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Abstract—Due to their simple and inexpensive structures,
suspended cable driven parallel robots are suitable choices for
many real-world applications. However, only when the accurate
kinematic parameters are available, can we control the robot to
the best of its abilities. This is specially a stringent requirement
for fast deployable cable driven robots. With the aim of address-
ing these needs, in this paper we propose an effective framework
for calibrating the kinematic parameters of suspended cable
driven parallel robots with no requirements for expensive tools
and measurement devices. Moreover, the proposed algorithm
utilizes the existing force sensors in the cable robot to nominate
the best set of data for calibration. The integrity and effectiveness
of this framework is reported through simulation and practical
experiments, which verifies promising horizons for deployable
real-world applications.

Index Terms—Calibration, Optimization, Cable Robots, Sensor
Fusion, Identification

I. INTRODUCTION

Owing to their simple structures and low costs, cable driven
parallel manipulators are strong candidates for many industrial
and civil applications. Being in the category of parallel robots,
these manipulators inherit distinct properties such as high
acceleration, strength and accuracy [1]. Moreover, cable robots
can cover a much larger work-space compared to other types
of robotic manipulators. The combination of these features
has made them a solution of choice for applications such as
rescue missions [2], radio telescopes [3] and movie industries
[4]. These manipulators can be classified into two classes of
fully constrained and suspended types. Due to lower cable
interference with environment and less expensive structures,
Suspended Cable Driven Parallel Robots (SCDPR) are attrac-
tive choices for real-world applications.

One of the most important factors for achieving a suitable
performance in controlling these robots is the accuracy of
the kinematic parameters. Furthermore, in many applications
the robot is required to be quickly installable at a new site.
This often implies that the kinematic parameters will be
contaminated with high amounts of uncertainties.

Therefore, the subject of dealing with uncertainties and
performing calibration has been of great interest to researchers.
This has been dealt with through two main approaches. The
first category tries to cope with it through applying robust
controller schemes [5], [6]. Even though this methods requires
no meticulously accurate installation procedure, their perfor-
mance and accuracy are bounded and the impact of uncertainty
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Figure 1: ARAS-CAM robot developed by Advanced Robotics
and Automated System (ARAS) research group.

can not be completely eliminated. On the other hand, the
second category tries to eliminate the sources of uncertainty all
at once through performing calibration routines on the robot
[71-[11].

The calibration itself can be categorized into two classes.
The first category tries to augment the models by adding
previously unmodeled behaviors. For example, [12] provides
an accurate model for the pulley structures. However, in
this work cable lengths are the only modality exploited for
performing calibration and the phenomena of loosened cables
and their elongations due to flexibility are not considered.
Furthermore, it is assumed that the cable’s absolute length
is measurable which is not true for most applications where
incremental encoders are used.

The other methods focus on exploiting new types of sensors
for performing calibration. For instance, the authors in [13]
present a single dimensional length measurement tool for
calibrating a cable robot. However, the working constraints of
this sensor curbs the feasibility of this method in real-world
scenarios.

The gap in all of these researches is that sensors in a cable
driven robot do not provide reliable measurements globally.
For example, in near singular configurations cables get loos-
ened which leads to inaccurate length measurements by the
encoders. To address this, we propose using force modalities
to detect these situations and weight the measurements accord-

ingly.
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The contributions of our work are as follows. First, we
present a calibration algorithm that exploits the data from
multiple modalities to achieve a more robust and accurate
calibration system for suspended cable-driven robots. Second,
we offer a novel initialization procedure that yields proper
initial values to be used by the calibration algorithm, which
leads to higher computational efficiency and robustness. And
third, we present an affordable IR-tracker system to be used
as a calibrator tool within our framework. To the best of
our knowledge, this approach of multi-sensor calibration and
initial point estimation for a cable-driven parallel robot has
not been addressed before in the literature.

This paper is organized as follows. In section 2 we briefly
present the kinematic model of our robot and propose our
calibration methodology. Following on that, we introduce
our initialization algorithm in section 3. Next in section 4,
we present our experimental results. Finally, we provide the
concluding remarks and future works in section 5.

II. METHODOLOGY

Basically, the goal of calibration is to exploit the difference
between responses coming from the real-world system and
its corresponding model to achieve a more accurate estimate
for the parameters. In the case of ARAS-CAM robot, the
dynamics may be reduced to a free mass in 3D space under
the influence of Cartesian forces applied to it by the cables.
Since the end-effector’s mass as the major dynamic parameters
is easy to measure, the focus of this paper is on kinematic
calibration. In what follows we first introduce the inverse
kinematic formulation of ARAS-CAM robot and then we
propose the calibration algorithm.

A. ARAS-CAM Kinematic Model

As presented in detail in [14], the forward and inverse
kinematic equations of ARAS-CAM can be easily obtained
trough kinematic loop closure. Here, we need the inverse
kinematic equations to construct the calibration algorithm.
Based on the schematic illustrated in Figure 2b, the inverse
kinematic can be expressed using the following equation:

LW =P — A (1)

Where Ll is the cable length between the end-effector and
anchor point ¢. Often in a real robot, this quantity is measured
using incremental encoders installed on the drums. Thus,
Equation (1) should be augmented as follows:

L = ||P — AW + L] )

Where L([)Z] is the initial length ambiguity due to the incre-
mental encoders. Identifying the kinematic parameters is of
paramount importance since any mismatch between them and
their real values causes wrong mappings between work and
joint space variables which eventually leads to non-vanishing
errors during robot’s operation.
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(a) Single Cable.

(b) Robot structure.

Figure 2: The schematic diagram of the ARAS-CAM SCDPR.

B. Calibration Framework

Calibration is often formulated as a nonlinear optimization
problem where the goal is to minimize the residue between
what the model predicts for the output of a sensor and the
real corresponding measurement. The sensor measurement can
be modeled using a state dependent nonlinear function f(X)
where X is vector comprised of the kinematic parameters to be
estimated. Thus, the calibration algorithm may be formulated
as follows:

X* = argmin|| f(X) — qll§

In the above equation, X is the vector of kinematic parameters
and q is the real sensor measurements. Furthermore, X is the
measurement covariance through which the influence of the
corresponding loss terms are normalized.

Given that this problem is generally nonlinear, providing
a closed form solution is often infeasible. Hence, iterative
nonlinear least square algorithms such as Levenberg-Marquadt
(LM), Gauss Newton, and steepest descent [15] are adopted.
The procedure is as follows. First, the Taylor expansion for f
is written:

f(Xo +AX) = f(Xo) + H(Xo)AX 3)

where matrix H is known as identification Jacobean matrix
which is the Jacobian of f at the linearization point. Substi-
tuting this back into the equation (3) yields:

AX* = arg)r(ninHH(Xo)AX — (= fF(X))II%

: 2 4)
= argmin|| H(Xo)AX — 2)||5
X

In the above equation z; = (¢ — f(X)) is the prediction
error which is the difference between sensor’s value and its
corresponding prediction using the current estimate. This is
in fact a conventional Linear least Square (LS) problem for
which a closed form solution exists:

AXpy = (AT A+ Mdiag(AT A)~1ATY (5)

where A and b respectively represent the normalized Jacobian
and predictions errors [15]. Furthermore, LM algorithm adds
the term Adiag(AT A) to improving the numerical stability
where A is a tuning parameter. At each iteration, the AXy
is calculated and used to update the solution as follows:

Xiqp1 =Xi +AX (6)
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It is important to note that the data through which the
calibration is performed should be persistently-excited for
the algorithm to converge. This has been addressed in the
literature as a trajectory optimization problem to maximize
an observibility index ( which is usually defined using the
singular values of the identification Jacobean matrix). The
reader can refer to [16] for a survey on this matter.

C. ARAS-CAM Kinematic Calibration

In the ARAS-CAM robot, cable lengths are measured using
motor encoders. Furthermore, for tracking the end-effector we
use our own open source IR-Tracker system !. First we assume
cables are ideally tensioned and formulate a basic calibra-
tion algorithm. Next we augment this algorithm by taking
the cable’s flexibility into consideration. Given the diagram
illustrated in Figure 2a and Equation (2) the observation model
can be expressed as follows:

f@) = 1Por — AL + L ™

Where Prgr, Ag] and L[OJ] respectively represent the end-
effector’s position , j’th anchor point location and initial
cable length. Here, the parameters to be estimated are X =
(AT AV AV LINT where the first three elements are the com-
ponents for anchor point locations. As we mentioned before,
we need the Jacobian of f(z) to formulate the optimization
algorithm. This Jacobian is calculated as follows:

H(X) = [hiha .. hm]" )
_ dfi Of; af; af;
L 4 . )
(P = AF) (P = AWi,) (P — AY) |
16 = || P, — A

In which m is the number of data points and (.)/ denotes the
parameter related to the j’th cable. Now, given the Jacobian
matrix and using the optimization algorithm discussed in the
previous section, we can solve for the kinematic parameters.
Nevertheless, in reality we know that in a large-scale cable
driven robot, non-ideal effects such as cable flexibility de-
teriorate the quality of length measurements using encoders.
When cables are under high loads, their flexibility leads to
elongations that are unobservable by the encoders. Similarly
this happens when cables are loosened. Hence in this paper,
we propose to take into account these real-world problems by
assigning importance to the cable length measurements based
on their tensions which are measured by the force sensors.
To do this, we consider the mathematical model of a cable.

Elastic cables can be modeled using the following equation:
AL=K'T (10)

Uhttps://github.com/aras-cdrpm-projects
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Figure 3: Geometric illustration of anchor point identification
sensitivity to cable length measurement errors.

EA

In this equation, K = == represents the cable’s stiffness
where F is the Young’s elasticity modulus, A is the cable’s
cross section area and L is the cable’s length. Based on this
model, encoders gradually lose their reliability as the cable
force T' and cable length L become larger. Therefore, we can
design weighting functions based on the product of these two
parameters.

The final question to be addressed is that how the anchor
locations and cable length errors are mapped. To address
this, we perform a geometrical sensitivity analysis. When
we optimized the Equation (7), we were basically trying
to localize an unknown location (The anchor point) given
its distance from the end-effector’s position measurements.
Assuming a rigid cable, the true anchor location as illustrated
in the Figure 3 can be found. However if we add the cable
length uncertainties, we can create an uncertainty ball around
the true anchor location as illustrated in Figure 3. Obviously
the radios of this ball is equal to the cable length error interval.
Hence, the length measurement errors should not exceed the
tolerable anchor point’s error.

III. THE INITIALIZATION ALGORITHM

For an optimization algorithm to converge, suitable initial-
ization is of utmost importance. In this section, we propose
a simple and effective method for finding the anchor point’s
locations purely based on end-effector’s position. To do so we
leverage the specific geometry of our robot. Without losing
generality, we propose the algorithm for a 3-cable robot. For
robots with more than three cables, we can easily apply the
algorithm to each set of three cables and then average their
results. Our method is based on an experiment comprised of
three phases. At each phase, two cables are fixed while the
other is pulled. As a result of that, the end-effector will follow
a circular trajectory created by the intersection of two spheres
with centers located at the other two actuator locations and
with radii equal to the length of fixed cables. The center of this
circle will be on the line intersecting the two anchor points.
After performing the experiment, we identify the centers,
radii and the plane at which these circles are located. Using
these identified parameters, we can formulate three lines that

554



intersect at the anchor locations. Finally, having the anchor
points and the end-effector’s position, the initial cable lengths
are also available.

One important point to be mentioned is that our purposed
calibration framework finds the anchor locations expressed in
the IR-tracker’s coordinate system. Hence, we can place the
tracker wherever we wish for our global coordinate to be. This
way, we can perform fast and simple calibration routines when
installing the robot at a new location.

IV. EXPERIMENTAL RESULTS

In this section, the proposed calibration and initialization
algorithms are implemented on ARAS-CAM robot. Designed
and built by Advanced Robotics and Automated System
(ARAS) research group?, ARAS-CAM is an easy deployable
suspended cable driven manipulator with three degrees of
transnational freedom. This robot has been illustrated in Figure
1. Our robot covers an area of 7m x 3.5m x4m and is equipped
with length measurement encoders, cable force sensors and a
portable IR-Tracker system. The robot’s mechanical structure
has been presented in more detail at [6].

Moreover, as part of our proposed calibration framework
we introduce our low cost and portable embedded IR-tracker
system. This system can accurately measure the 3D position
of an IR LED attached to the end-effector. We have employed
two global shutter IR sensitive image sensors with a resolution
of 752 x 480 pixels to create a stereo rack. We have imple-
mented the required image processing and visual geometry
algorithms on a Xilinx Zynq SOC® device which has a dual
core ARM Cortex-A9 and a powerful FPGA all in a single
chip. Our system is potable, power efficient and affordable
which provides accurate measurements with a maximum error
of 0.5¢m within its FOV*. This device has been illustrated in
Figure 4.

Since we did not have access to an accurate laser tracking
system for measuring the true anchor locations, we verify the
calibration results through investigating the discrepancy be-
tween cable length measurements obtained from the encoders
and their calculate values using the anchor locations and
end-effector’s position. If the calibration is successful, these
two values would become identical throughout the robot’s
maneuver (co-reiteration between sensor measurements).

In the following sections, first we will evaluated our initial-
ization algorithm using the ARAS-CAM robot. Next, we use
the initial guess form the previous step to run our calibration
algorithm with and without incorporating force sensors.

A. Initialization Algorithm

The initialization algorithm was executed on the data cap-
tured using the IR-tracker system installed on the lab’s ceiling.
We performed the described three phase experiment on the
robot. To do that, each servo motor was configured into its
position-control mode. Next, at each phase we pulled one

2aras.kntu.ac.ir
3System On a Chip
“Field Of View

Figure 4: The embedded IR-tracker system used as a calibrator
tool in this paper.
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Figure 5: The path followed by ARAS-CAM robot for per-
forming force aware calibration.

0.2 0.4

cable while the two others were fixed. Finally, the captured
data where exported to the Matlab software to be used by the
initialization algorithm. The followed path during this experi-
ment is illustrated in Figure 6 where the paths corresponding to
each phases is depicted with a distinct color. In this figure, the
identified circle centers and anchor locations are respectively
illustrated with red and blue markers. It is important to note
that the forth anchor position has been inferred from other
ones.

The first notable point in this figure is that the resulting
estimations are in correspondence with the general configu-
ration of the robot. However, in order to verify the results
more rigorously, we used a simple length measurement tool
to roughly measure the distance between anchors points. the
result is reported in Tablel. As it can be seen, the errors are
around 50cm which is quite acceptable considering the robot’s
dimension.
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Initialization Algorithm Results (Perspective View)
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Figure 6: The path followed by ARAS-CAM robot to col-
lect data for initialization algorithm. Red and blue markers

respectively represent the identified circle centers and anchor
locations.

Table I: Experimental result of the initialization algorithm.

work-space width m

6.4495
~6.5

work-space height m

3.036
~3.5

Predicted value
Roughly measured value

B. Calibration Algorithm

Given the initial estimates from the previous step, we use
our proposed force aware calibration algorithm to refine the
results. To measure the calibration’s quality, we take the co-
registration errors as a metric.

In order to see the impact of incorporating force into the
calibration procedure , we conducted an experiment where
the robot was commanded to move relatively fast while it
was allowed to approach near singular positions. The 3D path
followed by the robot has been illustrated in Figure 5. As we
can see, the robot could not follow the desired trajectory at the
vicinity of X = —0.3m,Y = 0m, Z = 2m where the cables
had become loose.

Given these acquired data and the initial anchor point loca-
tions from the previous step, we ran the calibration algorithm.
The results have been illustrated in Figures 7 - 9. First, from
Figure 7 we can see that through calibration procedure the
error has been reduced significantly. Before calibration, the
average error was around 20cm while after this, the error value
has dropped to 1cm. The reason for this large reduction is that
the new anchor locations after calibration are closer to their
true values. Similarly, correction of the initial cable lengths
during calibration plays a pivotal role in reducing the errors.
It is important to note that the significant variations in the error
of Figure 7 are due to loosened cables during the experiment.
At these locations, the measured length for the cables did not
coincide with the assumption of Euclidean distance between
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Figure 7: Encoder measurements compared to calculated val-
ues before and after calibration.

end-effector and anchor points as cable lengths. However, the
error’s amplitude between samples 0-10000, where the cables
are in tension, is reduced due to a more accurate estimate for
the anchor location.

Next, the effect of force incorporation in calibration has
been illustrated in Figure 8. The red crosses in the figure
indicate cable length measurements with forces lower than
3N. As we expect, when cables are loosened, their measured
length by the encoders are highly inaccurate and lead to
large co-registration errors which has been marked on the
graphs accordingly. As we can see, when these inaccurate
measurements are removed from calibration, errors reduce to
less than half.

It is important to mention that loosened and too much
stretched cables impose similar effects on the calibration
accuracy. However, the former is less evident in the case of
ARAS-CAM robot due to its moderate size.

Furthermore, to compare the co-registration errors more
accurately, we plotted their histograms for both scenarios as
presented in Figure 9. As it can be seen, when force weighting
is enabled, the errors are mostly focused withing the interval
of £0.5¢m. On the other hand, when we do not exploit force
sensors, the errors expand more than twice which is visible in
the graph from the distribution’s width.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have proposed a simple and affordable
calibration framework which employs data form force sensors,
an affordable IR-Tracker and the encoders within the ARAS-
CAM robot to solve for the kinematic parameters. We showed
that when cables are loosened or under too much tension, their
corresponding length measurements are not as accurate as we
need. To address this we proposed a weighing mechanism
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Figure 8: Encoder measurements compared to calculated val-
ues. In the first figure, the force sensors are incorporated in
the calibration algorithm. Peak error after incorporating the
force sensors has reduced to 0.00487m compared to 0.01313m
without force sensors, which indicates a 270% error reduction.

that incorporates the cable’s model to attenuate the effects
of low accuracy data samples on the calibration framework.
We verified the effectiveness of this approach both through
simulation and experimental results.

Furthermore, since calibration is formulated as a nonlinear
optimization problem, it is sensitive to initial conditions. To
address this, we proposed a simple and effective initialization
method purely based on end-effector’s position and robot’s
geometry.

The combination of these modules together morph our
calibration framework which is applicable in real-world de-
ployable applications. In the future, we aim to incorporate
other kinds of sensors such as IMUs and auxiliary load-cells
to augment our calibration system. We are also working on
other optimization tools such as GTSAM instead of Matlab
since using them we will be able to integrate the sensor fusion
and calibration systems into a unified framework.
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