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One of the most challenging issues in adaptive control of robot manipulators with kine-
matic uncertainties is the requirement of inverse Jacobian matrix in regressor form. This
requirement is inevitable in the case of the control of parallel robots, whose dynamics for-
mulation are derived in the task space. In this paper, an adaptive controller is proposed for
parallel robots based on representation of Jacobian matrix in regressor form with asymp-
totic trajectory tracking. The main idea of this paper is separation of determinant and adju-
gate of Jacobian matrix in order to represent them into a new regressor forms. Simulation
and experimental results on a 2-DOF RPR and a 3-DOF redundant cable driven robot,
respectively, verify promising performance of the proposed method in practice.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainties in dynamic and kinematic parameters are inseparable part of robotic systems [1]. To design effective con-
trollers in presence of uncertainty, several methods are reported in the literature [2,3]. One of the powerful methods is adap-
tive control [4]. Adaptive controllers are developed to dispel dynamic uncertainties in both serial [5] and parallel robots [6],
and furthermore, in bilateral teleoperation manipulators [7]. The main idea in this method is to express dynamic formulation
in regressor form, and furthermore, to derive an adaptation law for unknown parameters based on Lyapunov analysis [8]. In
this regard, the first Jacobian adaptation algorithm for serial robots was presented in [9], where the velocity equations of the
robot was expressed in regressor form with respect to unknown kinematic parameters. By using Lyapunov direct method, it
is shown that task space variables track the desired trajectory, whereas parameters estimations may not necessarily con-
verge to their real values [10,11]. Note that in the last two works, it is assumed that an equation containing inverse of Jaco-
bian matrix can be expressed in regressor form. Wang in [12] resolve this problem and proposed new adaptation laws which
improved the performance of the closed-loop system. However, these works are focused on serial robots, and less attention
has been paid to the control of parallel robots with kinematic uncertainties.

Parallel robots are closed–loop mechanisms in which the moving platform is linked to the base by several independent
kinematic chains [13,14]. The unique characteristics of parallel robots in terms of their speed and rigidity make them suit-
able to a variety of applications such as flight simulators and very fast pick and place manipulators [15]. Cable driven parallel
ad), jose.
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robots are a prominent class of this robots where the links are formed by cables driven by actuators [16,17]. Since dynamics
formulation of these robots are usually written in task space [18], exact values of dynamic parameters and Jacobian matrix is
required to achieve a precise trajectory tracking. This condition may not be satisfied in most cases especially for deployable
Cable Driven Robots (CDRs), where a calibrated model is usually unavailable [19,20].

Although calibration methods are well developed to reduce kinematic uncertainties [21], they usually does not overcome
Jacobian uncertainties and are not applicable for special cases such as deployable CDRs. Another crucial issue in large scale
CDRs is sagging of cables [22]. In this situation, the kinematic and Jacobian matrix are changed based on position of end-
effector, and therefore, a control strategy to adapt kinematic and Jacobian is strictly required. Authors in [23,24] have taken
two approaches to tackle this problem for a specified robot. In [23], an adaptive controller is proposed, and it is assumed that
the adapted parameters converge to their physical values. This assumption is not necessarily fulfilled in practice since there
is no theoretical guarantee for such convergence. In [24] an adaptive robust controller is proposed, in which the bounds of
dynamic and kinematic estimation errors are considered to be constant but unknown and at last an ultimate bound for track-
ing error is derived. However, since these bounds are state-dependent, this assumption may not be easily fulfilled.

In this paper an adaptive controller based on [8], is developed for parallel manipulators with kinematic and dynamic
uncertainties. In contrast to the majority of works reported in the literature which are merely focused on fully parallel case,
the proposed method works well for both fully and redundantly actuated robots. Invoking the researches in the field of serial
robots, the main contribution of this paper is based on a novel representation of Jacobian matrix of the robot in a general
regression form, i.e. instead of expressing velocity terms in regressor form, the Jacobian matrix is represented in regressor
form which clearly results in a matrix of unknown values. In order to determine an expression for the inverse Jacobian
matrix in regressor form, which is necessary but computationally challenging part of control law, we propose to separate
adjugate and determinant of this matrix and then form new regressors. By this means and based on passivity method, tra-
jectory tracking is achievable and is analyzed using direct Lyapunov method. One of the main advantages of this method is
that it relaxes the assumption that an equation containing inverse of Jacobian matrix should be expressed in regressor form.
Hence, the scope of application of this paper is much wider in practice. To the best of the authors’ knowledge, such controller
synthesis is not fully addressed before in the field of parallel robots with detailed analysis.

Notation: For any matrix A 2 Rn�m, Ai denotes i-th column, jA denotes j-th row and Ai;j denotes i; jð Þ-th element of A. A�

and Ay represent adjugate and right pseudo-inverse of A, respectively, while bA represents an estimate value of A while

A
�
¼ bA � A. Unless indicated otherwise, all vectors in the paper are considered as column vectors.

2. Kinematics and dynamics analysis

The dynamic model of a parallel robot with n degrees of freedom and m actuators with negligible dissipation forces may
be written in the task space as follows [19]:
M Xð Þ€X þ C X; _X
� �

_X þ G Xð Þ þ d ¼ F ¼ JT Xð Þs; ð1Þ
where X; _X 2 Rn denotes the generalized coordinate vector representing the position and orientation of the end–effector and
their velocities, respectively, s 2 Rm denotes the applied torque to the robot, M Xð Þ 2 Rn�n is the inertia matrix,

C X; _X
� �

2 Rn�n denotes the Coriolis and centrifugal matrix, G Xð Þ 2 Rn is the vector of gravity terms, J Xð Þ 2 Rm�n denotes

the Jacobian matrix of the robot and d 2 Rn denotes the external disturbance applied to the moving platform which is
assumed to be bounded. Some important properties of the robot dynamic formulation (1) from [[18], Sec. 5.5.4] are as
follows.

P1: The inertia matrix M Xð Þ is symmetric and positive definite for all X.

P2: The matrix _M Xð Þ � 2C X; _X
� �

is skew symmetric.

P3: The dynamic model is linear with respect to a set of dynamical parameters and may be represented in a linear regres-
sion form:
M Xð Þ€X þ C X; _X
� �

_X þ G Xð Þ ¼ Ym
€X; _X;X
� �

hm; ð2Þ
where, Ym
€X; _X;X
� �

denotes the regressor matrix and hm denotes the dynamic parameters vector.

The task space wrench F is related to joint space force vector s by Jacobian transpose:
F ¼ JT Xð Þs: ð3Þ

It was shown in [9] that for serial robots, the Jacobian matrix may be expressed in regressor form as:
J qð Þ _q ¼ Yk q; _qð Þhk; ð4Þ
2
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where hk denotes unknown kinematic parameters in Jacobian matrix. This expression may be used to represent each element
of the Jacobian matrix as a linear regression form of kinematic parameters as:
JTi;j qð Þ ¼ Ykihkj ; Yki 2 R1�li;j ; hkj 2 Rli;j�1; ð5Þ

where the vectors Yki and hkj represent the known and unknown variables, respectively. Since a matrix may be represented
by its elements as follows
JT ¼
Xn
i¼1

Xm
j¼1

JTi;j
iWj; iWj 2 Rn�m;
where all elements of iWj are zero except i; jð Þ-th element which is equal to one. Hence, one may represent JT qð Þ as follows:
JT qð Þ ¼
Xn
i¼1

Xm
j¼1

Ykihkj
iWj: ð6Þ
In parallel robots with actuated revolute joints, Jacobian matrix may be expressed in the form of (6). However, Jacobian
matrix of a general 6-DOF actuated prismatic joints robot including cable driven robots may be represented by, [18, Ch.4]:
J Xð Þ ¼
k̂T1

bRpa1 � k̂1
� �T

..

. ..
.

k̂Tm
bRpam � k̂m
� �T

2666664

3777775; k̂i; ai 2 R3; ð7Þ
where k̂i denotes unit vector in the link direction, ai denotes the attachment points of the links to the end-effector repre-
sented in moving frame and bRp denotes the rotation matrix. On the contrary, it is not straight forward for these manipula-

tors to express J Xð Þ in the form of (6) due to fractional elements of the matrix. To overcome this problem, JT Xð Þ is expressed
in the following form:
JT ¼ k1 . . . km
bRpa1 � k1
� �

. . . bRpam � km
� �" # l1 . . . 0

..

. . .
. ..

.

0 . . . lm

2664
3775

�1

, JTnew Xð ÞL�1; ð8Þ
where ki ¼ lik̂i and li as the length of i-th link. Through this formulation, it is possible to define JTnew Xð Þ 2 Rn�m in the regressor

form of (6). Invoking (6), we assume that JTnew Xð Þ is expressed in the following compact form
JTnew Xð Þ ¼ Y Xð ÞH; ð9Þ

in which Y Xð Þ 2 Rn�l and H 2 Rl�m. Notice that it is possible to show that this formulation is not limited to merely the Jaco-
bian matrices represented by (7).

3. Adaptive Jacobian controller

In this section an adaptive controller based on [8], is proposed for a parallel manipulator with uncertain kinematics and
dynamics. It is assumed that position and velocity of end-effector, as well as the length of links are available for feedback and
Jacobian matrix is expressed in the form of (9). In the proposed controller, trajectory tracking is guaranteed by augmentation
of the proposed controller in [8], and adaptation law for the unknown parameters.

Let us define S as in [24,8]:
S ¼ _
X
�
þ CX

�
¼ _X � _Xr; ð10Þ
with
X
�
¼ X � Xd; _Xr ¼ _Xd � CX

�
; ð11Þ
where Xd 2 C2 denotes the desired trajectory, Xr ¼ Xd � C
R t
0 X

�
dt denotes virtual reference trajectory and C is a constant pos-

itive definite matrix. If all the kinematics and dynamics parameters are known, the following control law may be directly
used to achieve a suitable performance
s ¼ LJynew M€Xr þ C _Xr þ G� KS� K 0sign Sð Þ
� �

; ð12Þ
3
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in which, K and K 0 are constant symmetric positive definite matrices, and Jynew denotes the right pseudo-inverse of JTnew Xð Þ. In
the case of fully actuated robots, Jynew is replaced by J�T

new. Note that control law (12) is related to Jacobian matrix in the form
(8), while for actuated revolute joint, the control law is
s ¼ Jy M€Xr þ C _Xr þ G� KS� K 0sign Sð Þ
� �

:

In the sequel, continue with the notation (12). Invoking [25, Ch.1], Jynew is given as
Jynew , R
T
;

in which for the case of redundantly actuated robot where Jynew ¼ Jnew JTnewJnew
� ��1

;R and T are derived as
R ¼ Jnew JTnewJnew
� ��

2 Rm�n; T ¼ det JTnewJnew
� �

2 R; ð13Þ
and for the case of fully parallel robots, i.e. the robots with the number of actuators equal to degrees of freedom,
R ¼ JTnew
� ��

2 Rn�n; T ¼ det JTnew
� �

2 R; ð14Þ
where �ð Þ� denotes the adjugate matrix. Due to the uncertainties in parameters, we have to use the estimated values in the
control law. Thus,
s ¼ L
bRbT bM €Xr þ bC _Xr þ bG � KS� K 0sign Sð Þ
� �

; ð15Þ
where, �̂ð Þ denotes the estimated value. Invoking P3 and the fact that adjugate matrix is linear with respect to the param-
eters, assume that it is possible to write:
bR bM €Xr þ bC _Xr þ bG � KS� K 0sign Sð Þ
� �

¼ Ya X; _X; _Xr ; €Xr

� �
ĥa; ð16Þ
where ha 2 Rr is constructed by concatenation of kinematics and dynamics parameters into a vector. Replace (8), (15) and
(16) in (1), the closed-loop dynamic may be written as:
M Xð Þ€X þ C X; _X
� �

_X þ G Xð Þ þ d ¼ JTnew
YaĥabT : ð17Þ
Add
� JTnew
YahabT
to both sides of (17), to obtain:
M Xð Þ€X þ C X; _X
� �

_X þ G Xð Þ þ d� TbT M€Xr þ C _Xr þ G� KS� K 0sign Sð Þ
� �

¼ JTnew Xð ÞYa
~habT ; ð18Þ
where ~ha ¼ ĥa � ha denotes estimation error. Notice that the determinant of a matrix is linear with respect to the elements of
that matrix. Thus we may express T as a linear regression T ¼ Yb Xð Þhb where hb 2 Rk are unknown parameters in the deter-
minant. On the other hand, considering P3, one may reach to the following equation:
M€Xr þ C _Xr þ G� KS� K 0sign Sð Þ ¼ Yc X; _X; _Xr ; €Xr

� �
hc; ð19Þ
where hc 2 Rp denotes the vector of dynamical parameters. Using (19), left hand side of (18) is rewritten as follows:
M Xð Þ€X þ C X; _X
� �

_X þ G Xð Þ þ d�
Yb ĥb � ~hb
� �
Ybĥb

M€Xr þ C _Xr þ G� KS� K 0sign Sð Þ
� �

¼ M _Sþ CSþ KSþ K 0sign Sð Þ þ dþ Yb
~hb

Ybĥb
M€Xr þ C _Xr þ G� KS� K 0sign Sð Þ
� �

¼ M _Sþ CSþ KSþ K 0sign Sð Þ þ dþ Yb
~hb

Ybĥb
Ychc: ð20Þ
where we used the relations T ¼ Ybhb ¼ Yb ĥb � ~hb
� �

; bT ¼ Ybĥb and
4
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M Xð Þ€X þ C X; _X
� �

_X þ G Xð Þ � M€Xr þ C _Xr þ G� KS� K 0sign Sð Þ
� �

¼ M _Sþ CSþ KSþ K 0sign Sð Þ:
Finally, using (9), closed-loop Eq. (18) is reduced to:
M _Sþ CSþ dþ KSþ K 0sign Sð Þ ¼ YĤ
Ya

~ha

Ybĥb
� Y ~H

Ya
~ha

Ybĥb
þ Yb

~hb
Ybĥb

Yc
~hc � Yb

~hb
Ybĥb

Yc ĥc; ð21Þ
in which JTnew ¼ YĤ� Y ~H and Ychc ¼ Yc ĥc � Yc
~hc are utilized. Now let us design adaptation laws based on passivity method.

For this means, recall Proposition 4.3.1 of [26] on the connection of two passive systems. The reader is referred to this ref-
erence for detailed proof.

Proposition 1. [26]. Consider the standard feedback of systems R1 and R2 which is shown in Fig. 1. Assume that R1 is output
strictly passive, i.e. there exists a storage function H1 such that _H1 6 uT

1y1 � y1w y1ð Þwhere y1w y1ð Þ P 0, and R2 is passive, i.e.

there exists a storage function H2 such that _H2 6 uT
2y2. Then the states of R1 converge to zero while states of R2 remain

bounded.h
In order to use the above proposition, we shall modify right hand side of (21) in such a way that all the terms are rep-

resented by a regressor matrix and an unknown vector. Therefore, in the following, Y ~H Ya~ha
Yb ĥb

and Yb
~hb

Yb ĥb
Yc

~hc are changed accord-

ingly. Assume that
Yb
~hb

Ybĥb
Yc

~hc ,
YcYl

Ybĥb
~hl; with Yl ¼

Yb 01�k . . . 01�k

01�k Yb 01�k . . .

..

. . .
. ..

.

01�k � � � 01�k Yb

266664
377775

n�p�k

; ~hl ¼
1

~hc~hTb

� �� �T
..
.

p
~hc~hTb

� �� �T

2666664

3777775

where i

~hc~hTb

� �
is the i-th row of ~hc~hTb . Furthermore,
Y ~H
Ya

~ha
Ybĥb

, YYg

Ybĥb
~hg; with Yg ¼

1 Yað Þ; . . . ;m Yað Þ 01�m:r . . . 01�m�r
01�m�r 1 Yað Þ; . . . ;m Yað Þ 01�m�r

..

. . .
. ..

.

01�m�r . . . 1 Yað Þ; . . . ;m Yað Þ

266664
377775

l�m�r�l

;

in which i Yað Þ is i-th row of Ya, and
~h0g ¼
~H1;1

~hTa . . . ~H1;m
~hTa

..

. . .
. ..

.

~Hl;1
~hTa . . . ~Hl;m

~hTa

2664
3775

l�m�r

; ~hg ¼
1

~h0g
� �T
..
.

l
~h0g
� �T

2666664

3777775
m�r�l�1
where ~Hi;j is i; jð Þ-th element of ~H. Therefore, (21) may be rewritten as follows:
M _Sþ CSþ dþ KSþ K 0sign Sð Þ ¼ YĤYa

Ybĥb
~ha � YYg

Ybĥb
~hg þ YcYl

Ybĥb
~hl � Yc ĥcYb

Ybĥb
~hb , YF

~hF ; ð22Þ
with
Fig. 1. Standard feedback configuration of two systems.
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YF ¼ YĤYa
Yb ĥb

� YYg
Yb ĥb

YcYl
Yb ĥb

� Yc ĥcYb
Yb ĥb

h i
; ~hF ¼

~ha
~hg
~hl
~hb

266664
377775 2 R rþm�r�lþp�kþkð Þ�1
in which YF and hF are regressor and the vector of all of the uncertain parameters, respectively. Eq. (22) may be considered as
the system R1 represented in the mentioned proposition. This system is output strictly passive with H1 ¼ 1

2 S
TMS as the stor-

age function, because
_H 6 �kmin Kf gkSk2 � kmin K 0� �� q
� �kSk þ STu1; wherekdk 6 q;
with u1 ¼ YF
~hF ; y1 ¼ u2 ¼ S and without external input (i.e. v1 ¼ 0). In order to apply the aforesaid proposition, an adaptation

law is required to be defined for ~hF such that R2 becomes passive. For this means, the following dynamic is set for ~hF
_̂hF ¼ �K�1YT
FS ð23Þ
with K > 0 as the gain of adaptation law which leads to the passivity of R2, since
H2 ¼ 1
2
~hTFK~hF ! _H2 ¼ �STYF

~hF ¼ uT
2y2:
Note that it is assumed that hF is constant. Let us state the following theorem on adaptive control of parallel robots with
kinematics and dynamics uncertainties.

Theorem 1. Consider a parallel robot with dynamic Eq. (1). Assume that (9) and (16) hold, kdk 6 q and control and adaptation
laws are given as in (15) and (23) with kmin K 0� �

> q, respectively. Then, the closed-loop tracking error converges to zero in the
presence of uncertainties in kinematics and dynamics parameters.
Proof. The proof is obvious with respect to the mentioned proposition and R1;R2 defined above. However, a Lyapunov based
proof is also presented here. Consider the following Lyapunov function candidate:
V ¼ 1
2
STMSþ 1

2
~hTFK~hF : ð24Þ
Then its time derivative becomes
_V 6 �STKS� kmin K 0� �� q
� �kSk:
Invoking Lasalle-Yoshizawa Theorem [27, Theorem 8.4], it is easy to show that S converges to zero, and hence, the con-

vergence of X
�
is resulted from (10). j.
Remark 1. One of the advantages of the proposed method compared to previous works on this topic is that the closed loop
equation was expressed in the form of (22) which reminiscent the closed loop equation of well-known adaptive controller
proposed in [8]. Hence, for both kinematics and dynamics parameters merely one adaptation law was proposed with the
expense of over parameterization. Note that Eqs. (9) and (16) are gentle form of what is proposed in [10,11], where it is

assumed that a term containing bJ�1 is expressed in regressor form.
Remark 2. Singularity avoidance in construction and path planing is a necessary and important requirement in parallel
robots [28,29]. Here, it is assumed that desired trajectory is inside the workspace and away from singular configurations
of the robot. By this means, the Jacobian matrix is always of full rank, and therefore, it is possible to find its estimate. How-
ever, projection algorithm may be employed in order to ensures singularity avoidance as well as avoiding large variation in
parameters and provides a faster and better transient response. Note that by this means, positive tension in the case of CDRs
is ensured.

In the following lemma, invoking [4, Theorem 4.4.1], a projection algorithm based on gradient method is proposed.

Lemma 1. Consider closed-loop system (22) with adaptation law (23). Assume that it is priori known that hF is absolutely in a

compact subspace X, i.e. hF 2 X where X is defined as X ¼ hF jg hFð Þ 6 0f g and g hFð Þ is known. The objective is to keep ĥF in X. If ĥF

is on the edge of X i.e. ĥF 2 @X, and _̂hTFrg > 0, the following adaptation law is chosen
_̂hF ¼ �K�1rgYT
FS ð25Þ
where rg is projection matrix
6



M. Reza J. Harandi, S.A. Khalilpour, H.D. Taghirad et al. Mechanical Systems and Signal Processing 157 (2021) 107693
rg ¼ I � rgð Þ rgð ÞT
jjrgjj2

: ð26Þ
This leads to ĥF to remains in X.
Proof. If ĥF is inside X, adaptation law (23) is applied, and by this means, it remains in X. Assume that ĥF 2 @X, hence the aim

is to ensure that ĥF always remains in X. For this means, the direction of _̂hF should not be directed toward outside of X. In

other words, dot product of _̂hF andrg ¼ @g=@h shall be non-positive. Therefore, if �K�1YT
F S

� �Trg > 0; _̂hF should be projected

on the direction tangent to @X. This is done using projection matrix (26) which results in adaptation law (25). Now consider
Lyapunov candidate (24) whose time derivative is given as:
_V ¼ STd� STKS� STK 0sign Sð Þ þ STYF
~hF � ~hTFrgYT

F S:
By considering (26), _V becomes
_V 6 �kmin Kf gkSk2 � kmin K 0� �� q
� �kSk þ ~hTF

rgð Þ rgð ÞT
jjrgjj2

YT
FS:
Note that ~hTFrg P 0, since direction of ~hF andrg are toward outside of X. Therefore, the last term in the above inequality
is negative. j.

Notice that in most cases, exact derivation of g hFð Þ is highly complicated. Hence, the acceptable bound for each element of
unknown vector is considered and the simplest projection function, namely saturation is used, since it is applicable to any
adaptive control law [30]. In other words, this is equivalent to define an absolute value function for every elements of
unknown vectors. For example, Assume that a 2 R is an element of an unknown vector and it is known that k1 6 a 6 k2.
Define g að Þ as
g að Þ ¼ a� k1 þ k2
2

���� ����� k2 � k1
2

:

Now, one may find rg ¼ sign a� k1þk2
2

� �
which leads to rg ¼ 0 and therefore, _̂a ¼ 0 when a is at the edge of g að Þ 6 0.

In the sequel, we examine the performance of the proposed method on a fully parallel manipulator and a redundant cable
driven robot. In order to test the efficiency of the method in experiment, ARAS suspended CDR is used and the proposed
method with projection algorithm is implemented and compared to that of a simple controller on the calibrated model.

Due to the fact that unmodeled dynamics are inevitable in experiment, a simulation on a 2-DOF RPR robot is also considered
and the proposed method is compared to that of an adaptive robust controller.

4. Simulation results

In this section, simulation results of the proposed method on a 2-DOF RPR parallel robot is presented. The schematic of
this robot is illustrated in Fig. 2, where X ¼ x; y½ �T denotes position of end-effector, Ixi denotes the moment of inertial of i-th
link, mi1 and mi2 are the mass of i-th cylinder and piston, respectively, and mp denotes the mass of the end-effector. The
dynamic matrices and the Jacobian matrix of the robot may be given by
Fig. 2. Schematic of the 2-DOF RPR parallel robot.

7
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M ¼ mpI2 þ
X2
i¼1

mi2k̂ik̂Ti � 1
l2i
Ixik̂2i� �mcek̂2i�;

C ¼
X2
i¼1

� 2
li
mco

_lik̂2i� � 1
l2i
mi2ci2k̂i _XT k̂2i�;

G ¼ mp þ
X2
i¼1

mgek̂2i� �mi2k̂ik̂Ti

 !
0
g

	 

; J ¼ �

x
l1

y
l1

x�a
l2

y
l2

" #
; k̂1 ¼

x
l1
y
l1

" #
; k̂2 ¼

x�a
l2
y
l2

" #

with
l21 ¼ x2 þ y2; l22 ¼ x� að Þ2 þ y2; _li ¼ Ji;1 _xþ Ji;2 _y; mce ¼
X2
i¼1

1
l2i

mi1c2i1 þmi2c2i2
� �

mco ¼ 1
li
mi2ci2 � 1

l2i
Ixi þ l2i mce

� �
; mge ¼ 1

li
mi1ci1 þmi2 li � ci2ð Þð Þ

k̂21� ¼
� y2

l21

xy
l21

xy
l21

� x2

l21

24 35; k̂22� ¼
� y2

l22

x�að Þy
l22

x�að Þy
l22

� x�að Þ2
l22

264
375
The parametric values of the robot considered in the simulations are given in Table 1. The mass of end-effector is consid-
ered equal to 2Kg. Note that Jacobian matrix can be rewritten as
J ¼ � x y

x� a y

	 
 1
l1

0

0 1
l2

" #
¼ �JnewL

�1; ð27Þ
and then Jnew can be expressed in regressor form (9) as follows
Jnew ¼ x y

x y

	 

þ 0 0

�1 0

	 

a ¼ x y

x y

	 

þ YH:
The other regressors are presented in [2].
In order to evaluate performance of proposed method in Theorem 1, a simulation with adaptive robust controller pro-

posed in [24] is also considered. In order to test the performance of the both parts of controller, i.e. adaptive and robust part,
a bounded external disturbance which satisfies kdk < 1 is also considered. The parameters of the robot are perturbed 25%
from its nominal values. The gains of controller are chosen as
C ¼ 2:5I; K ¼ 4I; K 0 ¼ I; K ¼ 5I:
The gains are chosen such that convergence rate is moderate, configuration variables suitably converges to their desired
values and control law is smooth and without oscillations. Simulation results are illustrated in Fig. 3. As it is seen in this fig-
ure, the configuration variables of the robot converge to the desired values in both methods. However, the control signal cor-
responding to the adaptive robust controller has an undesirable chattering which is not practically implementable. Note that
as indicated in [24], it is possible to avoid chattering with the expense of reducing the asymptotic stability by UUB stability.
However, in the proposed method asymptotic stability is achievable with smoother control efforts.

5. Experimental results

In order to verify the performance of the proposed method in practice, a 3–DOF redundant cable driven robot is consid-
ered. As it is shown in the schematic of the robot in Fig. 4, The end-effector is suspended from anchor points by four cables.
All of the anchor points are installed at the same height. The robot has three translational degrees of freedom with four actu-
ated cables which are driven by motors through pulleys. Kinematics formulation of this robot is given by
l2i ¼ x� xAið Þ2 þ y� yAið Þ2 þ z� zAið Þ2 i ¼ 1; . . . ;4 ð28Þ

where, X ¼ x; y; z½ �T is the position of end-effector and xAi; yAi; zAi are the uncertain kinematic parameters that determine the
cable anchor points. Dynamic matrices of the robot with the assumption of massless and infinitely stiff cables are as follows
tric values of 2RPR robot.

mi1 mi2 ci1 ci2 Ixi

1 1 0.5 0.5 0.1
1 1 0.5 0.5 0.1

8



Fig. 3. Tracking error converges to zero with both method while chattering in control law is destructive inevitable part of adaptive robust controller.

Fig. 4. Schematic of the suspended robot with four cables. All of the anchor points are at the same height. Center of coordinates is located in the middle of
A1 � A2 � A3 � A4 rectangle with zero height.
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M ¼
m 0 0
0 m 0
0 0 m

264
375; C ¼ 03�3; G ¼

0
0
mg

264
375 ð29Þ
where m is the mass of end-effector.
Since the proposed method is also applicable to redundantly actuated parallel robots, the experiment is designed such

that the method is applied to a redundant CDR. The Jacobian matrix may be rearranged into the following form:
9
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JT ¼ �
x� xA1 x� xA2 x� xA3 x� xA4
y� yA1 y� yA2 y� yA3 y� yA4
z� zA1 z� zA2 z� zA3 z� zA4

264
375

1
l1

0 0 0

0 1
l2

0 0

0 0 1
l3

0

0 0 0 1
l4

2666664

3777775: ð30Þ
Thus, Jacobian matrix is expressed in the form JT ¼ JTnew Xð ÞL�1. Now it is possible to express JTnew in regressor form
JTnew ¼
x x x x

y y y y

z z z z

264
375þ

�1 0 0
0 �1 0
0 0 �1

264
375 xA1 xA2 xA3 xA4

yA1 yA2 yA3 yA4
zA1 zA2 zA3 zA4

264
375 ¼

x x x x

y y y y

z z z z

264
375þ YH: ð31Þ
Note that Jnew does not satisfy the assumption in [10,11], i.e. bJynewn with n 2 R3 as a known vector, may not been expressed
in regressor form due to fractional elements generated by determinant. Other regressors are presented in [2].

In order to measure the length of cables, the motor rotation angles are measured by incremental encoders. Hence, the
current length of cables are available by knowing initial length of the cables. A 100 frame per second stereo vision camera
with 640� 480 resolution is utilized to measure position of the LED lamp as the position of the end-effector. More informa-
tion about the experimental setup was given in [19]. Fig. 5 shows different parts of ARAS suspended cable driven robot.

The mass of end-effector is equal to 4.5 KG and coordinates of cable anchor points are obtained by calibration as:
xA1 ¼ �xA2 ¼ xA3 ¼ �xA4 ¼ b
2 ¼ 3:56

2

yA1 ¼ yA2 ¼ �yA3 ¼ �yA4 ¼ a
2 ¼ 7:05

2

zA1 ¼ zA2 ¼ zA3 ¼ zA4 ¼ h ¼ 4:26

ð32Þ
The spring-like desired trajectory is expressed in SI unit systems, as follows:
xd tð Þ ¼ 0:48� 0:1 cos 2p
5 t
� �

yd tð Þ ¼ �0:22þ 0:1 sin 2p
5 t
� �

zd tð Þ ¼ 1:5þ 0:0075t

8><>: ð33Þ
The center and diameter of the trajectory are chosen in such a way that the robot is inside its workspace away from its
singular space, and well-measured by the stereo camera. The gains of controller are set to:
C ¼ 20I; K ¼ 10I; K ¼ 5I;
and K 0 is considered equal to zero to test merely the performance of adaptive part of controller. The gains are chosen by some
trials and errors such that a suitable performance is achieved. The initial position of the robot is
x0; y0; z0½ �T ¼ 0:43;�0:28;1:5½ �T . Notice that in contrast to all previous works on ARAS CDR, in this work the initial position

of the robot is not on the trajectory, i.e. X
�
is not zero at t ¼ 0. Note that such sudden motions request in CDRs may lead

to longitudinal and transverse oscillations in cables which may cause instabilities in the robot. This extreme scenario is
tested on the robot with suitable controller performance.

The upper bound of perturbation for dynamic and kinematic parameters is set to 10%. In order to examine the effect of
the projection algorithm, a saturation function is used as a simple appropriate projection. By this means, estimated param-
Fig. 5. ARAS suspended cable driven robot.
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eters are saturated within the �15% bounds. For the sake of comparison, and in order to analyze the performance of the pro-
posed method, a non-adaptive controller is also implemented on to the robot. The implemented control law is as what given
in (12) with the parameters obtained by kinematic and dynamic calibration. By this means a well suited control law is con-
sidered, while the exhaustive procedure of calibration is needed. Note that a high gain controller was also implemented on
the robot, whose results are not reported in this paper, since it led to high oscillations in the cables.

The experimental results are illustrated in Fig. 6 and Fig. 7. As it is seen in Fig. 6(a), the traversed path with adaptive con-
troller suitably tracks the desired path with a short transient. However, non-adaptive controller is not that precise, and leads
to larger tracking error within path. In order to compare the results more clearly, the tracking errors are shown in Fig. 6(b).
Note that the tracking error illustrated in these figures are in centimeters. The results show the desirable performance of the
proposed method in comparison to non-adaptive controller based on the calibrated model. The response of the system is
affected by the oscillations of cables at initial times due to an initial error between the trajectory and position of the robot.
After this period, fluctuations are suitably damped and thus, the robot has a suitable performance.

In Fig. 6(b), the tracking error in X direction is less than 0:5cm with adaptive controller while with the non-adaptive con-
troller, it is about 2 cm. The tracking errors in Y and Z directions are about 0.5 cm and 0.25 cm for proposed method and 3 cm
and 1.5 cm with the non-adaptive controller, respectively. This shows superiority of the proposed method compared to that
of the sate-of-the-art controllers, in terms of tracking errors. Notice that the reason why error in Y direction is almost double
of that in X direction, is the distance between anchor points proposed in (32). Recall that in the case of non-adaptive con-
troller, the kinematic and dynamic parameters shall be obtained by an exhaustive calibration procedure. Indeed, if the
parameters are not found precisely through such calibration procedure, and just the nominal values are used in the imple-
mentation, much worse tracking performance and instability may occur.

Fig. 7 shows control efforts for adaptive and non-adaptive controllers in experiments. As it is seen in this figure, some
oscillations are observed at the initial moments. The main reason for such oscillations are the oscillations caused in the
cables, because of its elasticity, while the reason why control laws with proposed method have smaller oscillations is the
adaptation law. Note that all control signals are positive, since as explained in Remark 2, the desired trajectory is within
the feasible workspace of the robot as well as using the projection algorithm, it is ensured that adapted parameters can
not exceed from a specified bound. Finally, as it is depicted in this figure, the control efforts needed in the proposed adaptive
controller are almost similar to that of non-adaptive controller, despite their suitable tracking performance.
6. Conclusions and prospect researches

This paper has been focused on the design of an adaptive tracking controller for parallel robots with dynamic and kine-
matic uncertainties. A novel expression for the inverse of Jacobian matrix in regressor form was introduced, a method based
on passivity was proposed and an adaptation law for unknown parameters was elicited. By this means, it is proved that the
tracking error of the robot converges asymptotically to zero in the presence of kinematics and dynamic uncertainties. The
performance of the controller was verified through simulation and experiment, and it has been shown that in comparison
to the state-of-the-art method, the response is improved, while the effect of projection in singularity avoidance was high-
lighted. Since the research on the control of parallel robots in presence of kinematic and dynamic uncertainties is developing,
Fig. 6. Experiment results of the adaptive and non-adaptive controllers on a 3-DOF CDR. Tracking errors with proposed controller is smaller than the non-
adaptive controller based on calibrated model.
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Fig. 7. Control efforts of adaptive and non-adaptive controllers in the experiment. The reason for oscillation at the initial moments are fluctuations in
cables. The control laws with proposed method have more small fluctuations due to adaptation laws.
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future research may be devoted to decoupling the adaptation laws for kinematic and dynamic parameters in order to reduce
the number of adapting parameters. Extension of the proposed method to the case of serial robots is also underway.
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