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A B S T R A C T

Lithium-ion (Li-ion) batteries need very precise monitor of the state of charge (SOC) to ensure a long cycle life.
Hence, a knowledge of the SOC is important for Li-ion batteries. Although SOC cannot be measured directly, it
can be estimated from direct measurement variables based on a model of the battery. Single-Particle-Model
(SPM), a reduced-order nonlinear electrochemical model, is commonly used for this purpose. State-dependent-
Riccati-equation (SDRE) filter is chosen as the estimator due to its high-flexibility in handling the model’s
nonlinearity. However, performance of this filter is limited in presence of uncertainties. To tackle this problem,
in this paper, a switching concept is induced into SDRE filter, in the form of switched estimation error covariance
matrix with a certain frequency. Thus, by changing the Riccati equation dynamic in SDRE filter and proper
adjustment of estimation error covariance matrix eigenvalues, performance and robustness of the common SDRE
filter is significantly improved for Li-ion SOC estimation. To analyze the fidelity of such a filter in further
applications, stability analysis is carried out on a class of nonlinear systems, and ultimate bound of estimation
error is analytically obtained, and the influence of switching is investigated. Simulation results reveal effec-
tiveness of the proposed filter compared to common SDRE filter, extended Kalman filter and variable structure
approaches. Furthermore, experimental results verify the effectiveness of the proposed method in practice.

1. Introduction

Batteries are the vital energy conservation elements used in electric
vehicles. Among various battery types, the most common is Li-ion,
owing to its high energy density [1]. Li-ion batteries are, however,
highly sensitive to their SOC; Over-discharge reduces their rechargeable
capacity and over-charging can lead to serious damages or even ex-
plosion [2]. Thus, SOC is considered essential in both maintenance and
safety contexts. Besides, SOC monitoring keeps the driver informed of
available energy for the remaining travel distance.

SOC is not directly measurable, hence, estimation and evolved filter
hypotheses are exerted in this regard [3]. In these methods, SOC is
estimated through a mathematical model based on the battery terminal
voltage and charge/discharge current. Plenty of models have been de-
veloped for Li-ion batteries, e.g. electrochemical models [4,5]; and
equivalent circuit model (ECM), among which ECM is more prevalent
due to ease of implementation [6–8]. ECM models, however, are not of
sufficient accuracy, due to merely modeling the dominant dynamics
and not the electro-chemicals. In this article, a reduced order electro-
chemical model, called single-particle model [9], is used, which yields a

non-linear model of SOC in terms of battery terminal voltage.
To deal with the model nonlinearity, a non-linear filter is exploited.

Several recognized methods to design non-linear filters are particle
filter [10], variable structure, high-order sliding-mode [11], designing
methods based on the Lyapunov theorem, recursive Bayesian approach
[12], Extended Kalman Filter (EKF), and designing methods based on
state dependent Riccati equation (SDRE) [13]. SDRE method, unlike
EKF, tackles the nonlinearity by parameterizations and not by linear-
ization and elimination of non-linear effects. Furthermore, in compar-
ison with variable structure filter, SDRE filter estimation is more
smooth, and it has less fluctuation. Moreover, to have a better intuition
on SDRE performance a comprehensive comparison considering mul-
tiple filters is reported in the simulation part. SDRE method’s high
degree of freedom contributes to singularity avoidance and un-
observable regions. Despite its advantages, model uncertainty causes
limitations in filter implementation. The model uncertainties cause an
ultimate error bound in estimating the SOC of the battery. Hence, the
filter, used in practice, should be robust to changes in the parameters of
the battery model. Some nominated researches in this area are as fol-
lows. In [14], a recursive total least squares algorithm is utilized along
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with an SOC observer, to eliminate the bias in the identified parameters
of the model as a result of noise in sensors; which also increases the
accuracy in SOC and parameter estimation. A comparative study is
made on model-based capacity estimation algorithms for Li-ion bat-
teries under an accelerated aging test [15]. Further, in [16], a multi-
gain-switching approach is proposed which handles sensor drifts and
modeling mismatches. In [17] to improve the estimation accuracy and
robustness, a Bayesian dual-filtering framework is employed which
estimates parameters and states.

In this article, and as another means for robust estimation, time-
dependent switching-based SDRE filter is proposed, to increase the
structural robustness against model uncertainty. In other words, com-
bination of switching concept and traditional SDRE filter enhances the
SDRE filter performance in presence of uncertainties. Despite the fact
that switching concept is not commonly reported in robust filter design,
the method is widespread in the dual problem, i.e., robust controller
design. In [18], in comparison with pulse-width modulation based
controllers, switched linear equations are employed in the controller
design procedure. Thus, the suggested controller results faster transient
responses. In [19] an economic dispatch problem of renewable hybrid
power systems is modeled as an optimal control problem of switched
dynamic systems. Finally, in [20], a switched consensus-based dis-
tributed controller is presented for each load bus in transmission net-
works.

It is noteworthy that in this method switching concept is realized
through using switched estimation error covariance matrix with a
certain switching frequency determined in filter equations and the main
result of this approach is the adjustment of estimation error covariance
matrix eigenvalues which yields to robustness and lower amount of
ultimate error bound. Given the application of the proposed filter in
estimation theory, stability analysis based on Lyapunov theorem is
elaborated first in this paper. Then robustness analysis is performed and
the impact of switching on the ultimate bound of estimation error is
verified. Various simulations are given to ascertain effectiveness of the
proposed filter, and finally, real-time implementation results of the
filter is given to show proof of theoretical development concept in our
application.

The rest of this paper is organized as follows: In Section 2 the
mathematical preliminaries are addressed. In Section 3 sufficient con-
ditions for stability of the filter estimation error are introduced. Section
4 focuses on the determination of estimation error ultimate bound.
Simulation and experimental results are given in Section 5. Finally,
concluding remarks are given in Section 6.

2. Proposed filter and preliminaries

Consider the following general representation of a nonlinear system.

= + +x t f x u f x u Gw ṫ ( ) ( , ) Δ ( , ) ( )0 (1)

= + +y t h x u h x u D v t( ) ( , ) Δ ( , ) ( )1 0 (2)

where ∈x t R( ) n denotes the system state vector, ∈u t R( ) m is the input,
∈y t R( ) p represents the measured output, w t( )0 and v t( )0 , which stand

for exogenous disturbance inputs, denote process and measurement
noises with unknown statistical properties, respectively, and f x uΔ ( , )
and h x uΔ ( , ) are the model uncertainties.

To use SDRE approach, the equations are rewritten in state depen-
dent coefficient (SDC) form. Referring to [21], most non-linear state
equations are transformable to SDC form. Hence, system dynamics may
be represented by:

= + + + +x t A x x f x B x u B x u Gw ṫ ( ) ( ) Δ ( ) ( ) Δ ( ) ( )0 (3)

= + + + +y t C x x h x D x u D x u D v t( ) ( ) Δ ( ) ( ) Δ ( ) ( )1 0 (4)

where it is assumed that = +f x u f x B x uΔ ( , ) Δ ( ) Δ ( ) and
= +h x u h x D x uΔ ( , ) Δ ( ) Δ ( ) .

Remark 1. In general, SDC form is not unique for multivariable
systems.

Remark 2. If A x( )1 and A x( )2 are two separate factors coefficients of
f x( ), then, = + −A x M x A x I M x A x( ) ( ) ( ) ( ( )) ( )3 1 2 is also a
parameterizations of f x( ) for any matrix function ∈ ×M x R( ) n n. This
holds also for B x( ), C x( ) and D x( ).

Remark 2 is a unique characteristic of SDRE approach, which avoids
singular and unobservable points of the system, resulting in increased
efficacy in design process. Moreover, it is beneficial in fulfilling the
Lipschitz condition, addressed later. The aim is to design a filter which
robustly estimates the state vector x t( ), using measurable output
vector, y t( ). Consider the proposed filter structure as

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= + + − −x t A x x t B x u t K x t y t C x x t D x u ṫ ( ) ( ) ( ) ( ) ( ) ( , )[ ( ) ( ) ( ) ( ) ( )]
(5)

where ̂x t( ) indicates estimated state variable vector and the filter gain
̂ ∈ ×K x t R( , ) n p, is defined as

̂ ̂= −K x t P t C x R( , ) ( ) ( )T 1 (6)

in which, ∈ ×P t R( ) n n is a symmetric matrix, which satisfies the state
dependent differential Riccati equation (SDDRE) (7) with positive de-
finite matrices ∈ ×Q Rn n and ∈ ×R Rp p [22].

̂ ̂ ̂ ̂= − + +−P t A x P t P t C x R C x P t P t A x GQĠ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T1 (7)

Consider the estimation error as

̂= −e t x t x t( ) ( ) ( ) (8)

Subtract (5) from (3) and simplify the error dynamics to reach to:

̂ ̂ ̂ ̂
̂

= − = − +
− − +
e t x x A x KC x e t α x x u

Kβ x x u Kv t w t
̇ ( ) ̇ ̇ [ ( ) ( )] ( ) ( , , )

( , , ) ( ) Γ ( ) (9)

where

̂ ̂ ̂= − + −α x x u A x A x x B x B x u( , , ) [ ( ) ( )] [ ( ) ( )] (10)

̂ ̂ ̂= − + −β x x u C x C x x D x D x u( , , ) [ ( ) ( )] [ ( ) ( )] (11)

and

=
=
=

w f x B x u w
I I G

v I I I h x D x u D v

(Δ ( ) Δ ( ) ) ,
Γ ( ),

( )(Δ ( ) Δ ( ) ) .

T

T

0

1 0

The last step to develop the proposed filter is to include the switching
concept. The switching function may be merged into P t( ), and the
switching frequency is obtained through estimation error stability and
ultimate error bound analysis. Therefore, the filter splits into a family of
subsystems, that can be analyzed in switched systems domain.

3. Stability analysis

In this section, sufficient conditions to ensure the stability of esti-
mation error are presented. To have an insight into the effect of
switching, the ultimate bound of estimation error is obtained.
Moreover, stability analysis is carried out based on Lyapunov method.
As mentioned earlier, a family of subsystems is acquired by switching
with a determined frequency. Switching approach used in this article is
time-dependent and dwell-time theorem may be used to analyze the
stability.

Theorem 1. Consider the non-linear continuous-time system
represented in Eqs. (3) and (4), along with Eqs. ()()()(5)–(7), related
to recommended filter, and assume:

1) The state dependent matrix C x( ) is upper-bounded by

⩽C x c( ) (12)

F. Lotfi, et al. Electrical Power and Energy Systems 117 (2020) 105666

2



where >c 0 is a real number.
2) Consider that the state and input are bounded by the bounds

>σ ρ, 0 for all times ⩾t 0

⩽ ⩽x t σ u t ρ( ) , ( ) (13)

3) The solution, P t( ), of Riccati differential equation is bounded by

⩽ ⩽pI P t p I̲ ( ) (14)

where p p, ̲ are positive real numbers.
4) The SDC parameterization is chosen such that matrices A x( ),

B x C x D x( ), ( ), ( ) are at least locally Lipschitz, i.e., there exist con-
stants >k k k k, , , 0A B C D such that

− ⩽ −A x A x k x x( ) ( ) A1 2 1 2 (15)

− ⩽ −B x B x k x x( ) ( ) B1 2 1 2 (16)

− ⩽ −C x C x k x x( ) ( ) C1 2 1 2 (17)

− ⩽ −D x D x k x x( ) ( ) D1 2 1 2 (18)

for any ∈x x R, n
1 2 with − ⩽x x εA1 2 and − ⩽x x εB1 2 and

− ⩽x x εC1 2 and − ⩽x x εD1 2 , respectively.
Then, the sufficient condition for the stability of the estimation error

dynamics (9), is

̂ ̂+ ⩽ +
−

κ λ λ λ λ2 2 max
t

min
t Q t

min
C x R C x

0
Π( ) Π( )Γ Γ Π( ) ( ) ( )T T 1

(19)

where κ and λ0 are positive numbers, λ0 is determined according to the
switching frequency and = −t P tΠ( ) ( )1 .

Remark 3. For any arbitrary square matrix A, λmax
A and λmin

A denotes the
maximum and minimum eigenvalues of A, respectively.

Before proving the sufficient condition of stability, presented in Eq.
(19), it is necessary to point out the assumptions of the proposition.
These are represented in the form of 3 remarks. Then the proof of the
theorem is exposed.

Remark 4. The second assumption is not a strict condition, because, the
state variables representing physical quantities, are often bounded.
Moreover, bounded control input is quite obvious. Therefore,
inequalities in (13) are easily verified.

Remark 5. The inequality (14), the key factor in stability analysis, is
closely related to observability and delectability characteristics of the
observed system. This is related to the boundary of the Riccati equation
solution, based on the following three conditions [23]:

1- The designing matrix Q is positive definite and matrix A x( ) has
limited norm.

2- The SDC form is chosen in a way that A x C x{ ( ), ( )} is uniformly
detectable according to Definition 1.

3- The initial condition P (0) in (7) is positive definite.
Definition 1. A x C x{ ( ), ( )} is called a parametrization of uniformly
detectable SDC of the system if a bounded matrix, xΛ( ), and a real
number, >γ 0, exist such that the following inequality is satisfied for
any ∈ω x R, n:

+ ⩽ −ω A x x C x ω γ ω[ ( ) Λ( ) ( )]T (20)

Remark 6. The Lipschitz condition in the fourth assumption is
commonly exerted to SDRE problems [24], and is not to be
considered as unprecedented limiting condition.

Proof. The following lemma is needed to complete the proof of the
theorem in two steps.

Lemma 1. Consider a family of subsystems introduced by (9). Assume
Lyapunov candidate function Vp for subsystem p and two class- ∞K
functions α1 and α2 and a real positive constant λ0 such that

∣ ∣ ⩽ ⩽ ∣ ∣ ∀ ∀ ∈α x V x α x x p( ) ( ) ( ) , ϱp1 2 (21)

∂
∂

⩽ − ∀ ∀ ∈
V x

x
f x λ V x x p

( )
( ) 2 ( ) , ϱp

p p0 (22)

⩽ ∀ ∀ ∈V x μV x x p q( ) ( ) , , ϱp q (23)

where ϱ is the set of subsystems. Then, the non-linear continuous
switched system (9) is stable for every switching signal with average
dwell-time τa if

>τ
μ

λ
log
2a

0 (24)

where μ is a positive constant.

For the proof of Lemma 1 refer to [25]. Note that inequality (21) is
valid due to Assumption 3. Hereafter, establishment of (22) and (23) is
studied in two steps.

Step 1: The sufficient condition to establish (22) is obtained analy-
tically. In this regard, the following preparation is needed.

Lemma 2. Consider the positive definite matrix R with ×p p dimension
and assume that we have ⩾R rI̲ . Further, consider matrix ̂K x t( , ) and
non-linear terms ̂α x x u( , , ) and ̂β x x u( , , ) defined by (10) and (11).
Then, according to the mentioned four assumptions, the real numbers

>ε κ, 0 exist such that matrix = −t P tΠ( ) ( )1 satisfies the following
inequality for any ̂− ⩽x x ε( ) :

− ⩽e t t α Kβ κ e t( )Π( )[ ] ( )T 2 (25)

where following holds for ⩽e t ε ε ε ε( ) min( , , , )A B C D :

⎜ ⎟=
+

+ ⎛

⎝
+ ⎞

⎠
κ

k σ k ρ
p

c
r

k σ k ρ
( )

̲ ̲
A B

C D
(26)

Proof. Applying triangle inequality and using equations
̂ ̂= −K x t P t C x R( , ) ( ) ( )T 1 and =P IΠ by considering the relations

(12)–(18), yields to the following inequalities:

̂ ̂ ̂
̂

⩽ − + −
⩽ + −

α x x u A x A x x B x B x u
k σ k ρ x x
( , , ) [ ( ) ( )] [ ( ) ( )]
( )A B (27)

̂ ̂ ̂
̂

⩽ − + −
⩽ + −

β x x u C x C x x D x D x u
k σ k ρ x x
( , , ) [ ( ) ( )] [ ( ) ( )]
( )C D (28)

then exploiting ⩽Π p
1
̲
and ⩽−R r

1 1
̲ for ̂− ⩽x x ε with =ε min(

ε ε ε ε, , , )A B C D , yields to

̂ ̂

̂ ̂

⎜ ⎟

⎜ ⎟

⎛
⎝

− ⎞
⎠

⩽ − −

+ − ⎛
⎝

+ ⎞
⎠

−

+e t t α Kβ x x x x

x x k σ k ρ x x

( )Π( )T k σ k ρ
p

c
r C D

( )
̲

̲

A B

(29)

Hence, considering (26) the inequality (25) is immediately
concluded. □

Stability analysis of switched systems using direct method of
Lyapunov theorem may be accomplished by selection of merely one
Lyapunov function for all subsystems, or distinct Lyapunov functions
for each subsystem. Since the former is slightly conservative, analysis is
performed using the latter. To this end, the following Lyapunov func-
tions are defined for subsystems and the derivatives are obtained and
analyzed.

=V e t t e t t e t( ( ), ) ( )Π( ) ( )T (30)

where = −t P tΠ( ) ( )1 and = − PΠ̇ Π ̇Π, also considering the establish-
ment of (14), the following holds

⎜ ⎟⩽ ⎛

⎝

⎞

⎠
⩽

p
e t V e t t

p
e t1 ( ) ( ), 1

̲
( )

2 2

(31)
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where p̲ and p are the minimum and maximum eigenvalues of matrix
P t( ). Eq. (31) indicates that V e t t( ( ), ) is positive definite and decres-
cent, and thus an appropriate Lyapunov candidate. Next, the deriva-
tives of Lyapunov candidate along the trajectories of (9) are analyzed as
follows.

= + + =
− + −

− + − −
+ + − −
+ − + −

−

V e t t e t e t t e t e t t e t
e A KC e e A KC e

e Q e e C R Ce e Ae e A e
w e e w v K e e Kv
α Kβ e e α Kβ

̇ ̇ ( )Π( ) ( ) ( )Π̇( ) ( ) ( )Π( ) ̇( )
( ) Π Π( )

ΠΓ Γ Π Π Π
Γ Π ΠΓ Π Π

( ) Π Π( )

T T T

T T T

T T T T T T T

T T T T T T

T T

1

(32)

After substitution of K from Eq. (6) for some terms and some simplifi-
cations, the following result is obtained:

̂
̂ ̂ ̂

= +
+ − + −
− −
− −

−

− −

V e t t w t w t t e t
α Kβ t e t e t t α Kβ

e t t Q t e t v t R C x e t
e t C x R C x e t e t C x R v t

̇ ( )Π( )Γ ( ) ( )Γ Π( ) ( )
( ) Π( ) ( ) ( )Π( )( )

( )Π( )Γ Γ Π( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T

T T

T T T

T T T T

1

1 1 (33)

By applying Lemma 2, the above equation will be as follows:

̂ ̂
̂ ̂

⩽ − −
− −
+ + +

− −

−
V v t R C x e t e t C x R v t

e t t Q t e t e t C x R C x e t
e t t w t w t t e t κ e t

̇ ( ) ( ) ( ) ( ) ( ) ( )
( )Π( )Γ Γ Π( ) ( ) ( ) ( ) ( ) ( )
( )Π( )Γ ( ) ( )Γ Π( ) ( ) 2 ( )

T T T

T T T T

T T T

1 1

1

(34)

hence, considering the following relation for any arbitrary matrix A:

⩽ ⩽λ e t e t Ae t λ e t( ) ( ) ( ) ( )min
A T

max
A2 2 (35)

yields

̂⩽ − + + − −V κ λ λ e t w t t v t R C x

e t

̇ (2 ( )) ( ) 2 ( )Γ Π( ) 2 ( ) ( )

( )
min
I

min
II T T T2 1

(36)

where =λ λmin
I

min
t Q tΠ( )Γ Γ Π( )T

and ̂ ̂=
−

λ λmin
II

min
C x R C x( ) ( )T 1

.
Obviously, (36) is a quadratic function of e t( ) by which analysis of

that, may get us to the ultimate bound of the estimation error. Now if

< +κ λ λ2 min
I

min
II (37)

then the obtained quadratic function in (36), attains its maximum ε at

= −
− +

e t( ) η
κ λ λ2[2 ( )]min

I
min
II

2
such that

= −
− +

ε
η

κ λ λ
( )

4[2 ( )]min
I

min
II

2 2

(38)

where η2 indicates the amount of uncertainty in the model. This clari-
fies the existence of ultimate bound for the estimation error. Rewrite
(36) as

⩽ − +V e t t α e t ε̇ ( ( ), ) ( ( ) )3 (39)

where α e t( ( ) )3 is a positive definite function. Considering (31), the
sufficient condition for (22), is apparantly equivalent to (19).

Step2: Assume that Lyapunov function for subsystem p is
=V e t eΠ ( )T

1 1 0 1 and =V e t eΠ( )T
2 2 2, at times t1 and t2. Having >t tΠ( ) Π ( )0

and taking (19), relation >e e1 2 is surely verified. Now, if switching
happens at time t3, the Lyapunov function would be =V e t eΠ ( )T

3 3 0 3,
hence using the reality > >e e e1 2 3, (23) is proved as well. □

Remark 7. If (14) holds and Π0 is the initial condition for tΠ( ), Then,
>t tΠ( ) Π ( )0 is a rational assumption for all >t 0 before the switching

happens.

Remark 8. The switching frequency and the sufficient condition for
stability are interrelated through (24).

Remark 9. We claim that the switching on the matrix P t( ) is an
effective tool to maximize λmin

tΠ( ) and minimize λmax
tΠ( ); since, it induces

(19) to hold for higher bound of input and state variables according to
(26). Although high frequencies of switching seem to yield better
results, a compromise is required between switching frequency and λ0,

according to Eq. (24). Since the switching frequency is directly used in
(19) and problems could arise by its excessive increase, it must be
determined in an appropriate interval.

4. Ultimate bound analysis of the estimation error

In this section, the uncertainty amount which was formerly dis-
played as η2 is expressed in parameters. Likewise, the ultimate bound of
the estimation error for this uncertainty is obtained analytically.

Theorem 2. According to (36) and (39) consider η2 as

̂= − =−η w t t v t R C x ψ λ2 ( )Γ Π( ) 2 ( ) ( ) ( )T T T
max
F2 1

1
2 (40)

where matrices ψ and F are defined as

=ψ w v( )T T T (41)

= ⎛

⎝
⎜

−
−

⎞

⎠
⎟

−

− − −
F

C x R
C x R R C x C x R

4 Γ Π Γ Γ Π (^)
(Γ Π (^) ) (^) (^)

T T T

T T T T

2 1

1 1 1 (42)

If the sufficient condition (19) holds, then error ultimate bound will be:

⎜ ⎟+ −
⎛

⎝

⎞

⎠

η
λ λ κ

p
p2 ̲min

I
min
II

2
1
2

(43)

Proof. if (19) holds, referring to (39) the term α e t( ( ) )3 will be
positive definite and error ultimate bound results from ε. Consequently,
to find the ultimate bound of estimation error, choosing =ε α e t( ( ) )3
and using the following equation from (36)

= − − + − +α e t κ λ λ e t η e t ε( ( ) ) (2 ( )) ( ) ( )min
I

min
II

3
2 2 (44)

yield to,

= −
− +

−α ε
η

κ λ λ
( )

2 ( )min
I

min
II3

1
2

(45)

Furthermore, ∀ ⩾ +t T t0 inequality (46) is verified [26].

⩽ −e t α α ζ( ) ( ( ))1
1

2 (46)

where ζ is obtained from (45) and the two class-KL functions, α1 and α2

are obtained from (31). Using (46), the error ultimate bound is given in
the form of (43). □

Remark 10. The amount of uncertainty η2 is obtained with analysis of
e t( ) coefficient in (36).

Remark 11. Besides controlling the boundaries of P t( ) (or tΠ( ))
eigenvalues, as mentioned in Remark 9, switching alleviates the error

bound in (43), by increasing λmin
I , and decreasing κ and also ( )p

p̲

1
2 , and

therefore, is very effective.

5. Simulation and experimental results

5.1. Simulation studies

In this section, simulation results of the proposed filter are pre-
sented in MATLAB and the filter performance is verified in presence of
model uncertainties. As mentioned earlier the objective is to estimate
the Li-ion battery SOC via measurement of battery terminal voltage. In
this regard, a reduced order electrochemical model of Li-ion battery,
called SPM, is used, which models electrochemical phenomena besides
the dominant physical relations [9].

SPM is based on approximation of the electrodes as spherical par-
ticles along with volume-averaging assumptions which leads to two
following linear PDEs:
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where ±cs is the Li-ion concentration of the positive and negative elec-
trode and I is the charge/discharge current.

Assuming the positive electrode Li-ion concentration is approxi-
mated as a function of the negative one and conservation of the number
of Li-ions in the cell [27] leads to observable forms for Li-concentration
states when the negative electrode diffusion PDE is discretized using the
method of lines technique (based on finite central difference method).
Next, considering spatial domain is discretized into five nodes, where
C C C C C[ , , , , ]S S S S S0 1 2 3 4 are the Li-ion concentration at the nodes (Fig. 1a)
yields to the following linear state space:
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where, I is charge/discharge current, and the parameters a and b are
defined as =

−
a D

Δ
s
2 and = − −b a F AL

1
Δs

in which, =Δ R
M is the discretization

step. SPM diagram is presented in Fig. 1a where, +M 1 is the number of
considered nodes. Moreover, the last variable state CS4 is representing
the SOC of the battery1.

Remark 12. CS0 is not considered in (48) because, it does not affect any
of the state equations and considering its dynamic, will make the state
space unobservable.

The battery terminal voltage in terms of state variables may be
expressed by the following nonlinear equation.
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Model parameters and their values used in simulations are given in
Table 1 as proposed by [9]. To have a better intuition on the nonlinear
relation, represented in (49) between the battery terminal voltage and
its SOC, Fig. 1b is illustrated. Clearly, the terminal voltage is a nonlinear
function of lithium concentration at the last node (final state variable).
This justifies usage of a nonlinear filter.

Remark 13. To check the assumptions of section III for SPM model, 1.
State dependent term in (49), is

= + −+ −SDT U k C k U C( ) ( )S S1 4 2 4 (50)

in which
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= + −
+ − +

+U x
x

3.5796 0.51163arctan(4.54 60.95 )
0.46309arctan( 203.36 202.43)

p

p (52)

where = −x C C/n S s max4 ( , ) and = + +x k C k C( )/p S s max1 4 2 ( , ). To obtain ̂C x( )
one can use ̂ ̂=C x( ) x

SDT , where the SDT is given in (50). Recalling that

̂x represents the SOC of the battery, it is obvious that there exists an
upper-bound for matrix ̂C x( ). Thus, the first assumption is valid.

2. Input and state variables are physical values for a stable system,
and thus are bounded. Therefore, the second assumption is valid.

3. The third assumption is checked through Remark 5 and its con-
dition (20). In this regard, it is enough to show that ̂ ̂ ̂+A x x C x( ) Λ( ) ( ) is
negative definite for a bounded matrix ̂xΛ( ). We have single output
besides using (50) to obtain ̂C x( ). Moreover, ̂C x( ) is bounded and is not
null, since it represents the voltage of the battery; thus, it is invertible.
Therefore, ̂xΛ( ) may be chosen equal to ̂− −I C xΘ ( ( ))n

1; where, Θ is a
positive constant and In is identity matrix with corresponding dimen-
sion. According to (48) the dynamics of state variables is linear and
yields to a constant matrix ̂A x( ). Thus, Θ may be chosen such that
relation (20) holds, for some γ .

4. Lipschitz condition for matrices ̂A x( ) and ̂B x( ) results im-
mediately from linearity property of dynamics. Also, ̂C x( ) is Lipschitz
due to continuity. Moreover, ̂D x( ) is constant with respect to ̂x , and
thus Lipschitz. Therefore, assumption four is also valid.

Fig. 2 shows the flowchart of the whole algorithm. To study the
efficiency of the proposed filter in presence of uncertainty, simulations
are carried out, taking uncertainties as =− −D u D_ 10000s s and

=− −a u a_ 0.0001s s and =R u_ .221f (Nominal values are reported in
Table 1), and initial guess for SOC estimation as 20%. Performance of
proposed robust filter is benchmarked against three filters, conven-
tional SDRE, EKF and variable structure. It should be noted that the
following equation has been used in implementing the variable struc-
ture filter.

̂ ̂ ̂ ̂ ̂ ̂ ̂
̂ ̂ ̂

= + + − −
+ − −
x t A x x t B x u t L y t C x x t D x u t
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(53)

In which the term …L [ ]1 is used to handle the nominal error and the
term …L sgn [ ]v is due to the uncertainty in the model. Also, the fol-
lowing is used to implement the EKF filter.
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where V is the battery terminal voltage in (49). Obviously, the only
state variable that appears in the output is CS4. Hence, we will have just
the output vector to be linearized in (54). Simulations were initially
performed for a case in which the design parameters Q and R of the
EKF, common SDRE and the presented filter were, according to the
proposed algorithms, equal to the covariance of process and measure-
ment noise [22]. In addition, the design parameters of variable struc-
ture filter are in accordance with [9]. Note that, all filters use the same
initial guess of SOC estimation and for proposed robust filter, the
amount of matrix P t( ) is switched to its initial value in Riccati Eq. (7)
frequently to realize the switching concept.

Fig. 3 shows the results of SOC estimation for a Li-ion battery in
presence of aforementioned uncertainties, using conventional SDRE,
EKF, variable structure and the proposed filter. As represented in this
diagram, the results of the conventional SDRE and EKF are not appro-
priate, as these two filters cannot perform well against uncertainties of
initial conditions and model. On the other hand, the results of the
proposed SDRE and the variable structure filters acceptably match the
real SOC. Note that, in this simulation, R and Q parameters of the
proposed filter are exactly equal to R and Q in the EKF and common
SDRE filter.

Now let’s look at the simulation results by tuning the R and Q
parameters for the EKF, common SDRE and the proposed filter.

Note: In this case, increasing Q and properly tuning R leads to
higher observer gains. Hence, dependence of the filters on the model
decreases, and consequently, robustness to model uncertainty increases.

Results in Fig. 4 are achieved for charges below 40%. This is due to1 For further details refer to [9].
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the importance of SOC estimation in this region, to stop discharging the
battery and prolonging its life.

As shown in these diagrams, the common SDRE filter has less var-
iance in SOC estimation error, however, it has more bias. EKF method
yields a fairly good result, while its large variance is due to the choice of
large Q matrices that have resulted in large gains. Compared to others,
the variable structure approach has more variance, but less bias in its
estimation error. The proposed method, as shown, improves perfor-
mance of the common SDRE filter, decreases the bias of estimation
error compared to common SDRE and EKF and lowers variance com-
pared to variable structure filter. Considering that variance is more
destructive than bias in estimation error, the proposed filter is com-
parable to the fixed-gain variable structure filter, and therefore, the
common SDRE filter is empowered by switching to provide robust
performance.

Next, the error ultimate bound in two cases of conventional filter
and proposed filter are studied in Fig. 5, to observe the impact of
switching. Eq. (43) is used in both filters to obtain estimation error
bound. According to the figure, estimation error ultimate bound is
much lower in proposed filter compared to conventional one. More-
over, to assert the effect of switching on maximum and minimum ei-
genvalues of matrix =−P Π1 , the two parameters are reported in Fig. 6.
As depicted, maximum and minimum eigenvalues of Π are lower and
higher respectively for the designed filter. Furthermore, the input dis-
charge current is considered as it is in the pulse discharge battery test
with current changes on the acceptable discharge current interval of Li-
ion batteries.

To further clarify the robustness of the proposed filter, a Monte
Carlo simulation is performed on 1000 different battery types, in which
Rf and −as along with −Ds are the chosen parameters to be stochastic in a
range from 50% to 150% of their nominal values. Note that these para-
meters are set to be the uncertain parameters in output model and state
dynamic model of the battery, respectively. Additionally, process and
measurement noise are taken into account to consider almost all the
uncertainties. To have a better analysis on the performance of the
presented filter, a comparative study is performed among different
approaches, and the design parameters are set to be the same for the
common SDRE, EKF and proposed filter.

Fig. 7a shows the mean value of SOC estimation error for each si-
mulation. As it is seen, the performances of the designed filter and
variable structure approach are close to each other and much better
than the other two methods. To get a better intuition, Fig. 7a is mag-
nified in Fig. 7b which indicates the effect of switching method on in-
creasing robust performance of the proposed filter; as the designed filter
result is significantly improved in comparison with the common SDRE
due to the switching on the estimation error covariance matrix. Fig. 8a
focuses on the variance of SOC estimation error of the four mentioned
approaches. Obviously, the variance of variable structure estimation
error is much higher than the other methods as expected due to its high

Fig. 1. (a): SPM model schematic [9]; (b): Battery terminal voltage vs. SOC in constant discharge current.

Table 1
Li-ion battery model parameters [9].

Series parameter Series definition and unit Series values

A Current collector area (m2) 0.18
±as Specific surface area (m2

m3 )
×3.48 105

+cs max, Solid phase Li-ion saturation 22806
−cs max, concentration (mol

m3 )
30555

±Ds Effective diffusion coefficient × −5 10 14

in solid phase (m2

s
)

±L Length of the electrodes (m) × −3.4 10 5

±R Radius of solid active particle (m) × −5 10 6

Rf Contact film resistance (Ω) 0.222
±εs Active material volume fraction 0.58
+io Exchange current densities 0.0016
−io 0.2

k1 Constant − 0.3944
k2 Constant 20247
R̄ Universal Gas Constant (J/mol K) 8.3144
T Temperature (K) 298

±U Open Circuit Voltage (V)
±a Charge Transfer Coefficient 8.3

Superscript
± positive/negative electrode

Fig. 2. The flowchart of the whole algorithm.
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gains. To discuss more accurately, Fig. 8b shows a magnified view of
Fig. 8a which offers a good intuition on the designed filter performance;
although its variance is higher than the other two methods through
using switching, it is much lower in comparison with the variable

structure filter.

5.2. Experimental results

In this section, the proposed filter is implemented to estimate SOC of
a Li-FePO4 battery cell. The battery model No. is 18650 and the
nominal capacity and the rated voltage is 1400 mAh and 3.2 V re-
spectively. To demonstrate performance of the proposed filter in SOC
estimation, pulse discharge test is employed in which the current is
switched. To clarify, Fig. 9 indicates the measured current. The model is
tuned to work in Li-FePO4 battery range of voltage. To implement the
filter, a PCB is designed and produced which is illustrated in Fig. 10. As
it is seen, to increase the measurement accuracy, a 16-bit external ADC
is utilized. Output voltage and discharge current of the cell is measured
by this module. The sampling rate for this module is limited to 860 Hz
that is adequate for the pulse discharge battery test as we have switched
current with less frequency. Furthermore, to measure the current, a
shunt resistor is utilized which is shown with a red bounding box in
Fig. 10b; Note that the measurement sampling time is 0.06sec. Having
these two variables, the state of charge can be estimated in real-time.
The SPM model, used for SOC estimation, is highly sensitive to internal
resistance of the battery. Thus, uncertainty in this parameter yields to

(a) Result for the entire simulation time (b) Magnified result for a specific interval

Fig. 3. Estimation results for the filters, using Q and R as covariance of process and measurement noises.

Fig. 4. Estimation results for tuned filters using large Q and proper R.

Fig. 5. Bound for estimation error in two cases, common filter and the designed
filter.
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(a) λΠ
max (b) λΠ

min

Fig. 6. Minimum and maximum eigenvalues of
matrix Π.

(a) (b) Magnified

Fig. 7. Mean of SOC estimation error as a result of Monte Carlo simulation.

Fig. 8. Variance of SOC estimation error as a result of Monte Carlo simulation.

Fig. 9. The switched discharge current in the experiment.

F. Lotfi, et al. Electrical Power and Energy Systems 117 (2020) 105666

8



large estimation errors. The following concept is used to measure the
internal resistance approximately, in a way that uncertainty is mini-
mized in this parameter. At the first sample time, when discharge
current is zero, the SOC is estimated with a small error (without effect
of internal resistance uncertainty(49)). In the next sample time, when
the current is not zero, using the fact that SOC does not abruptly
change, the internal resistance can be tuned to the approximately right
value.

Remark 14. The most important limitation in filter implementation is
due to the model (SPM), not the proposed filter; this model is not

suitable for high currents.

The experimental result of measured and estimated battery terminal
voltages, is shown in Fig. 11. The designed filter estimations closely
agree with the actual voltage of the battery. Obviously, the filter cannot
properly work for lower voltage levels (below minimum acceptable
voltage of Li-FePO4), because of model limitations, and hence the es-
timation filter is executed in the first two-third time of the experiment.
Note that, during battery discharge, the terminal voltage descends until
the load removal, and is retrieved to a steady state after a while.
Measuring the battery terminal voltage at this phase, yields estimated

Fig. 10. The designed and produced PCB to implement the proposed method.

(a) (b) Magnified

Fig. 11. Estimated battery terminal voltage for the proposed filter and variable structure method.

(a) (b) Magnified

Fig. 12. Estimated SOC for the three approaches.
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SOC as approximately 35%. Hence, to optimize the battery life time, it is
recommended to cut off the current whenever the estimated SOC is 35%;
due to high rate of decrease in the terminal voltage level of battery.

To further investigate the effectiveness of the proposed filter, results
for two common methods, variable structure and Coulomb approach
are also reported. Fig. 12 shows the charge estimation results for the
three approaches, Coulomb, switched-SDRE and variable structure
filter. As it can be clearly seen in this figure, the estimations of the
variable structure filter fluctuates more than the proposed filter. Fur-
thermore, variable structure filter would have more fluctuations, if the
current profile is pulsed. As a result, using the switched-SDRE filter is
more reasonable to have less estimation variance. As it is indicated in
Fig. 11, although the estimated voltage of the variable structure filter
fluctuates more, the proposed filter estimation changes smoothly.
Moreover, as shown in Fig. 12, Coulomb approach gives poor estima-
tions of SOC; because this method requires precise knowledge of initial
condition, and exact measure of charge/discharge current which is
unavailable due to inaccuracy in current sensor. Furthermore, a lookup
table is devised for cut-off SOC in this method; nevertheless, by en-
vironmental condition changes, cut-off SOC will be significantly al-
tered. However, the proposed filter uses two quantities, voltage and the
charge/discharge current in this regard. Thus, the SOC estimated by the
proposed filter is much more accurate compared to that of the Coulomb
method in variable environment using inaccurate current sensors.

Remark 15. As shown in Figs. 3, 4 and Figs. 7 and 8, the performance
of the proposed filter and the variable structure filter is somewhat
similar and superior to other filters. The distinguishing feature of both
filters is their robustness to model uncertainties, which is more
preferable in the proposed filter, as it shows less estimation
fluctuations compared to the variable structure filter. The variable
structure was used as a benchmark in experiments, since it is more
robust compared to most of the common filters. As shown in Fig. 12, in
experiments, the performance of the proposed filter is similar to the
performance of the variable structure filter. However, the estimates
obtained using the proposed filter have less variance compared to the
estimates of variable structure filter, which evidences the superiority of
the switched SDRE filter in terms of robustness. It is seen in Fig. 7 that
the mean error of the estimation of the variable structure filter is
slightly lower than the proposed filter, which is also evident in Fig. 12.

6. Conclusions

In this article, a switched SDRE filter was introduced for robust SOC
estimation of Li-ion cells. Its stability was asserted applying direct
Lyapunov method and dwell-time Theorems. Applicability of the pro-
posed time-switching in robustness enhancement of conventional SDRE
filter is fully addressed as stated in the Remarks 9 and 11. Effectiveness
of this approach in estimation of SOC of Li-ion battery was verified
through simulations using SPM model, and discussion over the com-
parison of four presented, common SDRE filter, EKF and variable
structure filters on performance and robustness indicates that the pre-
sented filter is comparable to variable structure one. Moreover, ex-
periments were conducted, which indicate this filter is more efficient
and robust in comparison with common Coulomb approach, when
using inaccurate current sensor, uncertain initial condition and in
presence of environmental uncertainties.
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