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Abstract
Oil spills within the marine environment are undesirable events caused by unavoidable economic activities of huge sea lane 
traffics. A tremendous effort has been made to tackle this problem within academia and industries; among them, the concept 
of autonomous vehicles for oil spill combating seems to provide a promising solution. This paper mainly proposes a coop-
erative deployment framework for unmanned aerial vehicles (UAVs) to perform oil spill cleanup missions with dispersant 
spraying. An appropriate oil density function is introduced by applying a Gaussian mixture model based on NOAA’s advanced 
oil spill model (General NOAA Operational Modeling Environment). UAVs are then deployed to cover oil spills for spraying 
operations. This deployment problem is formulated as a coverage problem based on centroidal Voronoi tessellation to deter-
mine UAVs’ optimal location. By transforming the coverage control problem into a target tracking one, an Integral Terminal 
Super Twisting Sliding Mode Control is provided to drive the UAVs to the optimal configuration. Furthermore, a novel spray-
ing adjustment strategy is also designed to target the oil spills more accurately at the appropriate dosage. The effectiveness 
of the proposed framework is studied through a case study in the Abuzar oil field in the Persian Gulf. The results verify the 
performance of the cooperative oil spill cleanup framework in conjunction with advanced oil spill modeling. Moreover, it is 
concluded that the oil spill can be more effectively dispersed if the proposed spraying adjustment strategy is implemented.

Keywords  Multi-agent systems · Unmanned aerial vehicle (UAV) · Oil spill cleanup · Distributed deployment · Centroidal 
Voronoi Tessellation (CVT)

List of symbols
φ	� Gaussian mixture model (GMM)
Aj	� Weight of the jth mixture component
�j	� Mean of the jth mixture component
Cj	� The covariance matrix of the jth 

mixture component

K	� Number of mixture components
q	� An arbitrary point in area Q ∈ R2

P =
{
p1,… , pN

}
	� Location of N mobile agent/UAV

V =
{
V1,… ,VN

}
	� Generalized Voronoi tessellation of 

Q

TVi
	� Centroid of the ith Voronoi cell

H	� Coverage cost function
Ω	� Overall residual rotor angular 

velocity
m	� Mass of UAV
Jp	� Propeller rotor inertia of UAV
ul	� Control input of each UAV, 

l = 1, 2, 3, 4

(x, y, z,�, �,�)	� Generalized coordinate vector of 
each UAV (position and orientation)

g	� Gravitational acceleration constant
Ix,y,z	� Body inertia of UAV
Fd , �d	� Disturbance vectors
g
(
q, pi

)
	� Spraying performance function

�s	� Spread of spraying pattern
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�i	� Effectiveness of spraying operation 
for the ith UAV

L	� Oil cleaning capability
MVi

	� The volume of pollution in the area 
of Voronoi cell Vi

Δi	� Total spraying error of the i th UAV
S	� Sliding variable
k1, k2, k3, k4	� Controller gains
� =

[
�1 �2

]T
∈ ℝ

2	� State vector in the second-order 
dynamic model of UAV

�	� External disturbances in the second-
order dynamic model

1  Introduction

Marine pollution caused by oil spills is a severe environmen-
tal issue that may potentially cause adverse effects on marine 
ecosystems. The Persian Gulf, which is considered as a hub 
for the global oil industry, is under permanent threat from oil 
spills due to oil exploitation, production and transportation. 
Statistics provided by the International Tanker Owners Pol-
lution Federation (ITOPF) indicate that in spite of a down-
ward trend in the total number of spill events, oil spills are 
continuously reported, and finding effective cleanup solu-
tions is a stringent requirement [1]. Therefore, an effective 
oil spill response strategy is mandatory, even if only seldom 
used. Among all, the dispersant cleanup method as the most 
common non-mechanical one is useful in this issue [2]. The 
use of chemical dispersants is selected as a response option 
in circumstances that are likely to be effective based on the 
net environmental benefit analysis (NEBA). Dispersants 
may be applied as soon as possible at high speeds by aerial 
vehicles such as aircraft and helicopters [3]; however, these 
spraying techniques are not precise enough to focus only on 
the polluted area, and different elements should be taken 
into account for designing an effective response strategy. 
Proper treatment of oil spills with the dispersant necessitates 
a proper understanding of the dynamic behavior of the pol-
luted area. Furthermore, from a practical point of view, the 
correct spraying strategy must be used to achieve the rec-
ommended treatment rate and prevent overdosing or under-
dosing [4, 5]. Therefore, an accurate and effective spraying 
strategy is required to track and cover the time-varying pol-
luted area by supplying enough dispersant in a different part 
of the polluted area [6]. The essential component in applying 
dispersant is to benefit from unmanned vehicles as an emerg-
ing tool to assist humans in hazardous environments. The 
integration of these elements in one framework may signifi-
cantly enhance the effectiveness of oil spill response actions.

One of the promising solutions for oil spill cleanup is the 
use of unmanned vehicles [7–9]. This idea dates back to the 
year 2010, when several novel methods such as Seaswarm 

[10] and Protei [11] were proposed. Recently, unmanned 
vehicles for oil spill cleaning are recommended in [12], 
which provides complete coverage of the polluted area with 
a single agent. The main drawback of this approach is that 
oil fate and movement issues are not addressed. As a strat-
egy learned from universal collective behavior in nature 
and society, a team of unmanned vehicles can accomplish 
more complex tasks in a hazardous environment [13]. This 
concept has been proposed in [14], where a cooperative oil 
cleaning strategy for a team of surface autonomous vehi-
cles is introduced. Nevertheless, the essential issue of the 
dynamic behavior of the oil spill is not modeled in [14]. 
Furthermore, the motion strategy of the agents is proposed 
as a simple back and forth motion that could result in fur-
ther propagation of the contamination. Moreover, in [14] 
the multi-agent system is not able to optimally focus just 
on the polluted part of the mission area, which leads to 
excess energy consumption and longer mission time. Hence, 
efficient oil spill cleanup strategy for multi-agent systems 
remains limited in practical use.

The above researches are related to the coverage-based 
deployment problem where cooperation between agents is 
achieved using the mission area partitioning. Voronoi parti-
tioning for coverage problem was introduced in [15], based 
on a gradient descent strategy in a static environment. In 
most Voronoi-based coverage problems, it is common to 
assume simple kinematic models for the robots, such as the 
single integrator [15] or the double and higher-order integra-
tors [16]. However, in recent years more realistic dynamic 
models have received increasing attention by research-
ers for optimal deployment of dynamic vehicles, such as 
UAVs [17]. On the other hand, in a multi-agent coverage 
control problem, the critical feature of the environment is 
often modeled by a density function [18, 19]. In contrast 
to most existing problem formulations in the literature [17, 
20], where the density function of the environment is static, 
oil spill coverage requires a framework that can work in a 
time-varying environment [9]. A distributed coverage con-
trol in the presence of a time-varying density function was 
proposed in [21], simplifying the problem by assuming that 
the initial position of the agents is at the Voronoi centroids. 
Unlike [21], in [22], a generalized coverage optimization 
method with a time-varying density function is proposed for 
single integrator agents that could be used only in a limited 
range of linear robotic systems.

In order to overcome these restrictions, this paper devel-
ops a distributed control framework of a group of UAVs 
for oil spill cleaning in such a way that dispersants concen-
trate in the more polluted area. In our problem formulation, 
the spatiotemporal density of the oil spills is modeled by a 
Gaussian mixture model (GMM), which utilizes a fast and 
advanced Lagrangian oil spill model (GNOME). Gauss-
ian mixtures are flexible and powerful modeling tools for 
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environmental functions representation such as tempera-
ture, pollution or light [23]. Therefore, it is assumed that 
the oil concentration on the sea surface can be described as 
a mixture of Gaussian kernels. The output of the GNOME 
Lagrangian model is processed to calculate the parameters 
of this mixture model in different time steps. The main goal 
is to design a distributed deployment framework for mobile 
agents that can autonomously and actively track the oil spill 
density as a time-varying environment. The proposed frame-
work is capable of deploying the agents in the appropriate 
locations; i.e., more agents are gathered in the area with 
higher oil concentration. Therefore, the desired configura-
tion of the agents improves the encounter rate, and the dis-
persants hit the oil spill at the desired dosage.

The main contributions of this paper can be summarized 
in three aspects. First, a GMM-based method is adopted to 
represent the time-varying behavior of oil on the sea sur-
face, where the location data of oil particles is derived by 
a fast but advanced Lagrangian oil spill model (NOAA’s 
GNOME). Second, considering the nonlinear dynamics of 
most aerial robots, a modified optimal deployment strategy 
is proposed in the time-varying environment. Different from 
previous works [15, 21, 22], which use traditional Lloyd’s 
CVT method, the optimal deployment problem is trans-
formed into a target tracking problem, and a state-of-the-art 
controller strategy (super twisting sliding mode) is applied to 
track the desired configuration for UAVs. Finally, a spraying 
adjustment strategy is designed in order to reduce the over- 
or under-spraying of dispersants. It is able to autonomously 
adapt the UAV configuration to the oil spill distribution, 
which results in a displacement of the boundary between 
Voronoi cells of neighboring UAVs.

This article is organized as follows. Section 2.1 discusses 
how oil spill behavior is modeled as an objective for this paper. 
Based on the oil spill density function, the pollution confron-
tation problem is formulated as a distributed deployment 
problem in Sect. 2.2. Section 2.3 introduces a new spraying 
adjustment strategy to improve the dispersant encounter rate 
for oil spill confrontation. A cooperative control framework is 
then proposed using Voronoi tessellation, in which the spray-
ing adjustment method is integrated into the computation of 
Voronoi regions. Numerical simulations in the Abuzar oil field 
case study are presented in Sect. 4 to verify the effectiveness of 
the proposed framework. Finally, Sect. 5 draws the conclusions 
of this work and some future research directions.

2 � Preliminaries and methods

Figure 1 shows the main components of the proposed frame-
work in this paper.

In the upcoming subsections, the components of the pro-
posed framework are presented and explained in more detail.

2.1 � Oil spill modeling

In this section, the GNOME oil spill model is described briefly. 
Then, the details of GMM and parameter estimation of a GMM 
from the direct output of GNOME are explained. By this means, 
the mathematical relation of the oil intensity of each point in the 
polluted region caused by several oil spills is obtained.

2.1.1 � NOAA’s oil spill model

Oil spill simulation models can assist in directing cleanup 
efforts based on the predicted locations of the oil particles. 
Oil spill models can be mainly classified into two catego-
ries, numerical and analytical, which are used according to 
the intended application [24–26]. In this research, GNOME 
software is used for the modeling of oil spill scenarios. This 
software is a comprehensive numerical spill modeling pack-
age to predict the trajectory and spread of pollution from the 
initial state to its final state [27]. GNOME uses ocean cur-
rent and local atmospheric conditions, as well as chemical 
and physical weathering processes [28]. The main GNOME 
output is a series of “Lagrangian elements (LEs)” that are 
released from a spill source and transported by wind, current 
and turbulent diffusion [29]. Each element is represented as 
a point in latitude and longitude format at each time step. 
The direct output of spill scenario simulating is information 
on the locations of LEs and their properties (mass, density, 
viscosity, etc.) for all time steps after the spillage [30].

Considering the stochastic nature of the ocean and local 
meteorological conditions, GNOME incorporates these 
uncertainties into the oil spill modeling. In addition to 
the best guess function for spill prediction, the minimum 
regret function is also considered in the prediction. By this 
means, GNOME may draw upon the modeling parameters 
set by a user and assume weather forecasts are accurate. 

Fig. 1   Structure of the proposed framework for oil spill confrontation
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Furthermore, it may include a random component that will 
account for error or uncertainty in weather conditions [28]. 
The accuracy of output data of GNOME is directly related 
to the input condition of wind and current.

2.1.2 � GMM‑based oil distribution modeling

As a general rule, the outer edges of a typical oil slick are 
usually thinner than the inside of the slick [4]. Hence, the oil 
slick thickness may resemble a bivariate Gaussian distribution 
function of its coordinates x and y . One can assume that the 
pollution intensity at each point in a bounded mission area 
is a linear combination of continuous kernel functions with 
ideal weights [31, 32], especially at the early stage of spillage. 
Consequently, a Gaussian mixture model-based method can 
be considered and used to describe the oil spill concentration. 
In GMM-based modeling, it is assumed that the oil spill con-
centration on the sea surface is modeled by a mixture model, 
which is composed of K bivariate Gaussian density compo-
nents. Parameter K is a positive integer that represents the 
number of oil slicks. Each component has a two-dimensional 
mean, �j , and 2-by-2 covariance matrix, Cj . The concentration 
density function over the mission area is given as follows:

where � is the Gaussian mixture model, and Aj , �j and Cj 
are the weight, mean and covariance matrix of the jth mix-
ture component at each time step, respectively. The expecta-
tion–maximization (EM) algorithm is commonly used to fit 
GMM, while in this algorithm, an initial guess is set for the 
parameters, and then, it improves the estimates iteratively 
[33]. In this study, a modified EM algorithm proposed by 
McLachlan and Peel in [34] is employed to fit the GMMs.

A key task involved in the Gaussian mixture modeling 
for the environmental phenomenon is determining the best 
GMM fit by adjusting the number of components and the 
component covariance matrix structure. According to the 
purpose of this research and the complex behavior of oil 
spills, the number of components and the covariance matrix 
structure must be optimal in each step to achieve a more 
accurate model. For this purpose, the Bayesian information 
criterion (BIC) criterion has been used to determine the 
GMM model structure in this paper.

GMM is also considered as a soft clustering method that 
can accommodate clusters with different sizes and correla-
tion structures, and hence, it is very suitable for our purpose. 
First, the algorithm is initiated by obtaining a set of candi-
date models for a range of values of K (from Kmin to Kmax ), 
which is assumed to contain the optimal K . Next, the BIC 
as one of the most widely used tools for statistical model 

(1)�(q, t) =

K∑
j=1

Aj(t)G
(
�j(t),Cj(t)

)
=

K∑
j=1

Aj(t)
[
exp

((
q − �j(t)

)
Cj(t)

−1
(
q − �j(t)

)T)]

selection [35], is exploited to determine the optimal num-
ber of the mixture components. To achieve more accurate 
GMMs, it is also better to consider the component covari-
ance structure and examine the effect of the full or diagonal 
covariance matrix on BIC. Hence, The GMM with an opti-
mal pair of K and an appropriate covariance structure has 
the lowest BIC.

It is necessary to convert the direct output of GNOME 
to an analytical function, such as a two-dimensional den-
sity function. Figure 2 illustrates the proposed procedure of 
the oil spill modeling to achieve a GMM. In the first part, 
the oil spill position data is clustered to determine the opti-
mal number of ( K ) and the covariance matrix structure by 
minimizing the BIC criterion. By specifying the covariance 
matrices for each component as diagonal or full, the shape 
and orientation of the ellipsoids are determined. Geometri-
cally, the covariance structure determines the shape of an 
ellipsoid drawn over a separated oil spill. The mean value, 
�j , for each oil slick represents the position of the highest 
level of oil concentration. In addition, the data of oil LEs 
for each oil slick is labeled according to the output of GMM 
clustering. The weights of components are calculated by 
converting the labeled output of GNOME to concentration, 

Aj , as shown in Fig. 2. To do so, first, the area of study is 
divided into several small rectangular polygons. Next, the 
concentration of oil in polygons near to the �j is calculated 
at each sample time. To compute the concentration of oil in 
a polygon at a specific time, the geographical locations of 
LEs are compared with the location of the polygon, and the 
total mass of particles within it is calculated and divided 
by its area. For the polygon near to the �j , the maximum 
concentration value in each data cluster is considered as Aj . 
Consequently, all the parameters of Eq. (1) are estimated for 
oil pollution at each sample time. It should be noted that, 
in this developed tool, the size of the rectangular polygons 
may be customized based on the spatial domain of the study.

Figure 3 represents the simulated oil spill distribution 
from two initial sources near 29.2 N 49.8 E. The spills leak 
on March 10, 2019, while 50 and 25 m3 of medium crude oil 
are spilled on the water. This simulation assumes a north-
westerly wind at the speed of 4 ms−1. The results are pre-
sented in Fig. 3 at 4 h after the start of the spillage.

Figure 3a shows the GNOME simulation results. Figure 3b 
illustrates the processed results from the GMM-based clus-
tering for the released oil spills, such that the number of oil 
spills and mean values are depicted. The black ×’s indicate the 
location of the mean value for each slick. Figure 3c represents 
the 3D visualization of the pollution density function, where 
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the brighter yellow color area illustrates the area with higher 
intensity of oil on the sea surface. It should be noted that the 
proposed method for oil spill modeling can also be used as a 
general spatial data analysis tool for density estimation and 
clustering of the data distributed over a mission space.

2.2 � Autonomous multiple UAVs for oil spill 
confrontation

This paper introduces the deployment strategy of multiple 
UAVs with respect to the oil density function for cleaning 
marine oil pollution. In this section, we formulate our objec-
tives into a formal problem. Consider a mission space as a 
convex area Q ∈ R2 , where q ∈ Q represents an arbitrary point 
in Q . In the mission area, P =

{
p1,… , pN

}
 is the location of 

N mobile agent, i.e., pi denotes the position of ith UAV in the 
mission area. Assume that each agent is equipped with locali-
zation devices and a downward spray. Suppose that the spray 
system directly interfaced with UAV’s electronic systems to 
trigger spray release for oil cleaning tasks. We also assume that 
a UAV can communicate and exchange information with other 
UAVs. The state space of translational and rotational dynamics 
of each UAV can be obtained, respectively, as follows:

⎛⎜⎜⎜⎝

ẍ

ÿ

z̈

⎞⎟⎟⎟⎠
= −

⎛⎜⎜⎜⎝

0

0

g

⎞⎟⎟⎟⎠
+

1

m

⎛⎜⎜⎜⎝

cos𝜓 sin 𝜃 cos𝜙 + sin𝜓 sin𝜙

sin𝜓 sin 𝜃 cos𝜙 − sin𝜓 sin𝜙

cos𝜓 cos 𝜃

⎞⎟⎟⎟⎠
u1 + Fd

where Ω = −�1 + �2 − �3 + �4 is the overall residual rotor 
angular velocity, m is the mass of UAV, Jp is the propeller 
rotor inertia,ul control input for each l = 1,2, 3,4 and Ix,y,z are 
body inertia. Fd and �d are the vectors of the disturbances 
[36].

The agents have a spraying pattern, depending on the 
spray nozzle characteristics. The spraying performance is 
supposed to strictly decrease with respect to the distance 
between the position of the agent,pi , and the point q ∈ Q as 
represented by:

⎛⎜⎜⎜⎝

𝜙̈

𝜃̈

𝜓̈

⎞⎟⎟⎟⎠
= f (𝜙, 𝜃,𝜓) + I(𝜙, 𝜃,𝜓)

⎛
⎜⎜⎝

u2
u3
u4

⎞
⎟⎟⎠
+ 𝜏d

f (𝜙, 𝜃,𝜓) =

⎛
⎜⎜⎜⎜⎝

𝜃̇𝜓̇
�

Iy−Iz

Ix

�
−

Jp

Ix
𝜃̇Ω

𝜙̇𝜓̇
�

Iz−Ix

Iy

�
−

Jp

Iy
𝜙̇Ω

𝜙̇𝜃̇
�

Ix−Iy

Iz

�

⎞
⎟⎟⎟⎟⎠
, Fd =

⎛⎜⎜⎝

Fdx

Fdy

Fdz

⎞
⎟⎟⎠
, 𝜏d =

⎛⎜⎜⎝

𝜏d𝜙
𝜏d𝜃
𝜏d𝜓

⎞⎟⎟⎠

(2)I(�, �,�) =

⎛
⎜⎜⎜⎝

1

Ix
0 0

0
1

Iy
0

0 0
1

Iz

⎞⎟⎟⎟⎠

(3)

g
(
q, pi

)
= g

(
q − pi

)
= �i(t) exp

(
−

(
qx − pxi

)2
+
(
qy − pyi

)2
�2
s

)

Fig. 2   Proposed oil spill distribution modeling based on a Lagrangian oil spill model
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where ri = ‖q − pi‖ , �s is the spread of spraying pattern and 
�i is a positive adjustable value representing the effectiveness 
of spraying operation for the ith agent. Since the spraying 
effectiveness will attenuate to zero as ‖q − pi‖ → ∞ , one can 
define the effective region of spraying by Ωg (Fig. 4). The 
parameter �i is defined to adjust the spraying effectiveness of 
each agent, which would be detailed in Sect. 2.3.

Due to the limited performance area of the agents, the 
mission area is first partitioned into subregions assigned 
to the agents using Voronoi partitioning. Assume that 
the movement of each robot is confined in Q and that 
V =

{
V1,… ,VN

}
 is a generalized Voronoi tessellation 

of Q such thatI
(
Vi

)
∩ I

(
Vj

)
= � . I(⋅) denotes the interior 

space of each Vi and 
⋃N

i=1
Vi = Q . Therefore, it is supposed 

that each agent is only responsible for covering its domain 

Vi [22]. Based on Lloyd’s algorithm, the region assigned 
to each agent called the Voronoi region is given by

In order to compute the Voronoi partition, it is assumed 
that through a fully connected communication network, 
each agent can share the position information with others 
in its neighboring Voronoi cells.

Our objective is to deploy a team of multiple UAVs to 
collaboratively cover a known oil spill in a specific region 
of the sea surface. Therefore, the coverage cost function 
in the mission space is defined as follows

(4)Vi =
{
q ∈ Q|g(q, pi

) ≤ g
(
q, pj

)
,∀j ≠ i

}

(a) (b)

(c) 

Fig. 3   GMM of oil distribution based on GNOME data. a Simulation result of GNOME shows oil spills LEs in the Persian Gulf, b The results 
from the GMM-based modeling, c 3D visualization of the oil concentration
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where Vi is the assigned region to ith UAV, P =
{
p1,… , pN

}
 

are the positions of the multiple UAVs, g
(
q, pi

)
 means the 

spraying performance and �(q, t) ∶ Q → R+ is the oil spill 
density function over the mission space at time t  to obtain 
the adverse impact of the oil spill at the point q ∈ Q in the 
mission area [15]. It is observed that the cost function is 
partly determined by the spraying performance in Eq. (3) 
and partly by the oil density function �(q, t) . The density 
function adapts the objective function such that the UAVs 
will try to cover the field with more concentration on the 
polluted area.

We are seeking a distributed deployment strategy. That 
is, a collection of optimal trajectories to minimize the cost 
function H(P,Q) . Given a time-varying density function, 
which is strictly positive, mobile agents are deployed in a 
spatial configuration P∗ such that the cost function H obtains 
a local minimum, i.e.,

It should be noted that the minimum number of the 
required UAVs depends on three parameters, including the 
spilled oil volume, dispersant type and the loading capacity 
of each UAV. We assumed we had enough number of UAVs.

2.3 � Spraying adjustment

Following a decision to apply dispersants, it is essential to 
consider the oil layer thickness as a relevant parameter to the 

(5)

H(P,Q) =

N∑
i=1

H
(
pi,Vi

)
= −

∑N

i=1 ∫
Vi

g
(
q, pi

)
�(q, t)dq

(6)P∗ = argmin
P

H(P,Q) subject to (2)

dispersant dosage. By considering the oil areas with more 
thickness, it is possible to deploy the response tools to those 
areas specifically in order to increase their encounter rate sig-
nificantly. In this paper, a Voronoi partitioning is proposed to 
deploy agents over a known environment by considering the oil 
density function. The main challenge in area partitioning for 
the cleanup mission is to allocate the appropriate volume of oil 
to the agents. Therefore, a new spraying adjustment method is 
defined for each agent, taking into account the spraying effec-
tiveness in the spraying performance of the cost function.

The amount of dispersants that needs to be applied to a 
certain quantity of oil to achieve a desired level of dispersion 
mainly depends on the oil type, the ambient conditions and 
the dispersant type, which is determined by Dispersant to Oil 
Ratio (DOR) [37]. DOR is a beneficial measure to determine 
the amount of dispersant needed for the specific estimated 
oil volume. In this work, it is assumed that dispersants are 
divided equally between UAVs. Therefore, each UAV could 
clean a specific volume of oil represented by L . In order to 
make a meaningful criterion for the spraying quality of each 
agent, we rely on the local amounts of needed dispersant at 
each Voronoi cell. Thus, we can introduce Mi representing 
the volume of dispersant required for achieving ideal spray-
ing (i.e., goal volume L ) which can be calculated as follows:

where MVi
(t) is the volume of pollution in the area of Voro-

noi cell Vi . When evaluating spraying precision, there are 
two aspects of inaccuracy to be considered: the errors pro-
duced in under-sprayed and over-sprayed regions. We calcu-
late these errors as oil spill volume in these regions relative 
to the volume of oil for ideal spraying in the given region. 
The under-spray error is defined as

where Δ−
i
 represents the shortage of dispersants relative to 

the oil in its region. In contrast to the under-sprayed area, 
there are parts of the mission region where the applied dis-
persant would be excessive. They are considered by evaluat-
ing the over-spray error as:

Δ+
i
(t) = L −Mi(t).

Analogous to Δ−
i
, Δ+

i
 is the difference between the oil vol-

ume in the Vi and the goal volume. Although the errors Δ−
i
 

and Δ+
i
 are rather intuitive, since they can be interpreted in 

terms of insufficiently and excessively applied dispersant, a 
distinct error relation is considered as:

(7)Mi(t) = DOR

⎛⎜⎜⎝∫Vi

�(q, t)dq

⎞⎟⎟⎠
= DORMVi

(t)

Δ−
i
(t) = Mi(t) − L

(8)Δi(t) = L −Mi(t)

Fig. 4   Spraying pattern of each UAV
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The practical meaning of the total error Δi is less intui-
tive. However, since it represents the overall misapplication of 
dispersant, the total error serves as a good measure of spray-
ing accuracy. Obviously, Δi can be computed in a distributed 
manner within an individual Voronoi cell. However, �(q, t) is 
related to the whole mission space, which can only be obtained 
globally.

For the case of spraying adjustment, we choose an appro-
priately designed effectiveness parameter as:

where k𝛽 > 0 is adjustable parameters. The effectiveness 
parameter, �i(t) , represents the spraying performance of the 
ith agent in its region as a function of spraying error Δi . The 
spraying adjustment affects the performance function g(pi, q) 
for each agent according to the misapplication of disper-
sant. By using the adjustment method (9), we investigate 
the effect of spraying adjustment on Voronoi partitioning in 
Proposition A.1 in Appendix. According to Eq. (21), when 
𝛽i(t) > 𝛽j(t) , the distance between the point q and pi would 
be more than that of pj . It means that the actuation region 
for the agent with larger effectiveness intrudes on the other 
with a smaller one. Based on spraying adjustment in Eq. (9), 
the agent with a larger effectiveness value also has a larger 
spraying error Δi . In other words, the boundary of the region 
assigned to the agent with over-spraying error will move 
toward the Voronoi cell with an under-spraying error.

3 � The proposed oil spill cleanup framework

This section presents a cooperative control framework for oil 
spill cleanup using a group of UAVs to cover the polluted area. 
According to the cost function (6), the proposed framework 
provides complete coverage in such a way that in thicker parts 
of the oil spill, more agents would be working. By coverage, 
we mean to deploy UAVs in an optimal location with respect to 
the oil spill density function. Then UAVs carry out a pollution 
cleanup operation by spraying the dispersant material to accel-
erate the oil dispersion. Consequently, the dispersant method 
would be utilized in an optimal manner. For this purpose, the 
optimal configuration of UAVs is first determined, and then, 
a distributed control strategy using Integral Terminal Super 
Twisting Sliding Mode Control (ITST-SMC) is designed for 
UAVs in order to track the time-varying optimal trajectories.

3.1 � Optimal configuration

Based on the result in [22], the gradient of the cost function 
with respect to the ith agent position is given by

(9)�i(t) = �0 exp
(
k�Δi(t)

)

By defining 
∼
�
(
pi, q, t

)
= −2

�g(q,pi)
�ri

2
�(q, t) , the mass and 

centroid of the ith Voronoi cell are defined as:

Hence, the gradient Eq. (10) can be written as

If the generators of Voronoi tessellation pi,… , pN are also 
the centroids of their Voronoi cell, we have �H(P,Q)

�pi
= 0 . 

Obviously, the local minimum points of the coverage cost 
(6) are the centroids of Voronoi cells, which results in

where p∗
i
 denotes the optimal position of the agent i . The 

agents’ configuration is called a centroidal Voronoi tessella-
tion (CVT) if they reach the centroid of their Voronoi parti-
tions [15]. However, it is only a local minimum due to the 
nonlinear and non-convex property of H(P,Q) . We refer to 
[15, 38] for comprehensive treatments on locational optimi-
zation via Voronoi diagrams.

Whenever � is time-variant, the CVT will be time-variant 
as well, and in this case, the CVT should be reached, and 
furthermore, the agents should track the time-varying CVT. 
As a result, the optimal deployment can be transformed into 
the desired point tracking problem. In the following sec-
tion, the tracking problem is appropriately modeled, and by 
adopting ITST-SMC, a state-of-the-art nonlinear control 
strategy is proposed to handle this tracking problem.

3.2 � ITST‑SMC for optimal deployment

According to the optimal location of agents, as represented 
in Sect. 3.2, the tracking control strategy begins with defin-
ing the tracking error as the agent’s distance from the cen-
troid of its Voronoi cell as

Considering Eq.  (15), the optimal deployment can 
be transformed into a time-varying trajectory tracking 

(10)
H(P,Q)

�pi
= ∫Vi

(
−2

�g
(
q, pi

)

�r2
i

)(
q − pi

)
�(q, t)dq

(11)M̃Vi
= ∫

Vi

𝜑̃
(
pi, q, t

)
dq

(12)TVi
=

1

M̃Vi

∫
Vi

q𝜑̃
(
pi, q, t

)
dq

(13)
𝜕H(P,Q)

𝜕pi
= M̃Vi

(
TVi

− pi
)

(14)p∗
i
= TVi

, i = 1,… ,N

(15)ei = pi − TVi
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problem, as represented in Fig. 5. As is seen in this figure, 
the control system of each UAV is composed of an outer 
loop generating the desired position command for the inner 
loop, which is focused just on the tracking control. It is nec-
essary to maintain a safe distance to the water surface for 
UAVs represented by z∗ . In the implementations of track-
ing control, the UAVs must reach this predefined altitude.

The following section proposes a solution to the track-
ing problem by incorporation of ITST-SMC. We consider 
the ITST-SMC as a baseline control law implemented 
individually on each UAV. The objective of the designed 
distributed control law is to converge the tracking error 
(15) toward zero for each agent. Based on [36], reformu-
late UAV dynamic model (2) as a second-order dynamic 
system defined by

where � =
[
�1 �2

]T
∈ ℝ

2 represents the state vec-
tor,y(t) ∈ ℝ is the system output, u(t) is the input control, 
f (�(t)) and h(�(t)) are known functions extracted from 
Eq.  (2). The term �(t, �) includes external disturbances; 
for more details, please refer to work [36]. We assume 
that disturbance is bounded, and Lipschitz and 𝜂̇(t, 𝜉) < �𝜂  . 

(16)
𝜉̇1(t) = 𝜉2(t)

𝜉̇2(t) = f (𝜉(t)) + h(𝜉(t))u(t) + 𝜂(t, 𝜉(t))

y(t) = 𝜉1(t)

Considering Eq. (16), the mathematical structure of ITST-
SMC is presented for the case where all the state variables 
are available. Hereafter, the agent index will be omitted for 
simplicity in representation.

In the case of the second-order sliding mode control, for 
the sliding variable S(�) , the following condition should 
be verified

Then, a nonlinear sliding surface with fractional 
dynamics is defined for system (16) as follows

where c1, c2 > 0 , p, � are both positive odd integers satisfy-
ing the relation p < 𝜆 . The tracking errors are defined as 
e1 = �1 − �d

1
 and e2 = �2 − �d

2
 and the desired references are 

considered as �d
1
 and �d

2
 . The following theorem could ana-

lyze the finite time convergence of the sliding surface.

Proposition 1  Consider control input (19) in the presence 
of external disturbance. The ITST-SMC (19) can guarantee 
the system trajectory to reach the sliding mode surface (18) 
in a finite time.

(17)S(𝜉) = Ṡ(𝜉) = 0

(18)S = e2 + c1e1 + c2

t

∫
0

e
p∕�
1

d�

(19)u = h(𝜉)−1
⎡⎢⎢⎣
−f (𝜉) + 𝜉̇d

2
− c1ė1 − c2e

p∕𝜆
1

− k1�S�
1

2 sgn(S) − k2S −

t

∫
0

k3sgn(S)d𝜏 − k4

t

∫
0

Sd𝜏

⎤⎥⎥⎦

Fig. 5   Schematic of the proposed oil spill confrontation
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According to [39, 40], the proof of Proposition 1 is given 
in Appendix B.

Note that the controller design process will use the vari-
ables 𝜉̇d

2
,𝜉̇d
1
 , but to avoid numerical differentiation of �d

1
 , the 

following second-order filter is used

where 𝜉𝛼
1
 , 𝜉̇𝛼

1
 and ��

1
 are the estimate values corresponding 

to T̈Vi
 , ṪVi

 and TVi
.

It should be noted that a robust position and attitude 
control is designed by considering a time-scale separation 
between the translational dynamics and the orientation 
dynamics. This approach is based on the assumption that 
the closed-loop attitude dynamics converge faster than the 
closed-loop translational dynamics [41, 42]. Desired refer-
ences p∗

i
=
(
x∗
i
, y∗

i

)
,z∗
i
 and �∗

i
 are generated by a trajectory 

generator in the outer loop of the proposed framework in 
Fig. 5, whereas references �∗

i
 and �∗

i
 are generated by using 

the dynamic equation of ẍi and ÿi in Eq. (2). We suggest the 
reader refer to [36] for more details.

The control strategy for the UAVs is implemented in a dis-
tributed form, as depicted in Fig. 5. The Voronoi-based tra-
jectory generator in the outer loop of Fig. 4. determines the 
new positions for the UAVs at each time step. To move to this 
new position, each UAV will use the ITST-SM control in the 
inner loop. Based on this framework, the closed-loop system 
converges to a centroidal Voronoi tessellation, and then, the 
dispersants would be sprayed on the oil spill. Therefore, we 

(20)𝜉𝛼
1
+ 2𝜚𝜔𝜉̇𝛼

1
+ 𝜔2

(
𝜉𝛼
1
− TVi

)
= 0

consider the UAV as a rigid body. Moreover, note that since 
each robot moves toward its Voronoi center, and no one could 
leave its Voronoi cell, there is no possibility of collision.

4 � Results and discussion

4.1 � Case study

The Persian Gulf is the largest offshore oil development area 
in the world. The frequency of oil spill events in this region 
is high because of extensive oil exploration and production 
activities [43]. Oil fields are hotspots with relatively high 
probabilities of oil spills in this area [27]. According to the 
result reported in [44], the Abuzar oil field is identified as a 
source that has a high level of oil spill risk. Therefore, this 
oil field (see Fig. 6a) is selected to examine the effective-
ness of the proposed oil cleanup strategy. The most known 
weather phenomenon in the Persian Gulf is the Shamal, a 
northwesterly wind that prevails throughout the year [45]. 
Furthermore, there is an inverse estuarine circulation sur-
face current pattern in the Persian Gulf, which is shown in 
Fig. 6b [44, 46].

Suppose that the crude oil is released near the Abuzar 
oil field (API = 26.9). It is assumed that the spill scenarios 
occur with a specific release amount, and the leakage stops 
before the inception of cleanup tasks. The defined scenarios 
are simulated by GNOME software. For these scenarios, 
each spill is considered by 1000 Lagrangian elements 
(LEs). According to the oil spill spreading and trajectory 

Fig. 6   Schematic diagram of the a Abuzar oil field, b general circulation of surface currents in the Persian Gulf [46]
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in the defined scenario, the boundary of the mission area is 
determined.

4.2 � Simulation results

The simulation results of the GMM-based oil spill modeling 
and cooperative oil spill confrontation in the Persian Gulf 
are presented in this section.

For the case of a northwesterly wind of 3 m/s, the result 
of simulations described in Sect. 2.1 for three oil spills is 
presented in Fig. 7 for one day. The oil pollution started with 
three initial oil spills near the latitude 29.5° N and longitude 
49.1° E on March 19, 2019, 10:00, and in this event, 100 m3 
of crude oil is spilled on the water.

As indicated in Fig. 7, the released oil spreads and moves 
southward, and the oil slicks gradually merge into a sin-
gle slick. The means of the Gaussian functions after 2 and 
10 h after spillage are marked with black ×’s in Fig. 7c, d, 
respectively. As shown in these figures, the direct output 
of this Lagrangian spill model in different moments after 
the release is converted to GMM-based functions. The 

estimated parameters of the GMM components are presented 
in Table 1 at different time instants.

As shown in Table 1, the proposed algorithm in Sect. 2.1 
determines the appropriate number of components for the oil 
spill distribution function as well as the appropriate GMM 
parameters. Considering the prevailing northwesterly wind 
(Shamal), the obtained graphical results in Fig. 7 are intui-
tively verified. Moreover, the validation of the GMM model 
was carried out by comparing numerical results in [27] with 
the proposed GMM solution in Fig. 8.

The comparison of models’ results (concentration map 
and developed Lagrangian-based GMM model) show that the 
proposed model is a valid methodology for oil spill modeling 
with a similar result. Note that the GMM model is faster than 
the concentration map in terms of computation time.

Let us evaluate the proposed cooperative deployment 
framework with the processed data of GNOME. A rectan-
gular area of 5 km × 7 km is considered such that X and 
Y  axes are limited by the intervals (49.54° ,49.59°) N and 
(29.47° ,29.53°) E, respectively. We consider 20 UAVs with 
initial locations arbitrarily generated at the corner of the 

Fig. 7   Oil spill data distribution. a GNOME output at 12:00, b GNOME output at 20:00, c Estimated mean values of GMM at 12:00, d Esti-
mated mean value of GMM at 20:00



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2021) 43:289 

1 3

  289   Page 12 of 17

mission area with zi = 0 from the rescue site or ship. Our 
simulation is conducted in MATLAB R2018b to validate 
this study for 3 h. In this study, the sea surface wind field is 
obtained from near-real-time measurements from ASCAT 
onboard MetOp (the Meteorological Operational platform) 

satellite. The ASCAT sea surface wind product is a 1-day 
composite product with a spatial resolution of 0.25° [47]. It 
may be seen that a variable northwesterly wind of 45 m/s 
prevailed in the study area during this period. In the spill 
scenario, two oil slick with 40 m3 of crude oil are released 
near 29.50 N and 49.55 E on March 19, 2019, 10:00. It is 
assumed that the estimated parameters of GMM oil spill 
density are available for all of UAVs at each time step, and 
the GMM’s parameters would be transmitted to the UAVs. 
The dynamic parameters of UAVs are shown in Table 2.

External disturbances are considered as �i = 0.1sin(100�t) , 
i = 1,2, 3 . The simulation parameters are defined as 
DOR = 1 ∶ 20 , �s = 10 , � = 5 , p = 3 , L = 100 , k� = 2 , �0 = 2 . 
The controller parameters are chosen as: k1� = k1� = k1� = 11 , 
k
2� = k

2� = k
2� = 6.5 , k

3� = k
3� = k

3� = 4 , k
4� = k

4� = k
4� = 2 , 

k1x = k3x = k4x = k4y = k4z = k3y = 2 , k2x = k2z = 3 , k1y = 2.1 , 
k2y = 4.2 , k1z = 5.2 , k3z = 2.75.

The desired yaw angle is considered as �∗
i
= 0 , and the 

desired altitude is z∗
i
= 10 m for all of the UAVs. Under 

motion control law (19) and in order to minimize the cost 
function (6), optimal deployment of UAVs at different time 
instants is shown in Fig. 9 from a top view (X–Y plane). 
Each UAV is indicated by a star shape, and the Voronoi cell 
of each UAV is denoted by white lines. The colorful back-
ground of Fig. 9 reflects the 2D representation of oil spill 
density function �(q, t) over the mission area, where the yel-
low parts represent the region with higher oil concentration.

Figure 9a depicts the initial configuration of UAVs and 
also presents the initial oil spill distribution. According 
to Fig. 9b, c, the UAVs followed the oil spill distribution 
changes. As the oil spill expanded, the UAVs simultaneously 
followed this expansion path. Finally, as shown in Fig. 9d, 
the UAVs covered the oil spill distribution very well. In order 
to cover the polluted area, from Fig. 9, we can see that each 
UAV attempts to move closer to the more polluted part of the 

Table 1   Estimated parameters 
of oil spill components at 
different time steps

Time Number of oil spills 
( K)

Mean vector ( �j) Covariance matrix ( Cj)

2019-03-19, 10:10 1
[
29.49 49.13

]
10−4

[
0.3582 − 0.0466

− 0.0466 0.2542

]

2
[
29.50 49.15

]
10−4

[
0.329 − 0.0083

− 0.0083 0.2111

]

3
[
29.49 49.16

]
10−4

[
0.4104 − 0.0538

− 0.0538 0.2602

]

2019-03-19, 12:00 1
[
29.494 49.132

]
10−4

[
0.3606 − 0.0441

− 0.0441 0.2554

]

2
[
29.498 49.157

]
10−4

[
0.6274 − 0.2937

− 0.2937 0.05047

]

2019-03-19, 20:00 1
[
29.473 49.160

]
10−3

[
0.4028 − 0.0380

− 0.0380 0.1998

]

Fig. 8   Oil spill concentration map in [27] and mean value of GMM 
at 20:00

Table 2   UAV model parameters Parameter Value Unit

m 2 kg
g 9.81 m∕s2

Ix = Iy 0.008 Ns2/rad
Iz 0.02 Ns2/rad
Jp 0.0001 Ns2/rad
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mission area due to the higher intensity of oil. Furthermore, 
the snapshots of the simulation results along time in Fig. 9 
represent the effectiveness of the proposed controller (19). 

Accordingly, the desired tracking performance is achieved. 
The non-uniform configuration of UAVs in the mission area 
is triggered by the time-varying and non-uniform behavior 
of oil spill concentration on the sea surface.

As shown in Fig. 9, the UAVs will ultimately converge 
to their centroidal Voronoi tessellation. To verify the per-
formance of the proposed control algorithm quantitatively, 
the time evolution of the normalized value of objective 
function J = −

∑N

i=1
H(pi,Vi) and total tracking error 

E =
∑N

i=1
‖ei‖ are given in Fig. 10. In this simulation, we 

are trying to compare our proposed coverage framework in 
the time-varying environment with two of the most com-
mon gradient descent-based techniques in [21] for single 
integrator agents and [48] for double integrator agents.

It can be seen that the total tracking error reduces rapidly 
to a small value, while the objective function of the proposed 
framework, J , also increases noticeably, which indicates 
decreasing of the coverage cost function H(P,Q) . Figure 10 
illustrates that the difference between the cost functions in 
the proposed framework and [21] is limited and converges to 
zero, which means that the configuration of agents reaches 
a near-optimal deployment. As expected, the coverage con-
trol strategy in [21] has the highest value of objective func-
tion compared to all the algorithms due to the first-order 

Fig. 9   Optimal deployment of 
mobile agent in different snap-
shots. a t = 11:00, b t = 11:30, c 
t = 12:30, d 13:00

Fig. 10   Evolution of objective function and total tracking error
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kinematic of agents. By computing the objective function 
in [48] with our proposed control law, it is shown that our 
controller could find a better settling time to cover the area.

If the spraying adjustment strategy (8) proposed in 
this paper is implemented, the UAV spraying operation 
will be more balanced. Actually, the spraying adjustment 
method is a perturbation on the convergence of agents 
to their Voronoi centroids. Therefore, spraying adjusting 
action cannot be applied too frequently. Thus, a threshold 
is considered. The spraying adjustment strategy will be 
canceled when the spraying error of any agent is nearly 
the same with the goal volume or surpassing the maxi-
mum adjustable range. For better visualization, the evo-
lution of optimal deployment for 10 UAVs using spray-
ing adjustment strategy is depicted in Fig. 11. Since the 
spraying adjustment strategy is a perturbation on the con-
vergence of the agents to the CVT, it is activated just for 
the range of 0.15L < Δi < 0.6L . As it is seen in this figure, 
the Voronoi cell with smaller spraying error encroaches 
upon other Voronoi cells, and the boundary of this Voro-
noi cell moves toward Voronoi cells with larger spraying 
errors.

From Fig. 11, the Voronoi cell with larger spraying 
deviation encroaches upon other Voronoi cells, since the 
agent with the larger value of effectiveness also has a 
larger spraying error Δi . Therefore, the boundary of this 
Voronoi cell moves toward Voronoi cells with the under-
spraying error. For more clarifying the issue, Fig. 12 por-
trays the spraying error (8) for UAV 5, which is specified 
in Fig. 11.

Figure 12 clarifies that the Voronoi-based control strat-
egy needs a longer time to reach a satisfactory spraying 

accuracy, but applying the proposed spraying adjustment 
can force the system to achieve the desired value with 
smaller error variation and better settling time.

This paper has developed a cooperative framework to 
use UAVs to cover a time-varying environment in an oil 
spill cleanup mission. However, it is also important to con-
sider assessing the treatment operations after the start of 
dispersant spraying. Therefore, there are possible enhance-
ments for the proposed oil spill cleanup framework, which 
may include a detailed experimental validation to assess 
the practical value of the proposed method or utilizing a 
heterogeneous group of unmanned agents (e.g., a combi-
nation of unmanned aerial and ground vehicles).

5 � Conclusions

A cooperative framework based on a group of UAVs is pro-
posed for offshore oil spill cleaning in a dynamic environ-
ment. In this framework, spill scenarios are first simulated 
by NOAA’s GNOME, which is a fast Lagrangian trajectory 
model. Based on the results of GNOME, oil spill distribu-
tion is then identified using new GMM-based modeling. To 
mitigate the adverse environmental effects of oil spills, this 
research focuses on the distributed coordination of UAVs 
that can collaboratively track and cover a time-varying 
environment for dispersant spraying operations. A cover-
age cost function is defined to describe the performance of 
the response system and catch out the optimal locations for 
UAVs. On this basis, the coordination problem of UAVs is 
formulated as a tracking problem using Voronoi tessellation. 
Adopting sliding mode control method, a new distributed 
controller is provided to ensure that the UAVs approach the 
near-optimal configuration asymptotically. Moreover, it is 

Fig. 11   Optimal deployment of UAVs with the spraying adjustment 
strategy. Dotted lines are the corresponding Voronoi tessellation and 
white solid lines are the Voronoi tessellation without spraying adjust-
ment (colour figure online)

Fig. 12   Spraying error evolution for 5th UAV
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proposed that in order to improve the efficiency of the dis-
persant method, a spraying adjustment strategy could miti-
gate the misapplication of dispersants by considering the 
recommended dispersant to oil ratio.

In the simulated scenario in the Persian Gulf, the capa-
bility of the developed cooperative framework for oil spill 
confrontation is tested successfully. The simulation results 
are shown that the coverage cost function is further reduced 
when the spraying adjustment strategy is applied. Besides 
advantages, the most important constraint of the developed 
tool is that, in the existing version, cost and operational 
limitations of response methods have not been yet inte-
grated into the model. Therefore, more research studies are 
required to extend it to real-world applications. We assumed 
that the entire oil spill data needed by UAVs are available 
for all of the agents. Although oil spill information can be 
obtained through remote sensing, this may not always be 
available due to communication constraints and cost. Thus, 
the autonomous agents are required to monitor the mission 
area while simultaneously covering the polluted parts. This 
issue is known as cooperative estimation and control for the 
unknown environment which is currently under research by 
the authors.

Appendix A

Proposition A.1  Under-spraying adjustment strategy (9), 
the boundaries of Voronoi cells Vi with respect to spraying 
performance function g(q, pi) , ∀i ∈ {1,… ,N} are straight 
line segments and the ith agent with larger spraying error Δi 
will intrude on its neighbor agents’ Voronoi cells.

Proof  Consider an arbitrary point q = (x, y)T on the bound-
ary of neighbor Voronoi cells Vi and Vj at a specific time. 
According to the geometric property of standard Voronoi 
partition, each point on the boundary between Vi and Vj satis-
fies g

(
q, pi

)
= g

(
q, pj

)
 . Therefore, we have.

where pi =
[
pxi, pyi

]T and pj =
[
pxj, pyj

]T are agents’ posi-
tion. Then we can solve the point q from (21) as

Hence, the boundary of two-agent is presented by

(21)�i(t) exp

(
−
q − p2

i

�2
s

)
= �j(t) exp

(
−
q − p2

j

�2
s

)

(22)

y =

(
pxi − pxj

)
(
pyj − pyi

)x +
�s
(
ln
(
�i(t)∕�j(t)

))
+
(
p2
xj
+ p2

yj

)
−
(
p2
xi
+ p2

yi

)

2
((
pyj − pyi

))

where the parameters B and D are constants for a given posi-
tion configuration P(t) . Since Eq. (23) holds true for any 
arbitrary point q on the boundary of Voronoi cells Vi and 
Vj ; it can be concluded that all edges of Voronoi cells will 
remain straight line.

Appendix B

Proof of Proposition 1
The SMC stability analysis usually has two phases, 

namely a reaching phase and a sliding phase [39]. In reach-
ing phase, the time derivative of the sliding surface, with 
the dynamic of the system (16), is given as

Substituting the ITST-SMC (19) in (24), we obtain

Consider the new variables �1 and �2 as

Thus, the sliding surface dynamic could be rewritten 
as follows

Equation (27) is equivalent to those for a second-order 
sliding mode with a linear growing perturbations system 
as given in [40]. The details of convergence proofs for (27) 
are presented in [40]. Hence, by appropriately selecting the 
gains k1 , k2 , k3 , k4 , the finite time convergence to the slid-
ing surface S = 0 is ensured. Suppose that for the system 
(16), the derivative of the disturbance is globally bounded 
by |𝜂̇| < 𝜂1 + 𝜂2|𝜌1| with 𝜂1 > 0 and 𝜂2 > 0 , assuming that 
the gains k1 , k2 , k3 , k4 are selected according to

(23)y = Bx +D

(24)
Ṡ = f (𝜉(t)) + h(𝜉(t))u(t) + 𝜂(t, 𝜉(t)) − 𝜉̇d

2
+ c1ė1 + c2e

p∕𝜆
1

(25)

Ṡ = −k1|S|
1

2 sgn(S) − k2S −

t

∫
0

k3sgn(S)d𝜏 − k4

t

∫
0

Sd𝜏 + 𝜂(t, 𝜉(t))

(26)

�1 = S, �2 = −

t

∫
0

k3sgn(S)d� − k4

t

∫
0

Sd� + �(t, �(t))

(27)
𝜌̇1 = −k1

||𝜌1||
1

2 sgn
(
𝜌1
)
− k2𝜌1 + 𝜌2

𝜌̇2 = −k3sgn
(
𝜌1
)
− k4𝜌1 + 𝜂̇
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Then, the ITST-SMC (19) yields finite time conver-
gence of the sliding surface [40]. Meanwhile, it is obtained 
that Ṡ(𝜉) = 0 . Once the state vector reaches the sliding 
surface (18), the following result establishes that the track-
ing error will asymptotically converge to zero. According 
to Eq. (17), the time derivative of the sliding surface is 
obtained as

or

Choose the Lyapunov function candidate as

Differentiate V with respect to time and apply (30) on the 
sliding surface, reach to:

Therefore, V̇  is negative definite, and consequently, all 
the states are uniformly bounded and tracking error will 
asymptotically converge to zero [39]. Thus, the ITST-SMC 
guarantees that tracking errors converge to the sliding sur-
face S in a finite time and remain on it. Here, the goal is that 
the positions pi , ∀i ∈ {1,… ,N} asymptotically converge to 
their optimal trajectories TVi

 . By using the proposed result 
for the convergence of tracking error,e1 , we can conclude 
that pi converge to the TVi

.
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(28)

k1 >
√
𝜂1

k2 >
1

2

√
8𝜂2

k3 > 𝜂1

k4 >
k1

�
1

2
k3
1

�
2k2 − 𝜂2

�
+
�

5

2
k2
2
+ 𝜂2

�
⟩
�

2
= k1

��
1

4
k2
1
− 𝜂1

�
+

1

2
k1

�
2k3 +

1

2
k2
1

��

(29)ė2 + c1ė1 + c2e
p∕𝜆
1

= 0

(30)ė2 = −c2e
p∕𝜆
1

− c1ė1

(31)V =
1

2
e2
2
+

c2p

� + p
e

(
p∕�

)
+1

1

(32)

V̇ = e2ė2 + c2ė1e
p∕𝜆
1

= e2

(
−c2e

p∕𝜆
1

− c1ė1

)
+ c2ė1e

p∕𝜆
1

= e2

(
−c2e

p∕𝜆
1

− c1e2

)
+ c2e2e

p∕𝜆
1

= −c1e
2
2

V̇ ≤ 0
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