similar to friction, but it is not
physical and is created by the control law. However, because
of the strong input coupling in parallel robots, it is not possible
to add a term only to a subsystem of the robot. Therefore, the
control law should be redesigned.

Theorem. Consider the underactuated cable-driven robot
with dynamics of Eq.(7) and following control law

τ =

[
x−a cos(θ)

l1

y−a sin(θ)
l1

x−b+a cos(θ)
l2

y+a sin(θ)
l2

]−T [−γẋ
0

]
+ τnew (23)

where input τττnew is equal to control law (11) and (15), with
K,Γ, γ > 0 and

k′ = |f(X, Ẋ)γẋ| = |JT3
[

x−a cos(θ)
l1

y−a sin(θ)
l1

x−b+a cos(θ)
l2

y+a sin(θ)
l2

]−T

[−γẋ
0

]
| = |2y

2 cos(θ)− 2xy sin(θ) + by sin(θ)− ab sin2(θ)

2ax sin(θ)− 2ay cos(θ) + by − ab sin(θ)

γẋ|
(24)

Then EP of the robot is asymptotically stable.

Proof. First, Substitute Eq.(23) in Eq.(7), resulting in the
following dynamics:

mẍ+ γẋ = JT1 τnew

mÿ +mg = JT2 τnew

Iθ̈ − f(X, Ẋ) = JT3 τnew

(25)
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where JTi is ith row of JT (X), the nominator of f(X, Ẋ)
is det[J2,J3] and denominator is det[J1,J2], thus on the
manifold (10) the above fraction is equal to one. The dynamics
of y, θ are as follows[

m 0
0 I

]
(Ẍ′ − ν̇) +Ks+ k′sgn(s) +

[
0

f(X, Ẋ)γẋ

]
=

M′ṡ+Ks+ k′sgn(s) + d = 0
(26)

where sss is given in Eq.(14). Note that by using the above
control law, the dynamics of y remain unchanged. f(X, Ẋ)γẋ
is considered as disturbance and is rejected using k′sgn(s).

Now consider the Lyapunov function V = 1
2s

TM′s. Derive
derivation of V respect to time

V̇ = sTM′Ṡ ≤ −sTKs− k′|s| − |d||s| = −sTKs− k′|s|
− |f(X, Ẋ)γẋ||s| = −sTKs

(27)

s converges to zero, and therefore, ỹ, θ̃ converge to zero.
Furthermore, dynamics of x is equal to (19) plus the damping
term γẋ. Therefore x also converges to x∗.

Note that control law (23) was derived by multiplying
inverse of [J1,J2] and damping term γẋ by x dynamics.

Remark 1. The control law is chattering free, because the
gain of sgn is proportional to ẋ which will vanish as x
converges to its equilibrium point.

Remark 2. Since internal dynamics of the robot is ISS with
respect to x, we conclude that zero dynamic is asymptotically
stable. This yields to asymptotic stability of the internal
dynamics.

Remark 3. Positive tension is guaranteed because we suppose
that the robot is in feasible workspace [25] and if one of the
τi’s is zero, the robot will descend and swing around the other
anchor point.

V. SIMULATION RESULTS

This section is devoted to simulation of the proposed control
method on the underactuated cable robot in mind. The physical
parameters of the robot are set to:

a = 0.25m b = 7.9m m = 2Kg I = 0.04Kgm2.

Initial and desired values of the robot are also set to:⎡
⎣x0

y0
θ0

⎤
⎦ =

⎡
⎣ 1
−1
−0.5

⎤
⎦ ,

⎡
⎣x∗y∗
θ∗

⎤
⎦ =

⎡
⎣5.924−3

0.5

⎤
⎦ .

Notice that the desired point satisfies equation (10) whereas
initial point is selected freely. The controller parameters are
set to:

Γ = 0.5I, K = I, γ = 0.8,

where I ∈ R
2×2 denotes the identity matrix. As shown in

figure 5, x is plotted by blue-dotted and y, θ are shown by

green dash-dot and solid red lines, respectively. As shown
in Fig.5(a), without damping injection (γ = 0) y, θ converge
to y∗, θ∗ and x is stable about x∗. By damping injection to
x dynamics, all of configuration variables converge to their
desired values as shown in figures 5(b) and 5(c). Convergence
time is about 25 seconds and can be reduced by increasing
the controller gain K,Γ, however, this leads to larger control
signals. The reason for swing-like movements in transient
response of θ and x is the term f(X, Ẋ) in zero dynamics.
Therefore, these swings lead to oscillatory behavior of inputs
as shown in Fig. 5(d). However as already discussed the
control law is chattering free because the sgn term vanishes
when error converges to zero.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, regulator design of an underactuated cable-
driven robot is proposed. The kinematic and dynamic models
of the robot are derived, and the positions in which the robot
can stay with constant inputs are exploited. By analyzing
zero dynamics of the robot, it is shown that the equilibrium
point is just stable and may have an oscillatory behavior. By
composition of sliding mode control and damping injection in
IDA-PBC method, asymptotic stability of desired position is
ensured by Lyapunov theorem. Furthermore it is shown that
by this structure the control signals are chattering free.

Our future research is focused on generalizing this approach
for a range of underactuated robots, passivity-based analysis
of the designed controller, transforming the equations to
port-Hamiltonian structure, and Considering kinematic and
dynamic uncertainties and developing robust and adaptive
controllers.
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