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Abstract—Despite the amount of research reported on state
estimation and sensor fusion in the field of robotics, there
are no well known low-cost solutions for a referencing system
to determine the accuracy of developed methods by providing
a suitable ground truth for them. In this paper an efficient
and accurate 6–DoF pose measurement system is proposed and
implemented on a spherical parallel robot using IR LEDs. This
approach uses the perspective-n-point algorithm to derive the
transformation matrix representing the accurate relative pose
of the end-effector with respect to an inertial frame. Exploiting
a visible light filter in front of the camera has rendered this
approach robust against illumination changes. Furthermore, it
allows for mitigating the rolling shutter effects by reducing the
exposure time. Finally, a custom made testing module is proposed
to verify the accuracy of the proposed device, and the calibration
process proves the accuracy and efficiency of the system.

Index Terms—Referencing, pose-estimation, perception,
robotics, orientation, calibration.

I. INTRODUCTION

When reporting the efficiency of a newly developed state
estimator or controller, a ground truth is needed to compare the
accuracy and integrity of the estimation results. This ground
truth is conventionally achieved either through perception
methods, which are computationally expensive, or by using
high-end special equipment that might not be available to
every researcher.

Various approaches towards the usage of cameras for object
tracking and pose estimation, [1]–[5] may be categorized into
two main groups, namely, marker-based and perception based
systems. In marker-based tracking systems, certain markers
such as IR LEDs or tags, are attached to the target object
or placed on a surface with known coordinates in the global
frame. Using the correspondence between every specific LED
in the image plane and the marker’s local coordinate, one can
find the camera’s orientation and translation with respect to
the marker’s frame.

IR based tracking systems are limited to indoor motion
capture and augmented reality applications since in outdoor
environments the sunlight can affect the IR reception by the
cameras. Hence, for outdoor applications, employing tags is
a more common approach. On the other hand, the second
category exploits the camera geometry and the correspon-
dences between salient features in consecutive frames in order
to estimate the camera’s ego-motion. In fact, these systems

solve the Structure from Motion (SfM) problem in a real-
time manner. However, these systems are computationally
expensive and the achievable accuracy using them is lower
than that of marker based frameworks.

Fig. 1. The ARAS-DIAMOND Robot [6]

In this paper, by using multiple IR LEDs and a single
camera, a pose estimation method is proposed that could be
used as a referencing system for a wide range of robotic
applications. These LEDs are scattered across a rectangular
plane with known dimensions in the global frame and the
camera is mounted on the robot’s end-effector. The particular
robot we used for implementation, is a spherical parallel
manipulator called ARAS-DIAMOND [6]. One advantage of
the proposed system originates from employing visible light
filters in front of the camera, which makes the system robust
against illumination changes and noises that are introduced
from cluttered environments. Furthermore, since the retrieved
frame to be processed is a clean image containing only the
important features, the required image processing and feature
detection subsystems are simpler and more efficient. Hence,
we can achieve high frame rates only using a simple embedded
computer. Moreover, for a referencing system to be a reliable
measurement for evaluating other systems, its own measure-
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ments must be verified beforehand. Thus, we have developed a
methodology which employs a simple 3D-printable module to
verify the system’s accuracy using geometrical relationships.

II. RELATED WORK

Nowadays fiducial markers such as AprilTags [7] are com-
monly used [8] for mutual localization. One of the advantages
of this method is that every tag can have a specific ID.
However these patterns require relatively high computational
resources and are susceptible to environment illumination
changes and camera’s rolling shutter effects. Therefore, the
cameras used for these techniques must feature global shutter
sensors to avoid distortion effects of rolling shutter systems
which can destabilize the tracking and feature extraction
systems. Nevertheless, the system introduced in this paper
mitigates the rolling shutter problem by reducing the exposure
time. This is feasible since the camera is highly sensitive to
IR light exclusively passed through the visible light filters in
the front of the camera.

In [1] multiple IR LEDs are used alongside a high speed
global shutter camera in order to estimate the pose of a
quadcopter using monocular vision. There are other works
such as [2] where passive markers are used for detecting
specific parts of a device in the global frame for performing
pose estimation. However these methods are not as robust
as the proposed system since a cluttered environment could
potentially introduce a great amount of noise which has been
eliminated in our system by the usage of visible light filters.
Moreover, we achieve great results using just an inexpen-
sive off-the-shelf rolling shutter camera and a single-board
computer. High accuracy is obtained using this simple and
inexpensive hardware, and furthermore, much higher frame
rate is achieved. In [9] IR and RGB cameras alongside IR
LEDs are used where RGB color descriptors at the vicinity
of LED’s centers are compared and the correspondences are
derived. This is a suitable and robust method for finding
the correspondences between the LEDs in the global frame
and their projections on the image plane. Then again, this
method is sensitive to rolling shutter effects and the processing
overhead is also relatively high.

One of the most common pose estimation devices in
robotics are motion capture systems such as Vicon1. These
commercial systems use multiple cameras (fixed in the en-
vironment) and markers to estimate the pose. Even though
these devices can provide outputs at high frequencies(up to
300Hz) and great precision, they are proprietary, expensive
and in some cases they require numerous markers in order to
provide an accurate estimation which curbs its applicability in
physically constrained robotic applications.

There are numerous center-of-mass algorithms [11]–[14] for
finding the center of LEDs in the image taken by the camera.
These include center of gravity (COG), averaging techniques,
etc. There are also methods [10] that fit circles to the dots
seen in the images that would help deriving the center of the

1http://www.vicon.com/

LEDs. Even though achieving a more accurate estimate of this
center would allow us to have a more accurate estimation of
the pose, the introduced extra processing overhead is not worth
the benefits and in many cases achieving higher frame rates
is preferred. On the other hand, through exploiting IR filters
and thresholding techniques alongside tuning the camera’s
parameters ( exposure time, auto white balance, etc.) desirable
images of the LEDs may be retrieved in which the features
are almost circular even at highly dynamic motions.

The contribution of this paper is two fold. Firstly, we
have developed a simple and inexpensive referencing system
that provides accurate pose measurements at a high rate.
Secondly, we introduce a very simple but effective method for
quantifying the accuracy and eligibility of the system requiring
no special equipment. Moreover, the source codes and design
files for the system are all available at our GitHub page2 to
the community.

This paper is organized as follows. In section (3) we give
a brief introduction to the camera pinhole model and we
review the pose estimation methods and their applications
in our robot alongside investigating solutions for tracking
the markers. Next in section (4), we explore the sensitivity
of the algorithms to pixel quantization and measurement
noise through some simulations. Subsequently, we present
our method for verifying the system’s accuracy eligibility in
section(6) and in section (7) we comment on the concluding
remarks and future work.

III. ALGORITHM

In this paper we use Perspective n Point (PnP) algorithm for
estimating the pose of the camera. In this algorithm, at least 4
markers with known configurations are observed by a camera.
After deriving the correspondences between these 3D known
coordinates and their projections on the image plane, we solve
for translation and orientation. This may be done using various
methods such as nonlinear optimization and linear solutions
through the SVD algorithm. In this paper we use 4 IR LEDs
to obtain an estimate of the pose. Here, we first we explore the
mathematics behind the PnP algorithm and then we investigate
available methods for deriving a pose estimate for the camera.

A. Camera Pinhole Model

The camera pinhole model defines the relationship between
points in the 3D world and their respective projection in
the 2D world of the camera image, i.e. it is defined by the
transformation matrices that would rotate and translate the
points on the 3D world coordinates to the points on the
camera local coordinates. The following equation represents
the camera pinhole model’s equation:[

x
1

]
= K[R|t]

[
X
1

]
(1)

where X is mapped to the point x. K matrix represents the
transformation of 3D world coordinates to homogeneous 2D

2https://github.com/aras-cdrpm-projects/IR-Referencing-System.
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image coordinates which is parameterized by Hartley and
Zisserman [15] as:

K =

fx s x0

0 fy y0
0 0 1

 (2)

in which fx and fy represent the focal length of the camera and
x0 and y0 are the principal point offset parameters. This point
is the location of the principal point relative to the sensors
origin. Furthermore s represents the axis skew. Axis skew
causes shear distortion in the projected image. This distortion
is caused by the imperfect camera and lens alignment or the
rectangular shape of the pixels in the camera sensor.

Based on the definitions given in the homography section of
this paper one can see that K[R|t] is basically a homography
between points in the global frame and the 2D coordinates of
the same points in the image frame. Hence if we wanted to
derive the orientation between the global frame and the image
plane while knowing the coordinates of a few points in the
global frame and image plane we need to solve (1). It should
be noted that the matrix K’s parameters are constants and may
be derived offline.

B. The PnP Problem

The most common simplification to solving (1) is to as-
sume known calibration parameters which is the so-called
Perspective-n-Point problem as is shown below:

Fig. 2. Visualization of the PnP problem [18]

Let’s assume we have two points in the global frame and
image frame called x and X respectively. The homography
between these points can be represented as follows:

x = PX (3)

Assuming parameterized coordinates for x we have:uv
1

 =

P1

P2

P3

X (4)

As mentioned before there are numerous approaches for
solving equations in the form of (4) and deriving the P matrix
such as the EPnP [16] solution, singular value decomposition

(SVD), optimization based approaches where optimization-
based techniques are used to minimize the reprojection error.
Generally, methods for estimating the pose of a camera using
solutions to the PnP problem are split into two categories. One
uses non-linear optimizations to get an estimate of the pose
through iterations on the given data and the other focuses on
the efficiency of the algorithm. In Table I we can see the
characteristics of each of the used methods to derive the pose
and solve the PnP problem.

TABLE I
PNP SOLUTIONS USED IN THIS PAPER

Method Iteration Num. of Markers
EPnP [16] Non-Iterative ≥ 4
DLS [17] Non-Iterative ≥ 3

OpenCV PnP [18]
(Proprietry) Iterative ≥ 3

P3P [19] Non-Iterative = 4
AP3P [20] Non-Iterative = 4

In our framework we are able to switch between these
methods, depending on the application in hand and suitable
update rates. On the other hand, we should note that in
this paper we have used the minimum number of LEDs for
performing the estimation (The minimum number of LEDs
required to get a proper estimation while avoiding ambiguities
in the top half of the XYZ frame is 4). This is while we can
introduce redundant markers and by this means, increase the
accuracy while using the faster methods. By all means, we
performed the experiments using all of these methods and we
report the accuracy and measurement rate in Table 2 and Table
3, respectively.

C. K-Nearest Neighbors Clustering

The coordinates of markers in the global frame are always
known (the configuration of the markers are known). However,
we need to find the coordinates of corresponding images of
these markers at every frame. To do this we use the K-Nearest
neighbors clustering method (KNN) to extract positions of
markers on image plane. We refer the reader to [21] for a
full explanation of this method, here will only provide the
pseudo code that is used in KNN in Algorithm 1.

Algorithm 1 KNN Clustering Algorithm
Require: Retrieve a new frame

Do(For Every Pixel):
1- A positive constant k is chosen as the number of clusters.
2- The positions for k clusters are initiated from the position
in the last iteration.
3- We find the most common classification for this pixel
based on the position of that pixel relative to each cluster
center.
4- We move the centers according to how the members of
a cluster are spread out relative to the center of that cluster.
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D. Marker Tracking

Now that we have identified the centers of 4 markers on
the image plane, we need to label them. This means that we
need to know which center corresponds to which marker in
the global frame. Since there are 4 markers we will name them
”UR, UL, LR, LL” for ”Upper Right, Upper Left, Lower Right
and Lower Left”.

In this paper, in order to identify the labels for each of the
centers we start the camera in a known orientation. Hence,
using a simple min-max method, we can label each of the
centers derived from the clustering algorithm. In this algorithm
first we find the center of the rectangle that is formed by
the image of the markers and then find the center which has
the highest x and y values with respect to the center of the
rectangle and label this point as ”UR”. We do the same for
the other 3 points. Even though we can use this exact method
for other consecutive frames, this method will fail when the
rotation of the camera in the yaw axis is more than a certain
degree which leads the ”LR” marker to be detected falsely, as
”UR”.

To solve this problem we propose the following solution.
At the initialization stage, we find the labels corresponding
to the markers by initializing the tracking from a roughly
known orientation. Then at each preceding frame, we calculate
the following for every new center that is derived from the
clustering algorithm.

∀C∗
i , i = 1, 2, 3, 4 F (C∗

i , Ci) (5)

Where C∗
i are the new centers derived from the new frame

and Ci are the coordinates of the centers that were found in
the last frame which are already labeled and F calculates the
Euclidean distance between every new center found in the new
frame with respect to each center of the last frame. Now we
have a set of 4 label-less marker positions from the current
frame and 4 labeled ones from the last frame and the distance
from every center of the new frame to every center from the
last frame. Since the frame rate of the camera in our system is
high enough, the marker positions for each one of the labels
do not move by a great amount throughout consecutive frames.
Hence, for every center C∗

i in the new frame we perform the
steps in Algorithm 2.

Algorithm 2 Tracking algorithm
Require: Initialize and retrieve centers from last frame

Do(For every new center):
- Calculate d = F (C∗

i , Ci)
if argmin(d) == F (C∗

i − CUpperRight) then
C∗

i ← Upper Right Label
else if argmin(d) == F (C∗

i − CUpperLeft) then
C∗

i ← Upper Left Label
else if argmin(d) == F (C∗

i − CLowerRight) then
C∗

i ← Lower Right Label
else if argmin(d) == F (C∗

i − CLowerLeft) then
C∗

i ← Lower Left Label
end if

There are various trackers implemented in image processing
libraries that can be used as an alternative of this approach.
However, all of these methods have computation overheads
which lower the frequency of the pose estimation system.
Furthermore, trackers increase complexity of the estimation
algorithm. In other words, since we have simplified the frame
to be processed by employing a visible light filter, there is no
point in using advanced trackers and the simple algorithm we
introduced in this paper accomplish the task quite robustly and
accurately.

One case where the tracking algorithms shall be used to
infer the labels for each marker is when ambiguities are
observed. This happens when camera goes through the XY
plane and looks up at the markers. Throughout this motion
when looking at the edge of XY plane (when the camera
is lying on the XY plane looking towards the origin, and
at the markers) the markers could overlap and the proposed
tracking method would fail. This situation demands a tracker
that exploits a motion model for the camera and would act as a
fault detection method in such situations. However, it should
be noted that in stationary robotic applications such as the
one implemented in this paper such cases would not occur.
The marker board is placed in a position such that the camera
would not pass the board itself.

IV. SIMULATIONS

In order to assess the accuracy of the proposed method and
its sensitivity to noise and pixel quantization, we set up a
simulation system in Matlab software. In the simulation we
assume that we have 4 LEDs at the corners of a rectangular
plane with dimensions of 0.1 by 0.2 meters. Then we assume a
known rotation and translation matrix between the LED plane
and the camera and use this to find the image of the LEDs as
would be captured by the camera. These coordinates are the
ground truth as seen by an ideal camera. Given this coordinates
we perform the following:

• Add white noise with varying variances to the ground
truth pixels on the image plane.

• Use PnP solutions and the noisy image to find the rotation
and translation matrix.

• Compare the resulting transformation with the known
initial ground truth. Ideally, these two sets of transfor-
mations must by identical.

When the noise added to the simulations has a vari-
ance of 2 pixels and a mean of 0 we achieve an average
error of 0.3055, 0.0425 and 0.3907 millimeters for x, y, z
translations, respectively. Error values for orientation are
0.0062, 0.3522, 0.1360 degrees for roll, pitch and yaw angles
respectively. The result of this process may be seen in Fig. 3.

V. EXPERIMENTAL RESULTS

We have implemented the proposed pose estimation system
on a 2RT spherical parallel robot called ARAS-DIAMOND [6]
shown in Fig. 1. In order to implement the algorithm, we have
used a Raspberry Pi 3B mini-PC and the Raspberry Pi camera
V1. The code has been written in python and OpenCV, while
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Fig. 3. The reprojection of the rectangular plane in the pixel coordinates.
The blue plane represents the reprojection of the rectangular plane using the
ground truth while the red plane is reprojected based on the estimated pose.

Raspicam libraries is used to retrieve images and perform the
necessary calculations. Using this off-the-shelf hardware we
have achieved a high frame rate of 130Hz. The source code
and further details regarding the system are available on ARAS
lab’s GitHub page [22].

The system proposed in this paper is a referencing measure-
ment device whose accuracy and precision must be verified
before it can be used as an evaluator for other algorithms. To
verify these results from our system, we employ a simple yet
accurate geometrical approach using a laser pointer and a 3D
printed module. This module, which is shown in Fig. 4, was
mounted on a shaft with bearings to allow the module to rotate
freely about the shaft. The laser pointer and the camera are
installed on each side of the module and can rotate with it.
As it can be seen in Fig. 5, the camera is pointed towards the
LED markers, while the laser is faced towards a wall located
at a far distance of 23 meters. As we rotate the module, we get
two measurements, one from the camera and the other form
the displacement of the laser pointer on the wall. Taking the
laser system with such long distance between the laser source
and the display wall as an accurate reference, we may evaluate
the eligibility of the camera system for orientation estimation.
As for the validation of the outputs for the translations, we
tested the system on a grid of 500mm by 500mm. This grid
was divided into squares of size 100mm by 100mm and 10mm
by 10mm. After moving the marker around, while the camera
is stationary, output from our framework was tested against
the actual displacement based on the movement of camera on
the grid. The setup for this system is shown in Fig. 6.

The accuracy of the proposed system is reported in Tables
II and III, respectively. Based on the reported numbers in
Table II, it can be seen that the iterative method from the
OpenCV [18] library has the highest accuracy while requiring
the longest time to perform necessary calculations. This is
while other methods such as P3P [19] and AP3P [20] are

faster with respect to computational time, while yielding lower
accuracies. To achieve higher accuracies using the EPnP [16]
and DLS [17] methods, one would require a larger number of
markers alongside a RANSAC [23] algorithm to reject outliers
and hence they are not appropriate methods for our application.
As for the translation accuracies, the results do not differ by
a great margin for the values acquired from various methods
and the only decision factor would be the iteration frequency.

TABLE II
ORIENTATION ESTIMATION RESULTS

Method
Average

Absolute Error (deg)
Average

Est. Time (ms)
EPnP 1.80342 0.936
DLS 1.91864 0.955

OpenCV Iterative 0.06926 2.4246
P3P 0.418 0.3130

AP3P 0.418 0.2779

TABLE III
TRANSLATION ESTIMATION RESULTS

Method
Average

Absolute Error (mm)
Average

Est. Time (ms)
EPnP 1.17 0.936
DLS 1.03 0.955

OpenCV Iterative 0.954 2.4246
P3P 1.11 0.3130

AP3P 0.97 0.2779

Fig. 4. The referencing module.

VI. CONCLUSION

In this work, we have developed a referencing solution for
general stationary and mobile robots using low-cost hardware
and 3D printable components. Even though the system is
simple and inexpensive, it provides measurements that are
comparable to commercial and expensive systems like Vicon.
Furthermore, The proposed method is robust against cluttered
environments and noises from surroundings and works at a
frequency of 130Hz. This solution uses a single camera and a
number of IR LEDs to accurately determine the rotation and
translation of the system with respect to a global frame. We
have made the source codes and design files of our system
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Fig. 5. The setup for verification procedure.

publicly available for the community on our GitHub page3.
Based on the obtained results it is evident that there is a trade-
off between the achieved accuracy and the frequency at which
the pose can be estimated in an online application. Basically,
more computationally expensive methods require the longest
time to perform necessary computations while reporting the
highest accuracy. Among the numerous methods for pose
estimation, we have chosen the OpenCV Iterative [18] method
to derive the pose of the end-effector in our application. Even
though this method is the most expensive one among the
available implementations in the OpenCV library, it is able to
provide estimates at rates higher than 100Hz which is suitable
for our application.

In the future, we plan to compensate for the intrinsic delay
in the image pipeline using predictive filters and additional
sensors such as IMUs. Furthermore we plan to add additional
cameras to the system in a modular way to increase the
working area of the system and improve its accuracy by
combining the measurements in a statistical framework.
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