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Abstract—Real-time instrument tracking is an essential element
of minimally invasive surgery and has several applications in
computer-assisted analysis and interventions. However, the instru-
ment tracking is very challenging in the vitreo-retinal eye surgical
procedures owing to the limited workspace of surgery, illumination
variation, flexibility of the instruments, etc. In this article, as a
powerful technique to detect and track surgical instruments, it
is suggested to employ a convolutional neural network (CNN)
alongside a newly produced ARAS-EYE dataset and OpenCV
trackers. To clarify, firstly you only look once (YOLOv3) CNN
is employed to detect the instruments. Thereafter, the Median-
flow OpenCV tracker is utilized to track the determined objects.
To modify the tracker, every ”n” frames, the CNN runs over the
image and the tracker is updated. Moreover, the dataset consists of
594 images in which four ”shaft”, ”center”, ”laser”, and ”gripper”
labels are considered. Utilizing the trained CNN, experiments are
conducted to verify the applicability of the proposed approach.
Finally, the outcomes are discussed and a conclusion is presented.
Results indicate the effectiveness of the proposed approach in
detection and tracking of surgical instruments which may be used
for several applications.

Index Terms—Vitreo-retinal eye surgery, convolutional neural
networks, OpenCV trackers, surgical instrument tracking

I. INTRODUCTION

Vitreo-retinal eye surgery is a type of surgical operations
performing on the vitreous humour and the retina. In this type
of surgery, the surgeons are expected to have extremely precise
handling maneuverability with adequate control on the interac-
tion force between the surgical tool and delicate organs inside
of the eye. Generally, vitreo-retinal eye surgery is considered as
one of the most challenging surgical operations owing to human
limitations, for which limited assistive equipment have been
developed [1]–[3]. Specially, learning of the necessary skills for
vitreo-retinal eye surgery by a novice surgeon is a complicated
task. A number of researchers have been developed methodolo-
gies to facilitate surgery training to the novice surgeons [4]–[6].
Any mistake in this surgical procedure might lead to disastrous

complications for the patients including damage to the retina
and even vision loss.

Notably, detecting and tracking of medical instruments in
vitreo-retinal eye surgery is an important task. Having an ac-
curate time-based position of surgical tool provide a systematic
way to asses the skill level of novice surgeons during and after
the operation. In fact, the new computer-based technologies
have enabled the detecting and recording of instrument posi-
tion, which is a paramount step towards skill assessment [7].
Other applications also require tracking of instruments such
as automatic positioning, surgical motion analysis, and visual
servoing [8].

Convolutional neural networks (CNNs) are proved to be
powerful in detecting objects through a single image. Thus,
to extract feature points automatically, one can employ CNNs
to detect and recognize the objects [9], [10]. There are several
architectures which provide the ability to recognize visual
patterns directly from pixel images with minimal preprocessing.
For instance, AlexNet, ZFNet, ResNet, VGGNet and YOLO are
designed with different number of convolutional layers, pooling
layers and fully connected layers for various applications [11].
In addition, OpenCV trackers [12] such as tracking-learning-
detection (TLD) [13] and Median-flow [14] can be implemented
beside CNNs to reduce the computational cost [15]. In other
words, albeit CNNs are vigorous tools for object detection,
there are some limitations for them. Blurred image may bear
elimination of object features in the frame which causes diverse
objects to be scarcely distinguishable for the CNN. However
instead, trackers perform much better and rarely lose the object.
This is due to the fact that trackers employ the information
through a frame sequence. Consequently, they have a kind of
prediction about where the object could be located. In addition,
in contrast to CNNs, a tracker utilizes a specified region of
image which yield a prompt performance.

In this article, a hybrid approach based on CNNs and trackers
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is proposed to aptly detect and track surgical instruments.
Furthermore, to train the YOLOv3 deep CNN [16], a new
dataset is produced which is associated with the eye surgical
instruments and is called ARAS-EYE dataset. To verify the
applicability of the method, experimental results are conducted
which indicate the applicability of the presented approach. The
rest of the paper is organized as follows. Section II concentrates
on the methodology of the suggested approach. The produced
dataset is presented in section III. Experimental results are
reported in section IV. Section V discusses the outcomes and
finally, section VI concludes the paper.

II. METHODOLOGY

The objective of this paper is to track the medical instruments
in vitreo-retinal eye surgery which is an important step towards
systematic skill assessment of the novice surgeons. Hence, an
image-based tracking methodology is presented utilizing the
camera mounted on the surgical microscope. Our method is
elaborated in below.

Common problems encountered in tracking surgical instru-
ments are the cluttered backgrounds, motion blur, shadows
cast by the tool, changes in light, specular reflections on the
tool surfaces, and deformable shape [17], [18]. Recently, the
YOLO deep CNN is employed in a variety of applications.
Furthermore, the YOLOv3 as the third version of this vibrant
CNN, yields a promising performance in detecting delicate
objects. Its structure consists of 130 layers, which enables
a robust detection in the presence of different illumination
conditions. Basically, training a deep CNN is all about an
optimization problem in which the initial conditions are one
of the most important things in obtaining proper results. In this
regard, there are two approaches to train such a deep CNN.
First, training the deep CNN utilizing initial random variables,
which a sufficient dataset is indispensable in this case. Second,
using the transfer learning methods in which pretrained weights
of the deep CNN are going to be used as the initial values for the
training on a new dataset. The latter one is prefered when there
is a small dataset. Since in this research, surgical instruments
are possibly discriminative with respect to the background, a big
dataset is not vital for the training. Thus, the second approach
is considered. A comprehensive description about the dataset is
given in the next section.

To precisely detect fragile objects, a deep structured CNN
is an advantage. In this regard YOLOv3 is employed. Further-
more, to moderate the computational cost, an OpenCV tracker
is utilized, as well. This way specified objects are tracked
with an appropriate performance. Utilizing the outcome of the
suggested hybrid method, it is possible to not only obtain the
instrument trajectory, but also to determine its orientation at
each time.

III. THE PRODUCED DATASET

There are several methods presented for detection and track-
ing of surgical instruments in Robot-Assisted minimally inva-
sive surgery (RAMIS). Recently, deep learning is becoming
more alluring and attracts increasing attention. As it is mention

earlier, in this research, a method is presented based on deep
learning approaches which can detect the surgical instrument
in the eye area. One important thing in using deep learning
methods is to have an appropriate dataset. In this regard, there
are two ways to train such a deep CNN. First, training the
deep CNN from scratch utilizing initial random variables which
needs sufficient dataset. Second, using the transfer learning
methods in which pretrained weights of the deep CNN are going
to be used as the initial values for the training on a new dataset.
Deciding what type of transfer learning should be performed
on a new dataset, is a function of the size of the new dataset
(small or big), and its similarity to the original dataset. There
are commonly 4 rules to choose type of transfer learning: 1.
New dataset is small and similar to original dataset. The best
idea might be to train a linear classifier on the CNN codes. 2.
New dataset is large and similar to the original dataset. Since
there are more data, we can have more confidence that we won’t
overfit if we were to try to fine-tune through the full network.
3. New dataset is small but very different from the original
dataset. it might work better to train the SVM classifier from
activations somewhere earlier in the network. 4. New dataset
is large and very different from the original dataset. In this
case, we would have enough data and confidence to fine-tune
through the entire network. Since in this research, the surgery
is done in a specified area and objects are determinate there
is no need for a big dataset. As the following dataset is small,
classifiers are retrained and weights are replacing by optimizing
the lost function. In order to fine tuning the CNN, last weights
of the trained YOLOv3 on COCO [19] dataset are used as initial
values. A comprehensive description about the dataset is given
in what fallows.

In this article, an image dataset is produced for vitreo-retinal
eye surgery.There are different videos recorded for vitreoretinal
eye surgeries data bases. In order to have a sufficient dataset,
594 images have been extracted from several videos in [6].
Images are captured from video frames to consider all im-
portant tools during the surgery. Specified instruments which
are employed in this surgery are vitrectomy probe, forceps,
and laser. Images are labeled manually to provide reliable
dataset. Bounding boxes consist of ”shaft”,”center”,”laser”, and
”gripper”. As a result, a .xml file is made as an annotation for
each image that is required for training and validation process
in supervised learnings. As the surgery is done in a closed area
and tools are specified, it seems that 594 images are enough.
Since images are extracted from videos, it is possible to have
more images if necessary.

To clarify the procedure, three labeled images are shown as
samples of the produced dataset. In Fig. 1a both ”center” and
”shaft”, and in Fig. 1b ”shaft” and ”gripper” are depicted as
two instances. Furthermore, Fig. 1c contains ”Laser” label. It is
noteworthy to mention that, label and location of each bounding
box is mentioned in an annotation file associated with each
particular image.

This dataset is called ARAS-EYE dataset and it is published
in Github. The aim is to utilize the ARAS-EYE dataset in
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(a) center and shaft

(b) gripper and shaft

(c) laser, center and shaft

Fig. 1: Sample images of the produced dataset

our current eye surgery training system [6], [20] and eye
teleoperated surgery system [21] and fuse the position signals
from the visual system with the kinematic data to obtain more
powerful results.

IV. EXPERIMENTAL RESULTS

This section concentrates on the performed experiments. The
aim is to detect and track surgical instruments employing a
hybrid approach based on CNN and conventional OpenCV
trackers. The procedure is summarized in three steps which are
presented and expanded in what follows. Since a proper per-
formance speed is always an advantage, the proposed method
is implemented on an Nvidia GeForce GTX 1080 Ti GPU.
It is noteworthy to mention that, the speed of utilizing the
YOLOv3 CNN individually on this GPU is about 30 frames
per second (FPS) while the hybrid approach may bear at least
30 FPS. This is directly related to how much the tracker is got
involved. According to what remarked before, the YOLOv3
CNN is applied to detect the demanded objects. To train this
CNN a dataset is produced which its detail is clarified in section

Fig. 2: YOLOv3 training error on the produced dataset

III. Furthermore, the transfer learning method is utilized in the
training process.

Fig. 2 illustrates the training error. As it is seen, the CNN
is trained for more than 400160 batches. Since the error has
converged to a local minimum point with 0.0812 value, it
is concluded that the CNN is stable and it has been trained
appropriately. A point to ponder is, the convergence point value
represents a level which the CNN may distinguish diverse
objects. Test results of the trained CNN is reported in Fig.
3. As it is indicated, YOLOv3 has been capable of detecting
the determined objects. Moreover, this figure shows how the
CNN may discriminate between a gripper and a center as two
different surgical instruments. Another important fact is evident
in Fig. 3c in which even the laser usage is detected.

The main objective of this paper is to suggest an approach for
detection and tracking of surgical instruments. Hence, another
experiment is performed on a video this time. The video
consists of 38 frames in which an operation is being done
through a surgery. To clarify, a sequence of 8 images is shown
in Fig. 4. As it is evident, surgical instruments are tracked via
the CNN and the tracker. The position and the orientation of
the surgical instrument are two important variables to obtain.
Each bounding box center is taken as a representative point of
an object. Note that for an instrument both shaft and center
are crucial objects to track. Thus, to obtain the trajectories,
center points of the bounding boxes are stored in a matrix.
Since there is a single surgical instrument in this experiment,
the matrix size is 2 × 38. Although this may be utilized to
get each object trajectory, orientation is still remained to be
calculated. A simple way to deal with this problem, is to employ
the following equation in each frame:

θ = arctan
y2 − y1
x2 − x1

(1)

where (y2, x2) and (y1, x1) represent each center position of
the bounding boxes, respectively.
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(a) center and shaft (b) gripper and shaft

(c) laser, center and shaft

Fig. 3: YOLOv3 bounding boxes outputs after the training. In
each image, the corresponding labels are set by the CNN.

The trajectory of each object is depicted in Fig. 6. Values are
normalized with respect to the frame size. It is seen that, while
the center position in Fig. 4 and Fig. 5 is lower in comparison
with the shaft, its trajectory is higher. This is due to the fact
that a frame origin is always located at left top corner of the
image. Thus, the lower the object, the higher its trajectory. One
may use the middle point of the center and shaft positions
as the instrument position representer. Fig. 7 indicates the
orientation of the instrument. The region in which the surgeon
is performing the surgery may be determined in this figure. It is
evident that the surgeon is trying to be remained in a specified
region. A rich information about the surgery detail, is given
in Fig. 6 and 7. There are a variety of applications for these
results which next section is presented to cover them.

V. DISCUSSION

As illustrated in the the previous sections, a methodology
is presented for surgical instrument tracking in vitreo-retinal
eye surgical procedures using a new produced dataset. The
proposed method is based on state of the art deep learning
approaches to further ascertain a proper performance in diverse
conditions. Although there are other methods, structures and
algorithms to solve the problem of detection and tracking of the
surgical instrument, it is discernible from experimental results
that the capability of the presented solution is convincing. Since
a celebrated CNN is employed, the suggested approach may be
implemented simply. The objective is to utilize the produced
dataset in the following ways

(a) 1st frame

(b) 2nd frame

(c) 3rd frame

(d) 4th frame

Fig. 4: The results of the proposed hybrid approach on a video.
Part I
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(a) 5th frame

(b) 6th frame

(c) 7th frame

(d) 8th frame

Fig. 5: The results of the proposed hybrid approach on a video.
Part II

Fig. 6: Shaft and center trajectories

Fig. 7: Surgical instrument orientation

• The skill assessment of novice surgeons in a real-time
manner based on the instantaneous task performance is
an important topic of research. Our aim is to utilize the
performance metrics proposed in the previous researches
such as error-based performance index [22] and motion
smoothness [7] in order to score the novice surgeon
during the operations. In this way, the expert surgeon
is notified of he probable mistakes made by the novice
surgeon and is able to interfere to the procedure to avoid
unfavorable complications for the patient. Notably, real-
time skill assessment should be generally based on the
time history of the trainee’s behavior; thus, it is difficult
task to accomplish.

• The majority of previously proposed haptic systems for
surgery training require the expert surgeon to perform
every detail of surgical operation, while the novice surgeon
receives the guidance signals from the expert surgeon [4]–
[6]. However, the expert surgeons usually prefer to not be
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involved in every detail of operation specially the ones
that are easy to accomplish by the novice surgeons. On
the other hand, the possibility of incidence of undesired
complication highly increases when the novice surgeons
perform the operation without any supervision. To resolve
the problem, the existing control architectures [4]–[6] may
be extended by automatizing some levels of error detection
and even guidance. To that effect, a dataset including the
trajectory records of the expert surgeons is utilized and the
machine learning methods may be applied to those records.
The proposed tracking method may be later utilized to
enrich the above dataset using the available movies of
surgical operations performed by the expert surgeons.

• We have developed a haptic system for eye surgery training
in which the position of surgical tool is obtained by the
encoders of the haptic devices [20]. An important work
is to fuse the results obtained from image-based tracking
with the encoder signals. Generally, combining of the
sensory data derived from several sources modifies the
deficiencies of each sensor to obtain the information with
less uncertainty [23].

VI. CONCLUSIONS

In this article, a method is proposed which precisely yields
the position and orientation of a surgical instrument. In this
regard, a newly produced dataset is introduced along with a
hybrid approach. The method is based on utilizing the YOLOv3
CNN beside the Medianflow a traditional OpenCV tracker. To
train the CNN on the dataset, transfer learning methods are
employed. Experimental results are conducted on a video to
show the applicability of the suggested solution in facing with
the surgical instrument tracking problem. Finally, a discussion
on importance of developing such a visual tracker for surgical
instruments is given.
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