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Abstract—In this paper, robust nonlinear control of moment-
based visual servoing has been proposed. Due to the nonlinear
nature of system, proportional integral sliding mode controller
could improve the performance and robustness of visual servoing.
The proposed method not only increases domain of attraction
even in extraneous image regions, but also it achieves convergence
to the target point despite of uncertainties. The stability of the
controller is analyzed by Lyapunov’s theorem. Furthermore,
Integrated control of 4 DOF camera motions in this work,
drastically improves the accuracy in compare with the kernel-
based sliding mode visual servoing [1]. Different experiments are
done to demonstrate considerable performance improvements on
5 DOF industrial robot.

Index Terms—Image moments, Sliding mode control, visual
servoing

I. INTRODUCTION

The aim of visual servoing (VS) is tracking an object,
based on the feedback information provided by vision sensor.
Achieving a robust, accurate, and quick tracking of featureless
objects in the presence of partial disappearing of features, are
the main achievements of this paper. The primary approaches
in VS had been based on matching simple geometrical features
such as coordinates of points, straight lines or ellipses [2],
[3]. These methods have been restricted to the limited set of
objects. In order to improve the previous tracking methods,
in [4] the image space was reduced to the set of eigen space
provided by the set of images around the target position in
offline mode. Moreover, there were no analytical form for
interaction matrix are reported.

In the current paper similar to [5] the moments that may be
computed easily from binary images, are considered as visual
features. The proposed analytical form of interaction matrix
makes a robust analysis of the method possible. Moments
considerably are used in computer vision for shape-descriptor
purposes [6]. In addition invariant properties of combination of
moments make them suitable for pattern recognition purposes
[7], [8]. Tahri [9] modified the previous suggested moments
to produce better decoupled form of interaction matrix. In the
mentioned methods, the linear feedback controller has been
designed to control a manipulator’s motion. Since there is
a nonlinear relation between image space and 3-D position,

the linear controllers are able to only stabilize the system
locally, and furthermore, the possibility of convergence to
a local minima will increase. In [10] the author proposed
applying Gaussian masking to image, which set the priority
to the central part of the image and decreases smoothly as
approaching boarders. The selected features for translation and
scale are affected by Gaussian masking and there are no more
invariants. Consequently, the modified interaction matrix is
more complicated than uniformly weighted moments.

By the same spirit, in [11] the author proposed kernels for
VS. Kernels are the weighted image signals and the general
form of moments. In this method, each degree of freedom
should be controlled separately due to the dependency between
suggested kernels which results in longer convergence time.
Inspired by [11], in [1], combination of the aforementioned
kernels with sliding mode has been proposed. The problem
of separately controlling of each DOF is still remained,
while tracking performance has been improved and domain
of attraction is enlarged.

Conceptually, there is no general analytical method ap-
plicable to model an arbitrary nonlinear system. In VS the
imperfections are related to the unmolded dynamics, and
calibration parameters which lead to uncertainty in interaction
matrix components. In our point of view, there are two
approaches to deal with the VS nonlinearity, the first one is to
shape interaction matrix into diagonal form by selecting proper
features, and the second one is to use a nonlinear controller.
However, the former method just could lead to decoupled form
of interaction matrix as much as possible and it could not deal
with uncertainty. The latter method could control the system
in spite of nonlinearities and uncertainties.

In this paper, sliding mode controller which is a robust
nonlinear controller, in combination with image moments is
proposed. This is much more compatible with the nature
of system, and moreover, it avoids the complicated process
of decoupling nonlinearity in interaction matrix. In order to
implement the controller, the proportional-integral (PI) sliding
surface has been suggested. The efficiency of proposed con-
troller has been demonstrated by implementing it on a 5 DOF
industrial manipulator. The obtained results imply considerable
improvements in domain of attraction, tracking error, and con-
vergence rate compare to that reported in [1], [5]. Domain of
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attraction has been considerably increased, so as convergence
to the target point may be achieved even in extraneous image
regions, where the object is not completely in camera’s field
of view. Furthermore, using SMC has noticeably reduced the
tracking error, and increased the convergence rate. Another
advantage of this work respect to [1] is that four degree of
camera motions are controlled simultaneously.

The remainder of this paper is organized as follows: In
section II basic definition of image moments is reviewed, then
invariants moments are summarized, and finally, the general
analytical form of the interaction matrix is given. Section III
presents the proposed controller and analyzes the stability of
the method. To validate the suggested controller, the experi-
mental results are reported in Section IV. The conclusion is
presented in Section V

II. VISION MODELING
A. Moments Representation

One of the feature descriptors which has been widely used
in image processing is moment. It simply characterizes an
image by reducing its probability distribution function to a
sequence of numbers. This is useful in comparing distributions
of images numerically. Moments of a positive real bounded
function, f(z,y), within a finite region R is defined by [12]

mp’q(t):/m) f(z,y)xPyldedy p,q=0,1,2,... (1)

Where f(z,y) is a piece-wise continuous function and has
non-zero values on a finite region R in x — y plane. p + ¢
represents the order of the moment. In the image processing,
f(z,y) may be considered as image intensities. Using binary
images, eq. (1) may be written as follows

Myp.q(t) = //ER zPyddzdy

in which R is the region of image where the object has
been projected. In digital images the integral is replaced by
summation, and the image moments may be written as follows

[9]

p,g=0,1,2,... (2

n
mpg = Y f(@,y)a}y} (3)
k=1
where f(x,y) is the intensity of binary image which can be
set to 0 or 1. x,y are the index of image points in metric
coordinates, and 7 is the number of pixels.

By computing the moments with respect to the object’s mass
center coordinates the centered moments are obtained. They
are defined by

pnalt) = [ /R (20— 2Py — ) ldudy @)

where z, = 20 ¢ = 20 The centered moments are
g moo g moo

invariant to 2-D translational motions. The discrete form of
equation (4) may be given as

Hpg = Z f@,y) @k — 29)" (yr — yg)? (5)

k=1

Different types of moments or combination of them may be
used as invariant to geometric transformation such as trans-
lation, scaling, and rotation. This feature has significant steps
toward reliable and robust recognition of an object’s location,
size, and orientation. Several combinations of moments have
been proposed for scale invariants. A proper scale invariant
which is presented by [9] is as follows.
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In this paper, as same as [9], eq.(6) has been used.

B. Interaction Matrix of Image Moments

The interaction matrix relates the time derivative of image
moments, 17, to the instantaneous velocity of the camera as
follows [13]

Mpg = Lim,, Vv 7
in which, me is the interaction matrix, and v is the transla-
tional and rotational velocity of camera.

The region R is the only time varying part of equation (2);
therefore, the derivative of moment can be computed by

= 7( («Py)% 0 dl @®)
c)

where C is the contour of R, % is the velocity of pixel point
x = (x,y) on the contour, n is the outward-pointing unit
normal vector on the C, and d! is a small tangent vector along
the contour C [5].

X is related to camera velocity by well-known equation as
bellow

% = L v, )
where L, is
—1 T 2
- 0 = zy —1—= Y
Z Z 10
0 % £ 1+y* -2y -x (10)

where x and y are the coordinates of the any point projected
in Image and Z is the depth of the point relative to the camera
frame [13] and is defined as below

1
Z:A:c+By+C’ (11)

A, B, and C are scalar parameters that describe the orientation
of plane.

By substituting equation (9) in equation (8), and applying
green theorem, the interaction matrix can be obtained (for
more details refer to [5]). As mentioned in [5], [9] for the
planar object A = B = 0 therefore, the simplified form of
interaction matrix is written:

Uz

Mg = —C’pmp_Lq
L"%/pq = _Cqu,Q*l
Ly, = Clp+q+2)myp,
L, =PMp_1,g41 — qMpt1,g-1

(12)

This significantly reduces the complexity of the formulation
introduced in [5]. It can be understood from (12) that in
parallel situation, the moments order up to p+ ¢ are sufficient

126



for L calculation of moment order p + q. Here C' is equal
to % because it is assumed the desired position of the object
parallel to the image plane. The Interaction matrix components
related to translational motion along x and y decrease the order
of moment and also rotational motion around optical axes is
independent from depth information. Similarly, if we consider
the centered moments defined by (2), we obtain

L, =0
L =0

qu 13
L, =CWw+a+2)up, (13

Lupq = PHp—1,g+1 — qHp+1,9—1

As noticed, interaction matrix related to centered moments
has no component with respect to translational motion along
z and y. In this study we control 4 DOF of camera motion
for planar objects. The set of features that have been used for
X, Y, and z control are the combination of geometry moments.
For orientation control the combination of centered moment
has been applied [5], [9]. Similar to [9] the following set of
features was chosen:

S = (xnaynvanva) (14)

where T, = Zgan, Yn = Ygn, an = Z*1/a*/a. For control-
ling the camera velocity in x and y directions, x4 = zég and
Yg = z;g have been considered, which are the coordinates of
the mass center of object. In order to eliminate the effect of
scaling, they have been normalized. For controlling the camera
in Z direction the area of the object in the image with respect
to target image is calculated. Current Z can be calculated by
noting that in parallel situation Z*\/a* = Z+/a [9], which a*
is the area and Z* is the depth of the point with respect to
camera in target position. Minimum and maximum of second
order moments are used to determine the miner and major of
object principal axes respectively. The angle between nearest
principal axis to the x axis is determined by
o = ltanfl A

2 K20 — Ho2
The difference between current orientations to target orienta-
tion determines the angle of rotation around optical axes. Con-
sidering the parallel situation, « is invariant to any translational
motions. This formula is only applicable for —* < a < 3
By utilizing (15), (16), and selected features, the interaction

matrix is obtained:

5)

(16)
0 0 O -1
Because of converting pixel coordinates to the metric coordi-
nates, the off diagonal elements of the matrix are so small that
the interaction matrix is so close to diagonal matrix.
ITII. CONTROL LAW
A. Sliding Mode Control Law

In reference [13] the proportional controller has been de-
fined which guarantees limited performance and robustness

and it fails to apply in complex situations. In this paper, we
propose a first order sliding mode control which is one of
the classical approaches to robust control design of uncertain
systems. The advantages of proposed method are its robustness
to parameter variations and disturbances, and improvement in
performance of nonlinear systems.

The control process of image based sliding mode has been
illustrated in Fig. 1. in which w represents joint velocity, and
6 is the joint command.

Singularity
Avoidance

RV2AJ ROBOT

sliding Mode
Controller

o Feedback |

Processing

Moment
Fig. 1. control diagram

The difference between S and S* are fed into the sliding
mode controller. First, the control signals are produced by
sliding controllers, and then transformed to joint velocities by
singularity avoidance (refer to section IV-A). Finally, target
joint positions can be obtained by integrating joint velocities.
The internal PID controller sets the joint position with accept-
able accuracy. The process terminates when the signal errors
reach below the determined threshold.

In order to reduce steady state error, PI type of SMC has
been utilized. Consider the sliding surface defined by:

S=e§+A/e€ a7
where e¢ is the difference between the current feature- mea-
surement and the desired feature-measurement, and ) is the
positive arbitrary scalar. The derivative of S is given by

s= B _, + A
= — — e e
dt (3 3

The derivative of error signal (e = s — s*) is written [13]:

(18)

e=s5=L,v, (19)
by substituting (19) in (18) :
_Sa = —V,. + ey
e st ey @)
Sz = —Ve+YnVuz + Aey
the control signals are obtained by:
Vwr = Aeq + kasat(Sy)
v, = Ae, + k. sat(S, @

(52)
vy = ey + kysat(Sy)
vy = ey + kpsat(Sy)
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where sat function is defined by

1 ifS>o
sat(S) =4 S/¢ if |S| < (22)
-1 ifS<—p

B. Stability Analysis

The lyapunov method has been used for stability analysis.
Consider candidate lyapunov function as
Lo
V==:S (23)
2
From (23) the derivative of V', may be computed as V=258
which should be negative definite to assure stable control law.
Considering sign function instead of sat function in equation
(21), and substituting in (20), S is given by
S = —Ksign(S) (24)
where K is positive definite and it should be specified by
sliding condition. When S is positive, the S is negative and
vice versa, consequently V' is negative definite. Using sat
function (defined by (22)), reaching time to sliding surface
boundary is given by

1S(O)] =
ly = ———" 25
o (25)
In the boundary layer the derivative of S' is defined by
. S(t
S=-K Q (26)
12
The solution of differential equation (26) is defined by:
, _K
S(t) = @sign[S(t,)]e”—( —tr) (27)

2

which shows sliding surface decreases exponentially [14].

IV. EXPERIMENTAL RESULTS

To validate the proposed controller, several experiments
have been performed using a 5-DOF RV-2AJ industrial ma-
nipulator, with one degree of redundancy in manipulator’s y
direction made by gantry . A camera has been mounted on
the manipulator’s end effector. Fig. 2 shows the Experimental
setup. Camera has been equipped with a wide lens with
2.1 mm focal length, and provides images with 30 fps rate,
and resolution of 320x240. The moments are computed on
the binary images in metric coordinates. Target joints are
computed and sent to robot using a 1.84-GHz CPU and 2 GB
RAM computer. OpenCV library has been used for required
image processing. The control algorithm has been developed in
visual studio 2008 environment. Although all image capturing,
image processing, and control signal calculation were handled
through multithread programming with a run time of every 10
ms, in practice the limited sampling rate of camera imposed
sampling time of around 33 ms.

Camera

RV2AJ Manipulator

Test Bench

Fig. 2. RV2AJ manipulator configuration

A. Empirical Considerations

VS is performed at a number of discrete points in space.
5 degree of manipulator has many singular points that are
not reachable directly. Thanks to the one degree redundancy
of gantry robot, the trajectories toward target points may
be chosen far from singular configuration. The controller of
manipulator and gantry are not integrated. The accuracy of
robot is about 0.02 mm and the accuracy of gantry is about
Imm. Therefore in the large displacement the motion of gantry
increases the error in y direction slightly. The wide lens
has radial distortion which causes an outward displacement
between given image points and their ideal locations. The
removal of the radial distortion has been performed by esti-
mating the distortion coefficients in camera calibration matlab
toolbox [15]. These coefficients are used by OpenCV undis-
tort function to correct distortion. The provided image from
undistort function, has been binarized by threshold algorithm.
it is worth to mention that the large threshold value causes the
loss of information, while the smaller value, results in noisy
image. Several approaches for threshold level selection have
been proposed in [16], however here it has been chosen by
experiments. In the controller, for avoiding wind up problem
of the integrator, A has been chosen sufficiently small. For all
the experiments K, A\, and ¢ have been adjusted empirically
as Ay = Ay = 0.001, A\, = A\, = 0.003, K, = 80, K, = 100,
K, =70, K, = 3, and ¢, = ¢, = ¢, = 0.03, and
@a = 0.06. The algorithm terminates when the feature errors
are below 0.001 for 10 iterations.

B. Case of a simple Nonsymmetrical Object

In this section, the Moment based sliding mode VS is
compared to the kernel based sliding mode VS. For better
comparison, the difference between initial and target position
has been chosen close to the experiments in [1] and has been
repeated 8 times for different initial positions. The results
of a set of experiments are graphed in Figs. 3. Fig.3(e)
illustrates negligible oscillations of the control signal after
about 15 iterations. The small oscillations of the control
signal arises from eliminating the chattering phenomenon in
the sliding mode by utilizing sat function. In Fig. 3(d) the
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exponential reduction of errors can be seen. In Fig. 3(f),
the spatial trajectory of end effector has been displayed; the
initial position and the target position have been indicated by
point and star respectively. Although the interaction matrix
is updated at each iteration, the trajectory is not straight duo
to singularity avoidance function effect. The performance of
the proposed method on the set of experiments is in contrast
to the kernel approach as compared in table I and II. The
error mean in all directions have decreased considerably. In
xz, and « directions mean error has decreased 8 times. in ¥y
and z directions mean error has decreased 14 and 89 times
respectively. The considerable decrease of error in z and «
direction compared to the kernel based method comes from
decoupled features and simultaneous control of 4 DOF camera
motion.

In order to evaluate the performance of proposed method,
the farther initial position from target position has been tested.
The results of such experiments are illustrated in Fig.4 which

TABLE I
KERNEL BASED SLIDING MODE VS ERRORS IN 4D

Pose error Initial condition Final error
Mean Std. Mean  Std.
ex, (mm) 45.0 12.3 3.1 3.1
ey, (mm) 41.3 10.9 8.5 9.4
ez, (mm) 44.6 0.3 13.3 4.0
ef, (degree) 25 12.91 1.26 0.62

are the verification to increase of domain of attraction with
respect to KBSMVS.

Statistical ranges of tests have been summarized in table
III. In the second set of experiments, although the distance
increased more than 2 times, the error mean in z, y, 2z, and
« direction have decreased 3 times, 7 times, 17 times, and 4
times respectively. we observed significant improvements in
camera trajectory, accuracy, and time of convergence.
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TABLE 11
MOMENT BASED SLIDING MODE VS ERRORS IN 4D

Pose error Initial condition Final error
Mean Std. Mean  Std.
ex, (mm) 44.23 2.88 0.39 0.45
ey, (mm) 44.08 8.08 0.61 0.43
ez, (mm) 47.22 2.72 0.15 0.34
ef, (degree)  23.28 0.69 0.15 0.25

C. Case of the extraneous image regions

In this section, classical control method is compared to the
proposed sliding mode control. In the case of extraneous image
regions there is an unmodeled disturbance to the system. The
uncertainty in error due to disappearance of some portions
of scene from the camera field of view prevents the conver-
gence of the classical control. Thanks to the sliding mode
control robustness, this uncertainty can be handled. Different

TABLE III
FINAL ERROR RESULTS OF MBSMVS FOR LARGER DISPLACEMENT

Pose error Initial condition Final error
Mean Std. Mean  Std.
ex, (mm) 132.37  12.87 0.99 043
ey, (mm) 190.24  42.41 1.24 0.83
ez, (mm) 135.69  20.09 0.77 0.65
ef, (degree) 50.78 1.00 0.30 0.14

experiments have been done to examine the robustness of
proposed method to partial disappearance of scene. In Fig.
5 the results have been illustrated. In Fig 5(b) the initial
condition with partial appearance of the object is displayed
and in Fig. 5(c) the final error can be seen. Disappearance
of features affects the calculation of the area and angle of
rotation and results in wrong detection of error in z and «
directions. After about 3 iterations, the control signal in « and
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y directions modify the position of camera partially and make
it possible to detect the complete shape of the object. Then
the controller flips the signs in z and « directions immediately
to modify the camera trajectory. In 3D camera trajectory this
issue completely observable, too. The accuracy of method have
been compared to the results of previous section. 8 different
experiments have been done to verify the robustness of method
and the results are summarized in Table. IV. Although the
error mean increased compared to the previous section, they
are smaller than the results of kernel based sliding mode shown
in Table. I. In order to validate the robustness, different objects

TABLE IV
MBSVS ERRORS IN EXTRANEOUS REGIONS 4D

Pose error Initial condition Final error
Mean Std. Mean Std.
ex, (mm) 12578  36.31 1.54 0.39
ey, (mm) 179.18  32.95 0.52 0.86
ez, (mm) 58.42 58.09 0.60 0.37
ef, (degree) 22.50 7.69 0.29 0.22

were examined. Here a wrench has been tested. Because of its
material, it has reflection, as a result during camera trajectory
some parts of it are disappeared. The results of 8 experiment
with different initial points have been summarized in Table.
V. The initial points, except in « direction, are selected close
to second experiment. Compared to the results of second set
of experiments the mean error in x, y, and z direction has
been increased 3, 2, 8 times respectively because of unplanar
shape of the object.

TABLE V
MBSVS ERRORS FOR UNPLANAR REAL OBJECT

Pose error Initial condition Final error
Mean Std. Mean  Std.
ex, (mm) 134.81 15.55 1.35 1.14
ey, (mm) 17520  32.65 1.13 0.81
ez, (mm) 13554  20.02 1.14 1.09
ef, (degree) 48.28 7.54 0.09 0.04

V. CONCLUSION

This paper applies a robust nonlinear controller to the
moment-based visual servoing. The combination of sliding
mode controller with visual servoing, which has inherent
nonlinear dynamics, leads to better results. The assigned
controller achieves a large domain of attraction. In addition, its
performance in the sense of accuracy, and time of convergence
has improved compared to kernel-based sliding mode. This
controller looks promising for other method of visual servoing.
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