
2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS), September 2-4, 2020, Mashhad, Iran

A New Approach To Estimate Depth Of Cars Using
A Monocular Image

1st Seyed Mohamad Ali Tousi, 2nd Javad Khorramdel 3rd Faraz Lotfi 4th Amir Hossein Nikoofard 5th Ali Najafi
Ardekani and 6th Hamid D. Taghirad

1st Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, s.m.ali.tousi@email.kntu.ac.ir
2nd Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, rteoi96@email.kntu.ac.ir
3rd Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, F.Lotfi@email.kntu.ac.ir
4th Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, a.nikoofard@kntu.ac.ir

5th Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran, najafi@kntu.ac.ir
6th Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, Taghirad@kntu.ac.ir

Abstract—Predicting scene depth from RGB images is a
challenging task. Since the cameras are the most available, least
restrictive and cheapest source of information for autonomous
vehicles; in this work, a monocular image has been used as the
only source of data to estimate the depth of the car within the
frontal view. In addition to the detection of cars in the frontal
image; a convolutional neural network (CNN) has been trained
to detect and localize the lights corresponding to each car. This
approach is less sensitive to errors due to the disposition of
bounding boxes. An enhancement on the COCO dataset has also
been provided by adding the car lights labels. Simulation results
show that the proposed approach outperforms those who only
use the height and width of bounding boxes to estimate the depth.

Keywords—depth, monocular, autonomous vehicle, convolu-
tional neural networks, CNN, object detection

I. INTRODUCTION

Depth estimation and perception have widespread appli-
cations in many fields, especially in autonomous vehicles.
Radars, LIDARs and cameras are sensors that are commonly
used in order to estimate depth. Radars and LIDARs are not
used in many applications because of their high cost. Moreover
using LIDARs stipulates hardware with high processing power.
Radars will fail in crowded environments and the presence
of buildings. The above-mentioned restrictions made cameras
to be the focus of research in the past decade. Inspired
by depth perception in human vision, stereo cameras have
been employed for the task of depth estimation. However,
the computational costs and availability of equipment are
substantial restrictions in those approaches. Estimating the
depth from a single view also has been tried, and many
techniques have been developed for that throughout the years.
One of the most successful techniques is Structure-From-
Motion (SFM) [1]; it uses camera motions (i.e., a sequence of
frames) to estimate camera poses through different temporal
intervals and then estimate the depth from pairs of progressive
views. However, these methods are still falling short in practice
because object movements are not handled and in highly
dynamic scenes, they tend to fail as they cannot explain
object motion [2]. Under restrictions of such environmental

assumptions and the absence of suitable equipment, using a
monocular image to estimate depth became an ill-posed prob-
lem. The undeniable importance of monocular image depth
estimation and its widespread applications in many computer
vision-based activities made researchers do lots of experiments
and researches to develop a fundamental approach to estimate
depth from a single RGB image. Odometry based approaches
were one of the first solutions [3]. They use cameras intrin-
sic matrix and geometrical transformations. However, these
methods require object dimensions in real-world, which is
not desirable to estimate such constraints by hand in practice
[2]. Some other approaches assumed super-pixels as a planar
and perceived depth through-plane coefficients via Markov
Random Fields (MRFs) [4]. Methods based on super-pixels are
also considered in [5] and [6]. However, the pre-processing for
this method is involved with image segmentation task that is
not computationally much efficient. Recently, Convolutional
Neural Networks (CNNs) have been used to estimate depth
accurately, and obviously, they have been employed to estimate
depth from a monocular RGB image. In some approaches,
CNNs detect objects and draw bounding boxes around them,
then the contact point of detection bounding box with the
ground leads to depth. In these cases, one of the essential
assumptions is that the objects are in the same plane with the
observer. These planarity assumptions are violated in some
situations like the presence of speed bumps, road slope, and
also the error due to inaccurate position of bounding boxes. It
will result in a significant error in estimation. In some other
cases, CNNs have to learn an implicit relation between color
pixels and depth( [7]–[9]). However, these methods encompass
a higher complexity than other approaches without CNNs
because of their higher degree of freedom and more parameters
in a deep CNN.

In this work, an approach has been proposed to estimate
depth from a monocular RGB image using cars and their
lights in the image to provide suitable data for an autonomous
vehicle. Many different approaches have been tried to detect
an object through an image. One of the most successful
methods is ”You Only Look Once” (YOLO) [10]. The YOLO
architecture has been used in this approach to be trained
az a model for detecting car lights. For that purpose, an
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enhancement on COCO data-set [11] has been provided to
train the model to detect cars with their lights. Then the
distance between two central points of light bounding boxes
has been mapped into radial depth using a nonlinear function.

This paper is organized as follows. Section 2 describes the
necessary backgrounds and some technical discussions about
depth estimation, object detection, and virtual environments
which are used for depth verification. Section 3 introduces the
new model for estimating the depth of cars based on object
detection using deep convolutional neural networks (CNNs).
Section 4 combines the description of the training process with
some discussion about the results. Finally, section 5 presents
our conclusion.

II. REQUIRED BACKGROUNDS AND MATERIALS

A. Dimensions and orientations of the car

It is widely known that distant objects in the image look
smaller in dimension in comparison with when they are closer
to the observer. Since the height of the bounding box is almost
equal to the height of the car in the image, it is desirable
to estimate depth from the height of the detection bounding
boxes. However, this approach is not robust to variation in
car heights. Furthermore, inaccurate bounding box estimation
results in an enormous error in the depth prediction process.
On the other hand, there are much fewer variations in car
widths, and this tends to be a proper parameter for using in
the depth prediction process. However, the problem with this
method is that when the car isn’t just in front of us and has
an orientation with respect to the direct line, the width of
the detection bounding box is more fabulous than the width
of the car in the image. As F. Domini and C. Caudek said
in [12], orientation components of the object in the image
(azimuth, elevation, and roll) contain important information
about the depth of the object. Minor orientation changes would
not be distinguishable in vast distances, but it appears in closer
objects so that it can be a metric of the depth. Orientation
by itself cannot be perceivable from the detection box and
requires pixel-level resolutions (i.e., segmentation mask) or
more feature points. To attack these limitations, we propose
using car lights as key feature points. The distance between
rear lights (or front lights) is almost equal to the width of the
car in the image. In order to reveal orientation, we can also
use the center of the bounding box of the car and the center
of rear lights (or front lights). Although in some cases car
lights might get occluded by another car, it is the distance to
the nearest car, which is more critical than partially occluded
cars.

In addition to determining the orientation and width of
the car, lights can also be used as feature points in SFM
based models [13]. Besides, detecting lights can replace some
approaches which employed highly computational deep CNNs
to obtain feature points [14]. Some approaches [15], propose
using a combination of trackers and object detection networks.
Tracking lights, in addition to cars, can reduce the impacts of
occlusions.

B. A new dataset for car lights

To best of our knowledge, there is no dataset which includes
car lights for training CNN to detect them. So we decided
to do a modification on Microsoft COCO [11], which is a
dataset to advance the state-of-the-art in object recognition
and gathers images of complex everyday scenes containing
common objects in their natural context. The original dataset
contains photos of 91 objects types and 328k images. In order
to use this dataset for training our model to detect car lights,
we selected images containing car, truck, and bus objects
and added two more labels named rear-light and front-light
to them. The enhanced dataset is containing 8530 images
of labeled cars and lights for training and 4500 images for
validation.

C. Object Detection

Object detection task has been the topic to numerous
researches in recent years. Since the Haar-features which had
been used in older object detection approaches had some
restrictions like high sensitivity to orientations and lightning
conditions, convolutional neural networks (CNNs) have been
widely employed in recent researches. On the other hand, the
high computational cost of the CNNs has reduced the speed
of object detection process and in many cases prevents real
time object detection. So it is very important to have a trade-
off between the pace and accuracy of the process. Many CNN
networks have somehow obtained this trade-off and present
high speed accurate detectors such as R-CNN [16], Fast R-
CNN [17], Faster R-CNN [18], Single Shot Detector (SSD)
[19] and You Only Look Once (YOLO) [10]. Fig. 1 shows a
comparison between these networks based on their precision
and frames per second.

Fig. 1: Comparison between common object detection net-
works [20].

Regarding Fig. 1, YOLOv2 has considerable accuracy and
speed simultaneously. Guangrui Liu in [21] also says that the
YOLO networks have the best performance in the case of
autonomous driving vehicles.
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You Only Look Once (YOLO) was an extremely fast
approach to object detection, localization and classification
introduced by Joseph Redmon and his colleagues [10]. In
this method, the image will be given to a single deep CNN
as input and the network will predict the objects and their
classes and locations within the image. The architecture of
the YOLO network contains 24 convolutional layers followed
by 2 fully-connected layers. In this work, we use YOLOv3
[22] architecture, shown in Fig. 2, which is a modified and
much faster version of the YOLO network. YOLOv3 has
53 convolutional layers and one fully-connected layer and
predicts bounding boxes corresponding to each object using
dimension clusters as anchor boxes similar to the first version.

Fig. 2: The architecture of YOLOv3 [22].

D. CARLA simulator

Supervised learning requires verified targets. Since there are
many restrictions with gathering real world verified depth data
(with some equipment like LIDAR and Radar), simulators
have been developed to fill this gap and nowadays their
resolution and quality are comparable with real world data.
We used the CARLA simulator [23] which provides a virtual
environment with valuable data and sensors for autonomous
vehicle researches. CARLA (Car Learning to Act) is an open-
source simulator which has been introduced for autonomous
driving research. This simulator is a server-client system;
the client has an API which is implemeneted in Python and
the server simulates and renders the scene. The environment
which is simulated by CARLA is composed of static objects
such as buildings, traffic signs and also dynamic objects like
pedestrians and vehicles. Weather conditions, illumination,
and numbers of cars and pedestrains can be controlled by
the client. One of the sensors provided by the CARLA is
RGB Camera which its type, number, and position can be
specified by the API. Camera parameters include 3D location,
3D orientation with respect to the car’s coordinate system,
field of view and depth of field. Images taken by the camera

can be recorded for future possible usages. Finally, the exact
location of each dynamic object is also accessible. [23]

III. OUR PURPOSED MODEL

In this work, in order to estimate the depth of cars in the
image, a combination of a CNN based detection network with
a Multi-layer perceptron (MLP) is proposed. Firstly, the frame
captured by a camera will be given to the detection network
as input. Then the detection network will output the cars and
their light locations and dimensions within the image. In the
next stage, using the information come from the first step
these three parameters will be calculated and then used as
inputs for the MLP network in order to estimate the depth of
corresponding car (all in pixel domain):

• In1: Euclidean distance between car rear lights (or front
lights)

• In2: Euclidean distance between the center of the car
detection bounding box and the centroid of the line that
connects two lights (this is implying the orientation of
the car)

• In3: height of the car detection bounding box
Fig .3 shows a block diagram of the proposed model.

Fig. 3: Block diagram of the proposed model. YOLO detection
box will output In1, In2 and In3 which are the distance
between two lights (rear or front lights), the distance between
the center of the car detection box and the center of a line
which connects two lights and height of the car detection box,
respectively.

The YOLOv3 network has been employed as our detection
network. In addition to that, a MLP (multi-layer-perceptron)
has been used as a nonlinear function to estimate the radial
distance. This MLP has two hidden layers, each contains 5
neurons.In order to provide ground-truth for our network, exact
radial distance to each car is extracted from CARLA [23].
The model parameters have been optimized by the Levenberg-
Marquardt optimization algorithm with respect to the ground-
truth came from CARLA. Fig. 4 shows the architecture of the
MLP which is used for estimating the depth of the cars.

IV. SIMULATION RESULTS

In the first stage, an object detector must be able to detect
and localize car lights. The YOLO network by default cannot
do this task, since it wan not trained on a dataset which
includes the car lights labels.So the YOLOv3 [22] has been
trained on our dataset to detect and localize cars and their
lights. In order to increase the accuracy, some classes which
are less probable to emerge in front of a vehicle camera
like pencils, tie and etc. have been effaced from the dataset.
Moreover, because of the variance in the scales of sought-
after objects like cars and their lights, multiple anchor boxes
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Fig. 4: The architecture of the MLP model.

Fig. 5: Average loss of YOLO network during the training
process.

with different sizes have been used in the process of training.
The results of training YOLOv3 on our dataset are shown
in Fig. 5, Fig. 6a and Fig. 6b. Fig .5 indicates the average
loss of the YOLOv3 network during the training process. As
the plot shows, after roughly 70,000 iterations the average
loss is almost near 1.22. Since the frames include highly
dynamic scenes, this loss for detecting small objects like car
lights and greater ones like the car itself simultaneously seems
reasonable. Regarding Fig .6a and Fig .6b, YOLOv3 has been
employed in order to detect cars and their lights (rear or front)
on some scenes captured from CARLA. In this work, it is
the nearest car that has the major importance and as it can
be seen, the YOLOv3 has detected and localized car lights

corresponding to the nearest car successfully. The success of
the network in detecting sought after objects in such synthetic
images speaks of both the power of the YOLOv3 network and
the quality of the CARLA simulator. Moreover, it indicates
that the modified dataset has enough number and quality of
data for reaching the goal of detecting car lights.

(a) front lights

(b) rear lights

Fig. 6: result of testing the network on CARLA images to
detect cars and their lights.

The detection network has also been tested on real world
images. Fig. 7a and Fig. 7b show the results of car and their
lights detection on real world images. Based on the results,
the networks successfully detected the cars and their lights.

After the YOLOv3 training process is done, the detection
network is able to provide necessary inputs. This network
outputs objects bounding boxes by representing its coordinates
in the image, width and height in pixel domain.

In order to obtain the required data for training the MLP
network multiple scenes of driving different cars have been
captured from CARLA [23] and the radial distance corre-
sponding to each car has been collected as the ground-truth
for the MLP training process. It is very important to feed the
model with data which is rich in various car dimensions to
avoid errors caused by variance in car heights.

In the next stage, after obtaining the data from running the
YOLOv3 network on captured scenes, the MLP network has
been trained.

In order to analyze the accuracy of the MLP network, the
train and test error histograms have been plotted in Fig .9
and Fig .10. These plots show that both train and test errors
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(a) front lights

(b) rear and front lights

Fig. 7: The result of testing the trained YOLOv3 network on
a real world image [11].

have a zero-meaned normal distribution. This means the most
frequent errors in the network were the least ones. In other
words, the frequency of significant errors is negligible.

Fig . 8 shows the train and test MSE (mean-squared-error)
of the model during the training process. As the plot shows,
the test and train MSE converged to a number lower than 10−3

and this means the network performs well in estimating the
depth both in frames that it learned before and the new frames.

Fig. 11 indicates depth prediction results. The test data
contain 213 samples, each is the data extracted from a frame
captured from CARLA. Fig. 11 indicates that with the selected
inputs this is desirable to estimate radial distance correspond-
ing to the nearest car accurately. The maximum error in the
range of 23 meters is 1.6 meters for training data and 1.4
meters for test data. In the case of regular autonomous vehicles
which their speed is slower than usual speeds (i.e. 1 to 5 meters
per second) it seems that the control system of the car can
easily handle these amounts of error in that specific range.

V. CONCLUSION

In this paper, we proposed a new method to estimate the
depth of cars in a monocular image. This approach is more
robust than those which use the contact point of car detection
bounding box with the ground and also those approaches,
which use only the height of the car in the image. In this
paper it is proposed to use a combination of a deep CNN
architecture named YOLO to detect and localize cars and their

Fig. 8: Train and test MSE during the training process.

Fig. 9: The error histograms of train data evaluations after the
training process.

Fig. 10: The error histograms of test data evaluations after the
training process.
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Fig. 11: Results of evaluating the model with test data.

lights with a nonlinear model to estimate depth. The results
indicate the effectiveness of this approach and show that it
can be a suitable method to estimate depth for autonomous
vehicles.
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