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Abstract—Human Activity Recognition (HAR) is a crucial
factor in assisted living systems and elderly care solutions where
the activity of the subject can be used to ensure the safety of the
elderly and provide more efficient services. HAR is a challenging
problem that needs advanced solutions than using handcrafted
features to achieve a desirable performance. Deep learning has
been proposed as a solution to obtain more accurate HAR systems
being robust against noise. In this paper, we introduce ARC-Net
and propose the utilization of capsules to fuse the information
from multiple inertial measurement units (IMUs) to predict the
activity performed by the subject. We hypothesize that this
network will be able to tune out the unnecessary information
and will be able to make more accurate decisions through the
iterative mechanism embedded in capsule networks. We provide
heatmaps of the priors, learned by the network, to visualize the
utilization of each of the data sources by the trained network.
Then, gradient based interpretations are provided and further
discussed. By using the proposed network, we were able to
increase the accuracy of the state-of-the-art approaches by 2%.
Furthermore, we investigate the directionality of the confusion
matrices of our results and discuss the specificity of the activities
based on the provided data.

Index Terms—Activity recognition, capsule network, inter-
pretable artificial intelligence, multimodal fusion.

I. INTRODUCTION

In the human activity recognition field, the goal is to predict

the activity of a human subject based on a window of measure-

ments provided by the available sensors. These activities may

range from lying to rope jumping. A wide variety of sensors

such as accelerometer, gyroscope, magnetometer, force and

light sensor may be used to classify the activity performed

in that window of collected data. Even everyday devices

such as smartphones and smartwatches may be used in order

to obtain the required data for activity recognition. Due to

availability and the low cost of the mentioned sensors, HAR

is utilized in many areas such as design of exoskeletons [1] and

more commonly, elderly care where HAR may be utilized for

pervasive healthcare [2] and assisted living [3]. Furthermore,

the collected data from sensors may be collected and utilized

to provide more personalized services through the monitored

activities. For example, the data collected from body-worn

sensors and the behavior extracted form this data can help

increase security [4] and allow the creation of better user

interfaces [5].

Deep learning has proven to be an adequate tool for recog-

nizing patterns and extracting rich features that may be utilized

to classify data [6]. Human activities may be classified based

on the patterns that are seen in the input data. Therefore, rather

than looking only at the measurements from individual data

sources, we require our algorithm to view the input data on

different levels and fuse the extracted features in such a way

that the perceived patterns would tell us about the activity

being performed, e.g., to differentiate between walking and

running, it would be misleading to only look at the data from

a motion sensor located on the ankle of the subject and we

would reach better performances by also using the data from

subject’s forearm. This calls for a technique that is able to

adequately fuse the information from every data source and use

the said information to make a prediction about the activity.

In this paper, we propose using a single Convolutional Neu-

ral Network (CNN) as an encoder to extract the features from

each of the IMUs and pass the said features to CapsNet [7] in

order to fuse the extracted information and make a prediction

about the activity of the subject. We will use two datasets to

evaluate the performance and generalization of our approach.

Moreover, a modified version of the network proposed in [8]

will be used as our encoder which uses stage-based fusion

to extract the necessary information. Our contributions are as

follows:

• CapsNet is used to fuse the information obtained from

each IMU

• Provide, gradient-free, intuitive interpretations regarding

the utilization of each of the IMUs based on the true label

• Provide gradient based interpretations describing the sen-

sitivity of each class with respect to the given measure-

ments

• Provide comparisons to empirically examine the capabil-

ity of capsules in rejecting corrupted modalities

• Our method outperforms the state-of-the-art deep learning

based approaches

This paper is organized as follows: In Section 2, we go

through various available classical and deep learning-based ap-

proaches to HAR alongside the current state-of-the-art(SOTA)

approaches. In Section 3, we explain the proposed architecture

and provide an introduction to capsules. In the last section, we

present quantitative and qualitative evaluations of the proposed

method and its variations against SOTA approaches and pro-

vide visualizations alongside corresponding discussions.

II. RELATED WORK

From an algorithmic point of view, approaches to HAR may

be divided into three groups, namely, classical approaches
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that utilize preprocessing methods such as pose estimation,

machine learning-based approaches that rely on hand-crafted

features devised by an expert and deep learning-based methods

that rely on gradient backpropagation in order to both ex-

tract features and perform classification. Deep learning based

methods can be separated into multiple groups of architectures

themselves. Each group utilizes a specific characteristic of an

architecture to improve the accuracy of their predictions. This

category of approaches may be divided further based on the

memory of past inputs [13]–[15], unsupervised methods [11],

[12], non-recurrent methods [8], [16].

In [9], video sequences captured by a monocular camera are

used to classify the activity of subjects. Optical flow alongside

background extraction methods is used as features which are

then passed to a support vector machine (SVM) to generate

predictions. [10] uses decision trees to classify the activity of

the subject based on features extracted from an accelerometer

of a smartphone. Ten features such as phone position on

the human body, user location, age and sensor readings are

passed through a decision tree to make predictions. [11] uses

activity sets rather than single label ground truth values to

predict the potential activities in the corresponding window of

measurements from IMUs. This work also uses unsupervised

learning methods prior to supervised learning in their training

process to achieve a more effective feature representation.

In [12], unsupervised learning methods are deployed where

the number of activities is unknown. This is done by using

clustering methods that operate on the frequency components

of the measured acceleration and angular velocity values.

[13] proposes DeepConvLSTM which is an LSTM based

network that utilizes a CNN to extract the features from inputs.

Due to the usage of recurrent layers, this model falls into the

category of memory-based networks. DeepConvLSTM aims

to increase the performance of HAR systems by modeling

temporal dependencies while using raw sensor data. In [14]

various architecture choices are compared to reach a conclu-

sion about the necessity of recurrence in HAR models. [15]

uses variants of Recurrent Neural Networks (RNNs) to observe

the cognitive decline by monitoring the daily activities of the

subject, while [13]–[15] all use IMU measurements as network

input.

[16] stacks IMU measurements from a smartphone and cre-

ates a window of measurements. These measurements are then

passed through a CNN to predict the activity of the subject.

This work aims to model the temporal connections between

raw sensor measurements using the convolution operations

that reside in CNNs. [8] also stacks the raw measurements

from the available IMUs and uses convolutional layers to

extract the features from said inputs. This work uses specific

kernel sizes that allow the network to perform data fusion in

multiple levels. Reference [8] also proposes that late sensor

fusion is more effective due to the separate processing of

each axis of sensor module in the initial layers. We base our

encoder on this architecture with modifications to prevent loss

of information during pooling layers. Moreover, we view HAR

as a multimodal fusion problem. We use a single encoder
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Fig. 1: A general overview of the proposed architecture

to extract features from IMUs with no constraints on the

position of the data source on subject’s body. Thereafter, we

use mechanisms that fuse the collected information and predict

the performed activity.

III. THE PROPOSED APPROACH

We propose using CapsNets to fuse the high dimensional

features passed from an encoder. The general overview of

our architecture is shown in Fig. 1. We stack a pre-specified

number of measurements from each IMU and create a two-

dimensional array where columns represent each measure-

ment. These arrays are passed to a single CNN separately and

the features corresponding to each of the IMUs are extracted.

Then, primary capsules are formed by reshaping the output of

the CNN and concatenating the extracted features from each

of the encoders. The concatenated features are then passed

through CapsNet to obtain a probability vector of the activities.

These steps are elaborated in detail in Section 3.A and 3.B.

A. Encoder

In order to extract features from each of the IMUs, we

use a CNN with varying kernel sizes at each layer similar

to the architecture proposed in [8]. A modified version of this

architecture is presented in Fig. 2. As it is seen in this figure,

at the first layer of the encoder, we perform a 1-dimensional

convolution operation that does not perform any fusion on the

given inputs and mainly acts as a filter. In the next layer, a

2-dimensional convolution is applied to the features of the

former layer. Due to the size of the kernel and the strides of

this layer, each module of the IMU is processed separately

and the features of the accelerometer and gyroscope are not
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Fig. 2: The architecture of the encoder. k, s and c correspond to kernel size, stride size and number of output channels,

respectively

fused in this layer. In the final layer, a kernel size of (2× 15)

convolves over the features of the second layer and fuses the

information extracted from each of the modules. To be able to

pass the extracted features to CapsNet, we will need to reshape

these features as shown in Fig. 2.

B. CapsNet and Dynamic Routing

CapsNet [7] uses vectors of neurons (capsules) to represent

the entities that may be present in the given input. Each capsule

looks at a small window of the input and gives the probability

of the existence of a specific pattern in the data. The magnitude

of a capsule gives the probability of the existence of an entity

and the orientation of the capsule in its high dimensional space

defines the characteristics of that entity. The capsules in the

first layer of the network, which are called primary capsules,

are extracted through the encoder as shown in Fig. 2. CapsNet

uses an iterative mechanism to dynamically route each of the

lower layer capsules to the higher layer ones. Through this

mechanism, the network is able to use the information about

the existence of low level entities to decide about the presence

of higher level ones. In our approach we only use one layer on

top of the primary capsules in order to obtain predictions about

the activity performed by the subject. Therefore, the higher

level capsules will represent the activity that is potentially

present in the given window of measurements. In other words,

the routing mechanism will allow us to link the existence

of specific patterns in each of the IMU measurements to the

potential activity that is being performed by the subject.

By concatenating the primary capsules from each of the

IMUs, we will have a feature map of size 12n × 96 where

n is the number of IMUs. As seen in Fig. 2, each primary

capsule has 96 dimensions and 12 capsules are extracted from

each of the IMUs. Assuming Ui represents the ith lower layer

capsule and Vj is the jth higher layer capsule, Algorithm 1

describes the routing mechanism used in our approach for r

number of iterations. The squash non-linearity is formulated

as follows

squash(V̂j) =

∥∥∥V̂j

∥∥∥
2

1 +
∥∥∥V̂j

∥∥∥
2 ·

V̂j∥∥∥V̂j

∥∥∥
(1)

While, the softmax function is formulated as follolws:

softmax(b) =
exp(bij)∑
k exp(bik)

(2)

Algorithm 1: Dynamic routing algorithm

initialize the log prior matrix b and set bij ← 0
Ûj|i = UiWij

cij ← softmax(b)
for r iterations do

ĉij ← softmax(b)

cij ← ηĉij + cij

V̂j ←
∑

i cijÛj|i
Vj ← squash(V̂j)
bij ← bij + V̂j · Ûj|i

end

Following [17], we added a soft updating rule with the coeffi-

cient η in Algorithm 1 to prevent overrouting. Furthermore, we

used the original loss function from [7] which is a margin loss

that calculates a separate loss value for each of the predicted

classes.

IV. EXPERIMENTS

The experiments were conducted using an NVIDIA Tesla

P100 with 16 gigabytes of RAM and 3584 CUDA cores. We

used the PyTorch [18] framework to implement the proposed

architecture. The code is available in our GitHub repository1.

A. Datasets

The proposed method was tested on the PAMAP2 [19]

and RealWorld [20] HAR datasets. The validation set of the

PAMAP2 dataset was used to tune the model hyperparame-

ters. The quantitative results from each of the datasets were

compared against the state of the art methods with the same

preprocessing characteristics. We report our results against

PerceptionNet [8], DeepConvLSTM [13] and CNN-EF [16]

on the PAMAP2 dataset and to test the generalizability of our

method, we also provide quantitative results for Perception-

Net [8] and DeepConvLSTM [13] alongside our method on

the RealWorld dataset. To train the network and to infer the

activity of each of the subjects from either dataset, we only use

the IMU measurements, namely accelerometer and gyroscope.

1) RealWorld: This dataset contains measurements from

15 subjects (8 males and 7 females) with recorded data

from the chest, forearm, head, shin, thigh, upper arm, and

1https://github.com/hamed-d/ARC-Net.
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waist of each of the subjects. For each subject, this dataset

provides measurements from GPS, IMU, gyroscope, light,

sound level data and magnetic field sensors. The annotated

activities from this dataset are climbing up and down the stairs,

jumping, lying, standing, sitting and running. The data is not

synchronized and is recorded at a frequency of 50Hz. After

synchronizing the IMUs, we segment the data into windows

of 128 measurements (2.56 seconds) with 60% overlap. We

use the leave-one-subject-out approach to evaluate our method.

Specifically, we use subjects 10 and 11 as validation and test

subjects and the rest are used to train the network.
2) PAMAP2: The physical activity monitoring dataset con-

sists of 18 different physical activities from 9 subjects (8 males

and 1 female). Three Colibri wireless inertial measurement

units were used to provide measurements alongside a heart

rate monitor. This dataset contains IMU measurements from

the chest, dominant wrist and dominant ankle at a frequency

of 100Hz. We downsampled this dataset to 50Hz in order to

match the frequency of the RealWorld dataset and stacked

128 measurements with the same overlapping that was used

for the preprocessing stage of the RealWorld dataset. Similar

to PerceptionNet, we chose a leave-one-subject-out approach

to validate and test our model. Subjects 1 and 5 were chosen

as test and validation sets, respectively.

B. Performance evaluation metrics
Due to an imbalance in the number of labels for both of

the datasets, we chose the weighted F1 score to report the

quantitative results of our network. This score is formulated

as below

wF1 =
∑

c

Nc

N

2 · Precisionc · Recallc

Precisionc + Recallc
(3)

Where c represents each class, while N is the total number

of data and Nc is the number of data with label c. Moreover,

we report the precision, recall and accuracy values separately

and compare our results against the state of the art methods.
We also provide the confusion matrix as a qualitative mea-

sure for both of the datasets. This matrix allows us to interpret

how the model wrongly classifies each of the categories. In the

provided matrices, the rows correspond to the actual labels

while columns represent the predicted classes. We will also

take a look at the directionality of this matrix and discuss

how easy it is for a model to confuse one class with the other

but not the other way around. This approach will allow us to

get a look at the specificity of the classes.

V. RESULTS AND DISCUSSION

We used the Optuna [21] library to optimize the hyper-

parameters of the network. Due to a limited amount of

computational power, we only used this library to search

for iteration number(r), soft-updating value(η) and the initial

learning rate. Twenty trials were conducted while each trial

lasted 200 epochs. The best set of hyperparameters were

chosen based on the average validation loss. Moreover, an

exponential learning rate scheduler with a multiplicative factor

equal to 0.98 was used to train the network on both datasets.

Fig. 3: Confusion map of the test set on the PAMAP2 dataset

A. Results on PAMAP2

Loss margins were set to 0.95 and 0.05 for this dataset.

Moreover, the iteration number and the soft updating coeffi-

cient were set to 3 and 0.1, respectively, while the training

proceeded with a batch size of 64. The test accuracy of our

model ranges from 89.18% to 90.51% across multiple training

sessions of the same model and the best single epoch based on

the validation loss achieves an accuracy score of 90.51% on

the test set. Due to the observed variance in the performance of

each model during training, we also formed a horizontal voting

ensemble [22], based on epochs of a single model using the

top validation scores but the metrics did not improve when

using this ensemble. Table I provides a comparison between

the obtained results of our model and the reported metrics from

the state of the art models. As it can be seen in Table I, the

TABLE I: Results on PAMAP2

Precision Recall wF1
Score

Accuracy

CNN-EF 85.51% 84.53% 84.57% 84.53%
DeepConvLSTM 87.75% 86.78% 86.83% 86.78%
PerceptionNet 89.76% 88.57% 88.74% 88.56%
ARC-Net 91.77% 90.52% 90.76% 90.51%

results from our model surpass the state of the art results on all

metrics. The largest gap between ARC-Net and PerceptionNet

can be seen in the precision achieved on the test results which

is about 2.01%. Furthermore, A consistent improvement is

seen on other metrics.

The confusion matrix of the test results of the network on

the PAMAP2 dataset is provided in Fig. 3. The directionality

of the confusion of the network in classifying sitting and

standing activities suggests that the two activities are similar

to each other based on the provided data. This is expected

since this dataset does not provide any data from an IMU
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Fig. 4: Confusion map of the test set on the RealWorld dataset

that is positioned in such a way that would allow an easier

differentiation between the two classes. If an IMU that is

placed inside a pocket has been used, it would allow the

network to be able to differentiate between the two more

easily. Furthermore, lying, cycling, rope jumping and running

have a precision of 100%. The precision of the ironing activity

is low while having a high recall, specifically ironing has a

recall of 100% while its precision is only 68.04%.

B. Results on RealWorld

The accuracy of our method on the test set ranges from

95.47% to 95.64% across multiple training sessions. We report

our best epoch in Table II alongside a full comparison of

our network against the state of the art methods. Due to the

observed variance in the performance of the network during

training, we also formed a horizontal voting ensemble based

on the validation loss of each of the epochs of a single

model. This way, we were able to increase the accuracy

of our model to 95.92%. Same as the results achieved on

PAMAP2, a consistent improvement of all the metrics is seen

in Table II. Because of the relatively large number of sensors

in this dataset, the number of iterations was increased to 7

while the soft updating coefficient was dropped to 0.01. By

this means, the larger amount of iterations would allow the

network to focus more on the routing of each primary capsule

from each IMU to the high level capsules. Moreover, the

smaller soft updating coefficient would prevent overrouting of

the network. The confusion matrix corresponding to the test

results of this dataset is provided in Fig. 4. This visualization

shows that some samples from each activity are consistently

TABLE II: Results on RealWorld

Precision Recall wF1
Score

Accuracy

DeepConvLSTM 92.83% 92.65% 92.63% 92.65%
PerceptionNet 94.78% 94.20% 94.27% 94.20%
ARC-Net 96.08% 95.64% 95.67% 95.64%

being misclassified as the standing activity. This is due to

the data collection protocol where the subjects are asked to

stand up before performing any of the activities available in

the dataset. Moreover, climbing up and down is also being

largely misclassified as walking. Based on the footage of the

activities provided by [20], the misclassifications have to do

with the sections of the path where no climbing up or down

is performed and the subject is in transition between two

staircases. Therefore, a large number of these samples are

because of the wrong annotations in the dataset rather than

being wrong predictions of the network.

C. Number of Parameters

To investigate the effect of the number of parameters on

the obtained metrics from each of the datasets, we reduced

the encoder’s number of parameters by 80% from 300k to

60k. The same training and testing splits were used to train

the smaller network. The results from this experiment are

presented in Table III. In the case of the RealWorld dataset,

almost no changes are seen in the accuracy and wF1-score

of the ARC-Net with smaller encoder size. This is while an

almost 1% reduction in the same metrics are seen on the

PAMAP2 dataset, leaving an improvement of about 1% over

PerceptionNet. These results show that the main factor in the

improvement over SOTA is the utilization of capsule networks

rather than the increase in the number of parameters.

TABLE III: Effect of reducing the number of parameters

RealWorld PAMAP2
wF1 Accuracy wF1 Accuracy

PerceptionNet 94.78% 94.20% 88.74% 88.56%
ARC-Net 95.67% 95.64% 90.76% 90.51%
ARC-Net Small 95.67% 95.65% 89.61% 89.35%

D. Prior Matrix Visualization

The prior matrix denoted by b in the routing mechanism of

CapsNet is a learnable parameter and is also responsible for

setting the values that describe the model’s prior belief regard-

ing the routing between two layers of capsules. Therefore, it is

Fig. 5: Normalized prior matrix heatmap of the network trained

on PAMAP2
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Fig. 6: Normalized prior matrix heatmap of the network trained

on RealWorld

TABLE IV: Changes in Accuracy and F1-score with Modality

Corruption

PAMAP2 RealWorld
ΔwF1 ΔAcc ΔwF1 ΔAcc

PerceptionNet 20.47% 18.63% 8.21% 8.1%
ARC-Net 10.60% 10.93% 3.67% 3.66%

possible to extract the values of this matrix after training and

visualize the routing between each IMU and the performed

activities. Fig. 5 and Fig. 6 visualize the prior matrix of our

trained network on PAMAP2 and RealWorld, respectively.

Based on Fig. 5, the routing that the network has come up

with seems intuitive in activities such as the ones related to

walking or climbing up and down the stairs where the network

relies on the movement of the ankle or hand more than other

modalities to make predictions. Moreover, correlations can be

seen between the heatmaps of PAMAP2 and RealWorld for

the same activities, e.g. the activity of lying relies on the

measurements from the waist/chest when trained on either

datasets. Based on Fig. 6, the addition of a thigh modality

has allowed the standing and sitting activities to be more

distinguishable with respect to PAMAP2. This has resulted

in a substantial improvement in the directionality between the

two classes in Fig. 4 with respect to Fig. 3.

E. Modality Corruption Test

One of the modalities was randomly corrupted by replacing

its measurements with a zero matrix to simulate the potential

case of modality failure during inference. The drops in the

accuracy and weighted F1 scores of our method and Percep-

tionNet on the test sets of each dataset are reported in Table IV.

It can be seen that on both datasets, our approach is signifi-

cantly more robust against modality corruptions compared to

a CNN only approach.

F. Gradient Based Interpretation

To visualize the patterns that are recognized by the network

for a specific activity and visualize sensitivity of each class

with respect to measurements from each IMU, we use guided

backpropagation [23] through the Captum [24] library. Guided

backpropagation calculates the gradient of a specific output

with respect to the given inputs. To be able to get a better

intuition of the detected patterns in the data, we provide

visualizations corresponding to activities that, based on Fig. 5,

rely, mostly, on one of the available IMUs from the PAMAP2

dataset. Based on Fig. 7, the network is able to detect the

swing patterns of the hand during walking. The network

ignores sections of the swing where the z-axis of the hand

accelerometer nears the maximum of the periodic patterns

seen in Fig. 7b. The same behaviour is seen in Fig. 7a.

Moreover, the measurements that are towards the center of

the frame, are more effective for the network in determining

what the performed activity of that frame is. Based on Fig. 8a

and Fig. 8b, we can see how the network is ignoring the

z-axis of the ankle IMU while ascending stairs and focuses

on the measurements provided by the x-axis of the same

accelerometer.

(a) Accelerometer X-axis

(b) Accelerometer Z-axis

Fig. 7: Guided backprop of hand IMU for ascending walking.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a method for human activity

recognition that relies on CapsNet to fuse the information

from multiple IMUs. We tested our approach on two datasets

with varying sensor positions and compared our results against

the SOTA. Our results surpassed that of SOTA by about
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2% in accuracy and weighted F1 score. We also reduced

the number of parameters in the encoder of the proposed

network and showed that no drops were seen in the case of

the RealWorld datset and only 1% decrease was observed on

PAMAP2, leaving a 1% increase over the SOTA. This showed

that the improvement was mainly due to the utilization of

CapsNet rather than the increase in the number of parameters.

Moreover, the confusion matrices of the test set of each dataset

were presented and specificity of the classes was investigated.

Our approach allowed for the visualization of routing between

modalities and activities. Through these visualizations, we

were able to interpret the importance of each modality for

correct classification of each activity. On the other hand,

gradient based interpretations allowed for visualization of the

pattern recognition capability of the network. Based on both

interpretation methods, it was evident that the network is able

to detect the patterns present in the measurements from each

modality which allows the network to selectively use or disre-

gard each modality based on the data from all modalities and

the prior belief achieved through training. Finally, modality

corruption was simulated by passing an array of zeros instead

of one random modality during inference and the capability

of our method in noise rejection was shown. Additionally, we

plan to investigate the effects of preintegration methods [25]

to achieve even better efficiency.

(a) Accelerometer X-axis

(b) Accelerometer Z-axis

Fig. 8: Guided backprop of ankle IMU for ascending stairs.
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