Robotics: Mechanics \& Control

Chapter 3: Kinematic Analysis

In this chapter we define the forward and inverse kinematic of serial manipulators. Different geometric, algorithmic, and screw-based solution methods will be examined, and DenavitHartenberg, and homogeneous transformation is introduced. The loop closure method in forward and inverse problem is solved for a number of case studies.

Welcome

To Your Prospect Skills On Robotics :

Mechanics and Control

01

About ARAS

ARAS Research group originated in 1997 and is proud of its 22+ years of brilliant background, and its contributions to the advancement of academic education and research in the field of Dynamical System Analysis and Control in the robotics application. ARAS are well represented by the industrial engineers, researchers, and scientific figures graduated from this group, and numerous industrial and R\&D projects being conducted in this group. The main asset of our research group is its human resources devoted all their time and effort to the advancement of science and technology One of our main objectives is to use these potentials to extend our educational and industrial collaborations at both national and international levels. In order to accomplish that, our mission is to enhance the breadth and enrich the quality of our education and research in a dynamic environment.
K. N. Toosi University of Technology, Faculty of Electrical Engineering, Department of Systems and Control, Advanced Robotics and Automated Systems

Introduction

```
1 Definitions, kinematic loop closure, forward and inverse kinematics, joint and task space variables,
```


Forward Kinematics

2 Motivating example, geometric and algorithmic approach, frame assignment, DH parameters, Craig's and Paul's conventions, DH homogeneous transformations, case studies. Successive screw method; Screw-based transformations, Case studies, frame terminology.

Inverse Kinematics

Inverse problem, solvability, existence of solutions, reachable and dexterous workspace. 3 Methods of solution, Algebraic, trigonometric, geometric solutions, reduction to polynomials, Pieper's solution, method of successive screws, Case studies.

In this chapter we define the forward and inverse kinematic of serial manipulators. Different geometric, algorithmic, and screw-based solution methods will be examined, and Denavit- Hartenberg, and homogeneous transformation is introduced. The loop closure method in forward and inverse problem is solved for a number of case studies.

Kinematic Analysis

- Definitions
\checkmark The study of the geometry of motion in a robot, without considering the forces and torques that cause the motion.
\checkmark A serial robot consist of
- A single kinematic loop
- A number of links and joints
- The joints might be primary (P or R) or compound (U, C, S)
\checkmark Kinematic loop closure
- A loop consists of the consecutive links and joint to the end-effector
- Rigid links with primary joints
- Compound joints are reduced to a number of primary joints
- The loop is written in a vector form
- The joint motion variables form the Joint Space
- The end-effector final motion DoF's form the Task Space

Kinematic Analysis

\checkmark Example: Elbow Manipulator

- 3DoF spatial manipulator (RRR) Joint variables: $\boldsymbol{q}=\left[\begin{array}{lll}\theta_{1} & \theta_{2} & \theta_{3}\end{array}\right]^{T}$

$$
q_{i}=\left\{\begin{aligned}
\theta_{i} & \text { if joint } i \text { is revolute } \\
d_{i} & \text { if joint } i \text { is prismatic }
\end{aligned}\right.
$$

Task variables: $\chi=\left[\begin{array}{lll}x_{e} & y_{e} & z_{e}\end{array}\right]^{T}$
The position and orientation variables of end-effector

- Forward kinematics

Given \boldsymbol{q} find $\boldsymbol{\chi}$

Inverse kinematics
Given χ find \boldsymbol{q}

Introduction

```
1 Definitions, kinematic loop closure, forward and inverse kinematics, joint and task space variables,
```


Forward Kinematics

Motivating example, geometric and algorithmic approach, frame assignment, DH
parameters, Craig's and Paul's conventions, DH homogeneous transformations, case studies.
Successive screw method., Screw-based transformations, Case studies, frame terminology.

Inverse Kinematics

Inverse problem, solvability, existence of solutions, reachable and dexterous workspace.
3 Methods of solution, Algebraic, trigonometric, geometric solutions, reduction to
polynomials, Pieper's solution, method of successive screws, Case studies.

In this chapter we define the forward and inverse kinematic of serial manipulators. Different geometric, algorithmic, and screw-based solution methods will be examined, and Denavit- Hartenberg, and homogeneous transformation is introduced. The loop closure method in forward and inverse problem is solved for a number of case studies.

Forward Kinematics

- Motivating Example
\checkmark Kinematic loop closure
- Assign base coordinate frame $\{0\}$

Denote $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}\right]^{T}$ and $\chi=\left[x_{e}, y_{e}\right]^{T}$
Denote the link vectors
and the end-effector vector
Write the loop closure vector equation:

$$
\begin{gathered}
\overrightarrow{l_{1}}+\overrightarrow{l_{2}}=\vec{\chi} \\
l_{1} \cos \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right)=x_{e} \\
l_{1} \sin \theta_{1}+l_{2} \sin \left(\theta_{1}+\theta_{2}\right)=y_{e}
\end{gathered}
$$

Shorthand notation (FK)

$$
\begin{aligned}
& l_{1} c_{1}+l_{2} c_{12}=x_{e} \\
& l_{1} s_{1}+l_{2} s_{12}=y_{e}
\end{aligned}
$$

In which $c_{1}=\cos \theta_{1}, s_{1}=\sin \theta_{1}, c_{12}=\cos \left(\theta_{1}+\theta_{2}\right), s_{12}=\sin \left(\theta_{1}+\theta_{2}\right)$.
Given joint variables $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}\right]^{T}$, the task space variables $\chi=\left[x_{e}, y_{e}\right]^{T}$ is found from FK formulation. Inverse problem (IK) may be found by algebraic calculations.

Forward Kinematics

- Algorithmic Approach

\checkmark General Link Parameters

- Link length a_{i} and link twist α_{i}

Start from zero frame based on the joint axes Link length a_{i-1} common normal line lengths
Link twist α_{i-1} relative angle of two joint axes

- Link offset d_{i} and joint angle θ_{i}

Neighboring link distance d_{i} and angle θ_{i}
 For rotary joints $q_{i}=\theta_{i}$ is the joint variable For prismatic joints $q_{i}=d_{i}$ is the joint variable

- First and Last link in the chain

Consider base of the robot the 0 link and frame
For the last frame on the end-effector coplanar to the previous frame

Forward Kinematics

- Algorithmic Approach
\checkmark Frame Assignment (Craig's Convention)

- The \hat{Z}_{i} axis of rotation of $\{i\}$ joint (R)
- OR the axis of translation of $\{i\}$ joint (P)
- The origin of frame $\{i\}$ is at the intersection of perpendicular line to the axis i.
- The \hat{X}_{i} axis points along a_{i} along the common normal. In case a_{i} is zero \widehat{X}_{i} is normal to the plane of \hat{Z}_{i} and \hat{Z}_{i+1}
\checkmark Denavit-Hartenberg (DH) Parameters
$a_{i}=$ The distance from \hat{Z}_{i} to \hat{Z}_{i+1} measured along \hat{X}_{i}

$\alpha_{i}=$ The angle from \hat{Z}_{i} to \hat{Z}_{i+1} measured about \hat{X}_{i}
$d_{i}=$ The distance from \hat{X}_{i-1} to \hat{X}_{i} measured along \hat{Z}_{i}
$\theta_{i}=$ The angle from \widehat{X}_{i-1} to \widehat{X}_{i} measured about \hat{Z}_{i}.

Forward Kinematics

- Algorithmic Approach

\checkmark Frame Assignment (Paul's Convention)
- The \hat{Z}_{i-1} axis of rotation of $\{i\}$ joint (R)
- OR the axis of translation of $\{i\}$ joint (P)
- The origin of frame $\{i\}$ is at the intersection of perpendicular line to the axis i.
- The \hat{X}_{i} axis points along a_{i} along the common normal. In case a_{i} is zero \widehat{X}_{i} is normal to the plane of \hat{Z}_{i-1} and \hat{Z}_{i}
\checkmark Denavit-Hartenberg (DH) Parameters
$a_{i}=$ The distance from \hat{Z}_{i-1} to \hat{Z}_{i} measured along \hat{X}_{i}

$\alpha_{i}=$ The angle from \hat{Z}_{i-1} to \hat{Z}_{i} measured about \hat{X}_{i}
$d_{i}=$ The distance from \hat{X}_{i-1} to \hat{X}_{i} measured along \hat{Z}_{i-1}
$\theta_{i}=$ The angle from \hat{X}_{i-1} to \hat{X}_{i} measured about \hat{Z}_{i-1}.

Forward Kinematics

- Algorithmic Approach
\checkmark Denavit-Hartenberg (DH) Parameters
Denavit-Hartenberg Reference Frame Layout
Produced by Ethan Tira-Thompson

Forward Kinematics

- Algorithmic Approach

\checkmark DH Homogeneous Transformations (Craig's Convention)

- Consider three intermediate Frames

$$
\{i-1\}, \quad\{R\},\{Q\},\{P\}, \quad\{i
$$

The general transformation will be found by:
Considering four transformation about fixed
Frames (post-multiplication)

$$
{ }_{i}^{i-1} T={ }_{R}^{i-1} T{ }_{Q}^{R} T{ }_{P}^{Q} T{ }_{i}^{P} T .
$$

In which,

$$
{ }_{i}^{i-1} T=R_{X}\left(\alpha_{i-1}\right) D_{X}\left(a_{i-1}\right) R_{Z}\left(\theta_{i}\right) D_{Z}\left(d_{i}\right),
$$

Or

$$
{ }_{i}^{i-1} T=\operatorname{Screw}_{X}\left(a_{i-1}, \alpha_{i-1}\right) \operatorname{Screw}_{Z}\left(d_{i}, \theta_{i}\right)
$$

Forward Kinematics

- Algorithmic Approach

$$
\begin{aligned}
& \checkmark \text { DH Homogeneous Transformations (Craig's Convention) } \\
& { }_{i-1}{ }_{i} T=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i-1} \\
0 & c \alpha_{i-1} & -s \alpha_{i-1} & 0 \\
0 & s \alpha_{i-1} & c \alpha_{i-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} & 0 & 0 \\
s \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }_{i-1}^{i} T=\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} & 0 & a_{i-1} \\
s \theta_{i} c \alpha_{i-1} & c \theta_{i} c \alpha_{i-1} & -s \alpha_{i-1} & -s \alpha_{i-1} d_{i} \\
s \theta_{i} s \alpha_{i-1} & c \theta_{i} s \alpha_{i-1} & c \alpha_{i-1} & c \alpha_{i-1} d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

And the inverse is:

$$
{ }_{i-1}^{i} T=\left[\begin{array}{cccc}
c \theta_{i} & s \theta_{i} c \alpha_{i-1} & s \theta_{i} s \alpha_{i-1} & -a_{i-1} c \theta_{i} \\
-s \theta_{i} & c \theta_{i} c \alpha_{i-1} & c \theta_{i} s \alpha_{i-1} & -a_{i-1} s \theta_{i} \\
0 & -s \alpha_{i-1} & c \alpha_{i-1} & -d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Forward Kinematics

- Algorithmic Approach

\checkmark DH Homogeneous Transformations (Paul's Convention)

-
 ROBOT ANALYSTS

4

- Consider three intermediate Frames

$$
\{i-1\}, \quad\{P\},\{Q\},\{R\}, \quad\{i\}
$$

The general transformation will be found by
Considering four transformation about moving frames (pre-multiplication)

$$
{ }_{i}^{i-1} T={ }_{P}^{i-1} T{ }_{Q}^{P} T{ }_{R}^{Q} T{ }_{i}^{R} T
$$

In which,

$$
{ }_{i}^{i-1} T=D_{z}\left(d_{i}\right) R_{z}\left(\theta_{i}\right) D_{x}\left(a_{i}\right) R_{x}\left(\alpha_{i}\right)
$$

Or

$$
{ }_{i}^{i-1} T=\operatorname{Screw}_{z}\left(d_{i}, \theta_{i}\right) \operatorname{Screw}_{x}\left(a_{i}, \alpha_{i}\right)
$$

Forward Kinematics

- Algorithmic Approach
\checkmark DH Homogeneous Transformations (Paul's Convention)

$$
\begin{aligned}
{ }_{i}^{i-1} T= & {\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} & 0 & 0 \\
s \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & c \alpha_{i} & -s \alpha_{i} & 0 \\
0 & s \alpha_{i} & c \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } \\
{ }_{i-1}^{i} T & =\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} c \alpha_{i} & s \theta_{i} s \alpha_{i} & a_{i} c \theta_{i} \\
s \theta_{i} & c \theta_{i} c \alpha_{i} & -c \theta_{i} s \alpha_{i} & a_{i} s \theta_{i} \\
0 & s \alpha_{i} & c \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

And the inverse is

$$
{ }_{i-1}^{i} T=\left[\begin{array}{cccc}
c \theta_{i} & s \theta_{i} & 0 & -a_{i} \\
-s \theta_{i} c \alpha_{i} & c \theta_{i} c \alpha_{i} & s \alpha_{i} & -d_{i} s \alpha_{i} \\
s \theta_{i} s \alpha_{i} & -c \theta_{i} s \alpha_{i} & c \alpha_{i} & -d_{i} c \alpha_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Forward Kinematics

- Examples:
\checkmark Example 1: Planar RRR Manipulator
- Geometric Approach (3DoFs)

Denote $\boldsymbol{q}=\left[q_{1}, q_{2}, q_{3}\right]^{T}$ and $\chi=\left[x_{E}, y_{E}, \Theta_{E}\right]^{T}$
Denote the link, and the end-effector vectors:
Write the loop closure vector equation:

$$
\begin{gathered}
\overrightarrow{l_{1}}+\overrightarrow{l_{2}}+\overrightarrow{l_{3}}=\vec{\chi} ; \Theta_{E}=q_{1}+q_{2}+q_{3} \\
l_{1} \cos q_{1}+l_{2} \cos \left(q_{1}+q_{2}\right)+l_{3} \cos \left(q_{1}+q_{2}+q_{3}\right)=x_{E} \\
l_{1} \sin q_{1}+l_{2} \sin \left(q_{1}+q_{2}\right)+l_{2} \sin \left(q_{1}+q_{2}+q_{3}\right)=y_{E} \\
\Theta_{E}=q_{1}+q_{2}+q_{3}
\end{gathered}
$$

Shorthand notation (FK)

$$
\begin{gathered}
l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123}=x_{E} \\
l_{1} s_{1}+l_{2} s_{12}+l_{3} s_{123}=y_{E} \\
\Theta_{E}=q_{1}+q_{2}+q_{3}
\end{gathered}
$$

In which $c_{1}=\cos q_{1}, s_{1}=\sin q_{1}, c_{12}=\cos \left(q_{1}+q_{2}\right), s_{12}=\sin \left(q_{1}+q_{2}\right), c_{123}$ $=\cos \left(q_{1}+q_{2}+q_{3}\right), s_{123}=\sin \left(q_{1}+q_{2}+q_{3}\right)$.

Forward Kinematics

- Examples:

\checkmark Example 1: Planar RRR Manipulator

- Algorithmic Approach (Craig's Convention)

Denote $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{T}$ and $\chi=\left[x_{E}, y_{E}, \Theta_{E}\right]^{T}$ Affix the frames and find DH-parameters. Find the homogeneous transformations:

$$
\begin{aligned}
& { }_{1}^{0} T=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{2}^{1} T=\left[\begin{array}{cccc}
c_{2} & -s_{2} & 0 & l_{1} \\
s_{2} & c_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
& { }_{3}^{2} T=\left[\begin{array}{cccc}
c_{3} & -s_{3} & 0 & l_{2} \\
s_{3} & c_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{4}^{3} T=\left[\begin{array}{cccc}
1 & 0 & 0 & l_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Find the loop closure equation in matrix form:

$$
{ }_{E}^{0} T={ }_{4}^{0} T={ }_{1}^{0} T \quad{ }_{2}^{1} T \quad{ }_{3}^{2} T{ }_{4}^{3} T
$$

i	α_{i-1}	a_{i-1}	d_{i}	θ_{i}
1	0	0	0	θ_{1}
2	0	l_{1}	0	θ_{2}
3	0	l_{2}	0	θ_{3}
4	0	l_{3}	0	0

Forward Kinematics

- Examples:
\checkmark Example 1: (Cont.)
- Algorithmic Approach (Craig's Convention)

Calculate the loop closure matrix equation:

$$
\left.\begin{array}{c}
{ }_{E}^{0} T={ }_{4}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T
\end{array}{ }_{3}^{2} T{ }_{4}^{3} T\right]\left[\begin{array}{cccc}
c \Theta_{E} & -s \Theta_{E} & 0 & x_{E} \\
s \Theta_{E} & c \Theta_{E} & 0 & y_{E} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Forward Kinematics

- Examples:

\checkmark Example 1: Planar RRR Manipulator

- Algorithmic Approach (Paul's Convention)

Denote $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{T}$ and $\chi=\left[x_{E}, y_{E}, \Theta_{E}\right]^{T}$ Affix the frames and find DH-parameters.
Find the homogeneous transformations:

$$
{ }_{1}^{0} T=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{2}^{1} T=\left[\begin{array}{cccc}
c_{2} & -s_{2} & 0 & a_{2} c_{2} \\
s_{2} & c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],
$$

Find the loop closure equation in matrix form:

$$
{ }_{E}^{0} T={ }_{3}^{0} T={ }_{1}^{0} T \quad{ }_{2}^{1} T \quad{ }_{3}^{2} T
$$

$$
{ }_{3}^{2} T=\left[\begin{array}{cccc}
c_{3} & -s_{3} & 0 & a_{3} c_{3} \\
s_{3} & c_{3} & 0 & a_{3} s_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

i	α_{i}	a_{i}	d_{i}	$\boldsymbol{\theta}_{i}$
1	0	a_{1}	0	θ_{1}
2	0	a_{2}	0	θ_{2}
3	0	a_{3}	0	θ_{3}

Forward Kinematics

- Examples:
\checkmark Example 1: (Cont.)
Algorithmic Approach (Paul's
Calculate the loop closure matrix
${ }_{E}^{0} T={ }_{3}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T$
${ }_{E}^{0} T=\left[\begin{array}{cccc}c \Theta_{E} & -s \Theta_{E} & 0 & x_{E} \\ s \Theta_{E} & c \Theta_{E} & 0 & y_{E} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
{ }_{3}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T=\left[\begin{array}{cccc}
c_{123} & -s_{123} & 0 & a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} \\
s_{123} & c_{123} & 0 & a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Shorthand notation (FK)

$$
\begin{gathered}
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123}=x_{E} \\
a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123}=y_{E} \\
\Theta_{E}=\theta_{1}+\theta_{2}+\theta_{3}
\end{gathered}
$$

Forward Kinematics

- Examples:

\checkmark Example 2: SCARA Manipulator

- Algorithmic Approach (Paul's Convention)

Denote $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}, d_{3}, \theta_{4}\right]^{T}$ and $\boldsymbol{\chi}=\left[x_{E}, y_{E}, z_{E}, \Theta_{E}\right]^{T}$ Affix the frames and find DH-parameters. Find the homogeneous transformations:

$$
\begin{aligned}
& { }_{1}^{0} T=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{2}^{1} T=\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & a_{2} c_{2} \\
s_{2} & -c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }_{3}^{2} T=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{4}^{3} T=\left[\begin{array}{cccc}
c_{4} & -s_{4} & 0 & 0 \\
s_{4} & c_{4} & 0 & 0 \\
0 & 0 & 1 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Find the loop closure equation in matrix form:

$$
{ }_{E}^{0} T={ }_{3}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T{ }_{4}^{3} T
$$

\boldsymbol{i}	α_{i}	a_{i}	d_{i}	$\boldsymbol{\theta}_{\boldsymbol{i}}$
1	0	a_{1}	d_{1}	θ_{1}
2	π	a_{2}	0	θ_{2}
3	0	0	d_{3}	0
4	0	0	d_{4}	θ_{4}

Forward Kinematics

- Examples:
\checkmark Example 2: (Cont.)
e
- Algorithmic Approach (Paul's Convention)

Calculate the loop closure matrix equation:

$$
{ }_{4}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T{ }_{4}^{3} T=\left[\begin{array}{ccrc}
c_{12} c_{4}+s_{12} s_{4} & -c_{12} s_{4}+s_{12} c_{4} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} c_{4}-c_{12} s_{4} & -s_{12} s_{4}-c_{12} c_{4} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 & d_{1}-d_{3}-d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Shorthand notation (FK)

$$
\begin{array}{ll}
a_{1} c_{1}+a_{2} c_{12}=x_{E}, & z_{E}=d_{1}-d_{3}-d_{4}, \\
a_{1} s_{1}+a_{2} s_{12}=y_{E}, & -\Theta_{E}=-\theta_{1}-\theta_{2}+\theta_{4} .
\end{array}
$$

Forward Kinematics

- Examples:

\checkmark Example 3: Cylindrical Robot (RPP)

- Algorithmic Approach (Paul's Convention)

Denote $\boldsymbol{q}=\left[\theta_{1}, d_{2}, d_{3}\right]^{T}$ and $\chi=\left[x_{E}, z_{E}, \Theta_{E}\right]^{T}$ Affix the frames and find DH-parameters. Find the homogeneous transformations:

$$
{ }_{1}^{0} T=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{2}^{1} T=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right],
$$

$$
{ }_{3}^{2} T=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Find the loop closure equation in matrix form:

$$
{ }_{E}^{0} T={ }_{3}^{0} T={ }_{1}^{0} T \quad{ }_{2}^{1} T \quad{ }_{3}^{2} T
$$

i	α_{i}	a_{i}	d_{i}	$\boldsymbol{\theta}_{\boldsymbol{i}}$
1	0	0	d_{1}	θ_{1}
2	$-\pi / 2$	0	d_{2}	0
3	0	0	d_{3}	0

Forward Kinematics

- Examples:
\checkmark Example 3: (Cont.)
- Algorithmic Approach (Paul's Convention)

Calculate the loop closure matrix equation:

$$
\begin{gathered}
{ }_{E}^{0} T={ }_{3}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T \\
{ }_{E}^{0} T=\left[\begin{array}{cccc}
c \Theta_{E} & -s \Theta_{E} & 0 & x_{E} \\
s \Theta_{E} & c \Theta_{E} & 0 & y_{E} \\
0 & 0 & 1 & z_{E} \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }_{4}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Shorthand notation (FK)

$$
\begin{array}{rlr}
-s_{1} d_{3}=x_{E}, & z_{E}=d_{1}+d_{2}, \\
c_{1} d_{3}=y_{E}, & \Theta_{E}=f\left(\theta_{1}\right) .
\end{array}
$$

Forward Kinematics

- Examples:

\checkmark Example 4: Spherical Wrist (RRR)

- Algorithmic Approach (Paul's Convention)

Denote $\boldsymbol{q}=\left[\theta_{4}, \theta_{5}, \theta_{5}\right]^{T}$ and $\chi=[\phi, \theta, \psi]^{T}$ Affix the frames and find DH-parameters. Find the homogeneous transformations:

$$
\begin{aligned}
& { }_{4}^{3} T=\left[\begin{array}{cccc}
c_{4} & 0 & -s_{4} & 0 \\
s_{4} & 0 & c_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{5}^{4} T=\left[\begin{array}{cccc}
c_{5} & 0 & s_{5} & 0 \\
s_{5} & 0 & -c_{5} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
& { }_{6}^{5} T=\left[\begin{array}{cccc}
c_{6} & 0 & -s_{6} & 0 \\
s_{6} & 0 & c_{6} & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

i	α_{i}	a_{i}	d_{i}	$\boldsymbol{\theta}_{\boldsymbol{i}}$
4	$-\pi / 2$	0	0	θ_{4}
5	$\pi / 2$	0	0	θ_{5}
6	0	0	d_{6}	θ_{6}

Find the loop closure equation in matrix form:

$$
{ }_{E}^{3} T={ }_{6}^{3} T={ }_{4}^{3} T{ }_{5}^{4} T{ }_{6}^{5} T
$$

Forward Kinematics

- Examples:

\checkmark Example 4: (Cont.)

- Algorithmic Approach (Paul's Convention)

Calculate the loop closure matrix equation:

$$
\begin{aligned}
& { }_{E}^{3} T={ }_{6}^{3} T={ }_{4}^{3} T{ }_{5}^{4} T{ }_{6}^{5} T \\
& { }_{E}^{3} T=\left[\begin{array}{cc}
R(\phi, \theta, \psi) & d_{E}^{3} \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
{ }_{6}^{3} T={ }_{4}^{3} T{ }_{5}^{4} T{ }_{6}^{4} T=\left[\begin{array}{cccc}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{5} s_{6} & c_{5} & c_{5} d_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Forward Kinematics

- Examples:

\checkmark Example 5: Scorbot 5R Manipulator

- Algorithmic Approach (Paul's Convention)

Denote $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right]^{T}$ and $\chi=\left[\boldsymbol{x}_{E}, \Theta_{E}\right]^{T}$ Affix the frames and find DH -parameters.

\boldsymbol{i}	α_{i}	$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}$	$\boldsymbol{\theta}_{\boldsymbol{i}}$
1	$-\pi / 2$	a_{1}	d_{1}	θ_{1}
2	0	a_{2}	0	θ_{2}
3	0	a_{3}	0	θ_{3}
4	$-\pi / 2$	0	0	θ_{4}
5	0	0	d_{5}	θ_{5}

Forward Kinematics

- Examples:

\checkmark Example 5: (Cont.)

Rosor
 4-

- Algorithmic Approach (Paul's Convention)

Calculate the loop closure matrix equation:

$$
\begin{gathered}
{ }_{E}^{0} T={ }_{5}^{0} T=A_{1} A_{2} A_{3} A_{4} A_{5} \\
{ }_{E}^{0} T=\left[\begin{array}{cc}
R\left(\Theta_{E}\right) & x_{E}^{0} \\
0 & 1
\end{array}\right]
\end{gathered}
$$

$$
{ }^{0} A_{1}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} & 0 & -\mathrm{s} \theta_{1} & a_{1} \mathrm{c} \theta_{1} \\
\mathrm{~s} \theta_{1} & 0 & \mathrm{c} \theta_{1} & a_{1} \mathrm{~s} \theta_{1} \\
0 & -1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right],{ }^{1} A_{2}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{2} & -\mathrm{s} \theta_{2} & 0 & a_{2} \mathrm{c} \theta_{2} \\
\mathrm{~s} \theta_{2} & \mathrm{c} \theta_{2} & 0 & a_{2} \mathrm{~s} \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
{ }^{2} A_{3}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{3} & -\mathrm{s} \theta_{3} & 0 & a_{3} \mathrm{c} \theta_{3} \\
\mathrm{~s} \theta_{3} & \mathrm{c} \theta_{3} & 0 & a_{3} \mathrm{~s} \theta_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad{ }^{3} A_{4}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{4} & 0 & -\mathrm{s} \theta_{4} & 0 \\
\mathrm{~s} \theta_{4} & 0 & \mathrm{c} \theta_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad{ }^{4} A_{5}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{5} & -\mathrm{s} \theta_{5} & 0 & 0 \\
\mathrm{~s} \theta_{5} & \mathrm{c} \theta_{5} & 0 & 0 \\
0 & 0 & 1 & d_{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Forward Kinematics

\checkmark Example 5: (Cont.)

$$
{ }^{0} A_{n}=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{q} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
u_{x}=\mathrm{c} \theta_{1} \mathrm{c} \theta_{234} \mathrm{c} \theta_{5}+\mathrm{s} \theta_{1} \mathrm{~s} \theta_{5}
$$

$$
u_{y}=\mathrm{s} \theta_{1} \mathrm{c} \theta_{234} \mathrm{c} \theta_{5}-\mathrm{c} \theta_{1} \mathrm{~s} \theta_{5},
$$

$$
u_{z}=-\mathrm{s} \theta_{234} \mathrm{c} \theta_{5},
$$

$$
w_{x}=-\mathrm{c} \theta_{1} \mathrm{~s} \theta_{234},
$$

$$
v_{x}=-\mathrm{c} \theta_{1} \mathrm{c} \theta_{234} \mathrm{~s} \theta_{5}+\mathrm{s} \theta_{1} \mathrm{c} \theta_{5}
$$

$$
w_{y}=-\mathrm{s} \theta_{1} \mathrm{~s} \theta_{234},
$$

$$
v_{y}=-\mathrm{s} \theta_{1} \mathrm{c} \theta_{234} \mathrm{~s} \theta_{5}-\mathrm{c} \theta_{1} \mathrm{c} \theta_{5}
$$

$$
w_{z}=-\mathrm{c} \theta_{234},
$$

$$
v_{z}=\mathrm{s} \theta_{234} \mathrm{~s} \theta_{5}, \quad \begin{array}{ll}
q_{x}=\mathrm{c} \theta_{1}\left(a_{1}+a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23}-d_{5} \mathrm{~s} \theta_{234}\right), \\
& q_{y}=\mathrm{s} \theta_{1}\left(a_{1}+a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23}-d_{5} \mathrm{~s} \theta_{234}\right), \\
& q_{z}=d_{1}-a_{2} \mathrm{~s} \theta_{2}-a_{3} \mathrm{~s} \theta_{23}-d_{5} \mathrm{c} \theta_{234}
\end{array}
$$

Forward Kinematics

- Examples:

\checkmark Example 6: Stanford Manipulator (2RP3R)

- Algorithmic Approach (Paul's Convention)

Denote $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}, d_{3}, \theta_{4}, \theta_{5}, \theta_{6}\right]^{T}$ and $\boldsymbol{\chi}=\left[\boldsymbol{x}_{\boldsymbol{E}}, \boldsymbol{\Theta}_{\boldsymbol{E}}\right]^{T}$ Affix the frames and find DH-parameters.

i	α_{i}	a_{i}	d_{i}	$\boldsymbol{\theta}_{i}$
1	$-\pi / 2$	0	0	θ_{1}
2	$\pi / 2$	0	d_{2}	θ_{2}
3	0	0	d_{3}	0
4	$-\pi / 2$	0	0	θ_{4}
5	$\pi / 2$	0	0	θ_{5}
6	0	0	d_{6}	θ_{6}

Forward Kinematics

- Examples:

\checkmark Example 6: (Cont.)

- Algorithmic Approach (Paul's Convention)

Calculate the loop closure matrix equation:

$$
\begin{aligned}
{ }_{E}^{0} T={ }_{6}^{0} T & =A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} \\
{ }_{E}^{0} T & =\left[\begin{array}{cc}
R\left(\boldsymbol{\Theta}_{E}\right) & x_{E}^{0} \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{ll}
A_{\mathbf{1}}=\left[\begin{array}{rrrr}
c_{1} & 0 & -s_{1} & 0 \\
s_{1} & 0 & c_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & A_{2}=\left[\begin{array}{rrrr}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array} A_{3}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Forward Kinematics

\checkmark Example 6: (Cont.)

$$
T_{6}^{0}=A_{1} \cdots A_{6}=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & d_{x} \\
r_{21} & r_{22} & r_{23} & d_{y} \\
r_{31} & r_{32} & r_{33} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

in which

$$
\begin{aligned}
r_{11} & =c_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]-s_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{21} & =s_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{31} & =-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} c_{6} \\
r_{12} & =c_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]-s_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{22} & =-s_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]+c_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{32} & =s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6} \\
r_{13} & =c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} \\
r_{23} & =s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} \\
r_{33} & =-s_{2} c_{4} s_{5}+c_{2} c_{5} \\
d_{x} & =c_{1} s_{2} d_{3}-s_{1} d_{2}++d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) \\
d_{y} & =s_{1} s_{2} d_{3}+c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) \\
d_{z} & =c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right)
\end{aligned}
$$

K. N. Toosi University of Technology, Faculty of Electrical Engineering, Department of Systems and Control, Advanced Robotics and Automated Systems

Forward Kinematics

- Successive Screw Method
\checkmark Use Screw Displacement Representation
- Screw axis $\hat{\boldsymbol{s}}$ along
the rotation axis in R joints
the translation axis in P joints
- The screw displacement $\boldsymbol{s}_{\mathbf{0}}$ In base frame.

Consider the screw representation $\hat{\$}_{i}$ in home configuration Find the target screw axis by consecutive screw displacement

- Find the Homogeneous transformations A_{i} from screw representation $\widehat{\$}_{i}$

The joint variables θ_{i} and d_{i} are used in the homogeneous transformations

- Apply the loop closure equation by $A_{E}=A_{1} A_{2} \cdots A_{n-1} A_{n}$

No Frame assignment; just the base and the end effector frames are needed

Forward Kinematics

- Successive Screw Method
\checkmark Review Screw Displacement Formulation
- General Motion =

Rotation about $\widehat{\boldsymbol{s}}+$ Translation along $\widehat{\boldsymbol{s}}$

$$
\{\hat{\boldsymbol{s}}, \theta\} \quad+\quad\left\{\boldsymbol{s}_{0}, d\right\}
$$

where

$$
\hat{s}^{T} \hat{s}=1 ; \quad s_{o}^{T} \hat{s}=d
$$

- Given Screw Parameters Find A_{i} by:

$$
A_{i}=\left[\begin{array}{ccc|c}
s_{x}^{2} v \theta+c \theta & s_{x} s_{y} v \theta-s_{z} s \theta & s_{x} s_{z} v \theta+s_{y} s \theta & p_{x} \\
s_{y} s_{x} v \theta+s_{z} s \theta & s_{y}^{2} v \theta+c \theta & s_{y} s_{z} v \theta-s_{x} s \theta & p_{y} \\
s_{z} s_{x} v \theta-s_{y} s \theta & s_{z} s_{y} v \theta+s_{x} s \theta & s_{z}^{2} v \theta+c \theta & p_{z} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
$$

while,

$$
\begin{align*}
& p_{x}=d s_{x}-s_{o_{x}}\left(s_{x}^{2}-1\right) v \theta-s_{o_{y}}\left(s_{x} s_{y} v \theta-s_{z} s \theta\right)-s_{o_{z}}\left(s_{x} s_{z} v \theta+s_{y} s \theta\right) \\
& p_{y}=d s_{y}-s_{o_{x}}\left(s_{y} s_{x} v \theta+s_{z} s \theta\right)-s_{o_{y}}\left(s_{y}^{2}-1\right) v \theta-s_{o_{z}}\left(s_{y} s_{z} v \theta-s_{x} s \theta\right) \tag{2.65}\\
& p_{z}=d s_{z}-s_{o_{x}(}\left(s_{z} s_{x} v \theta-s_{y} s \theta\right)-s_{o_{y}}\left(s_{z} s_{y} v \theta+s_{x} s \theta\right)-s_{o_{z}}\left(s_{z}^{2}-1\right) v \theta
\end{align*}
$$

Forward Kinematics

- Successive Screw Method

$\square 9$
 ROBOT

ANALYSIS

\checkmark Recipe

- Consider the manipulator in Reference Position

Where the joint variables are all zero $\theta_{i}=d_{i}=0$
Determine the end effector position x_{E}^{0}
and orientation $\boldsymbol{R}_{E}^{0}=\left[\begin{array}{lll}\widehat{\boldsymbol{u}}_{0} & \widehat{\boldsymbol{v}}_{0} & \widehat{\boldsymbol{w}}_{0}\end{array}\right]$
And the Screw axis representations for n joints

$$
\hat{\mathbb{S}}_{i}=\left\{\hat{s}_{i}, s_{o i}\right\} \text { for } i=1,2, \ldots, n .
$$

- Consider the manipulator in target Position

Determine the end effector position $\boldsymbol{x}_{\boldsymbol{E}}$ and orientation $\boldsymbol{R}_{E}=[\hat{\boldsymbol{u}}$
This is found based on task space variables χ.

- Apply the loop closure equation

Calculate the homogeneous transformation of $\widehat{\$}_{i}$
Determine the target screw axis by consecutive screw displacement

$$
A_{E}=A_{1} A_{2} \cdots A_{n-1} A_{n} \rightarrow x_{E}=A_{1} A_{2} \cdots A_{n-1} A_{n} x_{E}^{0}
$$

- In forward kinematics given \boldsymbol{q} the task space variable χ is found.
- In inverse kinematics given χ the joint space variable \boldsymbol{q} is found.

Forward Kinematics

- Successive Screw Method
\checkmark Example 1
- Consider Planar RRR Manipulator
- Reference Pose:

Consider all the joint variables $\theta_{i}=0$.
Consider the base frame $x-y-z$ and
The end effector frame $u-v-w$
Derive the reference pose by:

$$
\begin{gathered}
\boldsymbol{u}_{0}=[1,0,0]^{T}, \boldsymbol{v}_{0}=[0,1,0]^{T}, \boldsymbol{w}_{0}=[0,0,1]^{T} \\
\boldsymbol{x}_{E}^{0}=\boldsymbol{q}_{\mathbf{0}}=\left[a_{1}+a_{2}+a_{3}, 0,0\right]^{T}
\end{gathered}
$$

And for the wrist point \boldsymbol{P}

$$
\boldsymbol{p}_{\mathbf{0}}=\left[a_{1}+a_{2}, 0,0\right]^{T}
$$

Forward Kinematics

- Successive Screw Method
\checkmark Example 1: (Cont.)
- Reference Pose:

Denote the screws $\hat{\$}_{i}$ as on the diagram
Find the screw parameters $\hat{\boldsymbol{s}}_{\boldsymbol{i}}$ and $\boldsymbol{s}_{\boldsymbol{o}_{\boldsymbol{i}}}$ as given in the table

- Target Pose:

Let the target position of the wrist be:
$\mathbf{u}=\left[u_{x}, u_{y}, u_{z}\right]^{\mathrm{T}}, \quad \mathbf{v}=\left[v_{x}, v_{y}, v_{z}\right]^{\mathrm{T}}, \quad \mathbf{w}=\left[w_{x}, w_{y}, w_{z}\right]^{\mathrm{T}}$,
$\mathbf{p}=\left[p_{x}, p_{y}, p_{z}\right]^{\mathrm{T}}$.

Join i	s_{i}	$s_{0_{i}}$
1	$(0,0,1)$	$(0,0,0)$
2	$(0,0,1)$	$\left(a_{1}, 0,0\right)$
3	$(0,0,1)$	$\left(a_{1}+a_{2}, 0,0\right)$

And for the end effector $\boldsymbol{q}=\left[q_{x}, q_{y}, q_{z}\right]^{T}$.

Forward Kinematics

- Successive Screw Method
\checkmark Example 1: (Cont.)
- Screw Transformation Matrices:

$$
A_{1}=\left[\begin{array}{cccc}
c \theta_{1} & -s \theta_{1} & 0 & 0 \\
s \theta_{1} & c \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad A_{2}=\left[\begin{array}{cccc}
c \theta_{2} & -s \theta_{2} & 0 & a_{1} v \theta_{2} \\
s \theta_{2} & c \theta_{2} & 0 & -a_{1} s \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad A_{2}=\left[\begin{array}{cccc}
c \theta_{3} & -s \theta_{3} & 0 & \left(a_{1}+a_{2}\right) v \theta_{3} \\
s \theta_{3} & c \theta_{3} & 0 & -\left(a_{1}+a_{2}\right) s \theta_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
A_{1} A_{2} A_{3}=\left[\begin{array}{cccc}
c \theta_{123} & -s \theta_{123} & 0 & a_{1} c \theta_{1}+a_{2} c \theta_{12}-\left(a_{1}+a_{2}\right) c \theta_{123} \\
s \theta_{123} & c \theta_{123} & 0 & a_{1} s \theta_{1}+a_{2} s \theta_{12}-\left(a_{1}+a_{2}\right) s \theta_{123} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Loop closure equation: $\boldsymbol{q}=A_{1} A_{2} A_{3} \boldsymbol{q}_{0}$; Orientation Equivalence:

$$
\begin{aligned}
& q_{x}=a_{1} c \theta_{1}+a_{2} c \theta_{12}+a_{3} c \theta_{123} \\
& q_{y}=a_{1} s \theta_{1}+a_{2} s \theta_{12}+a_{3} s \theta_{123} \\
& q_{z}=0
\end{aligned}
$$

$$
{ }_{E}^{0} R=\left[\begin{array}{ccc}
c \Theta_{E} & -s \Theta_{E} & 0 \\
s \Theta_{E} & c \Theta_{E} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
c \theta_{123} & -s \theta_{123} & 0 \\
s \theta_{123} & c \theta_{123} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The results is the same as before.

Forward Kinematics

- Successive Screw Method
\checkmark Example 2
- Consider 6DoF Elbow Manipulator (6R)
- Reference Pose:

Consider all the joint variables $\theta_{i}=0$.

Consider the base frame $x-y-z$ and
The end effector frame $u-v-w$
Derive the reference pose by:

$$
\begin{gathered}
\boldsymbol{u}_{0}=[0,0,1]^{T}, \boldsymbol{v}_{0}=[0,-1,0]^{T}, \boldsymbol{w}_{0}=[1,0,0]^{T} \\
\boldsymbol{x}_{E}^{0}=\boldsymbol{q}_{\mathbf{0}}=\left[a_{2}+a_{3}+a_{4}+d_{6}, 0,0\right]^{T}
\end{gathered}
$$

And for the wrist point \boldsymbol{P}

$$
\boldsymbol{p}_{\mathbf{0}}=\left[a_{2}+a_{3}+a_{4}, 0,0\right]^{T}
$$

Forward Kinematics

- Successive Screw Method
\checkmark Example 2: (Cont.)
- Reference Pose:

Denote the screws $\hat{\$}_{i}$ as on the diagram
Find the screw parameters \hat{s}_{i} and $\boldsymbol{s}_{o_{i}}$ as

Joint i	$\mathbf{s}_{\boldsymbol{i}}$	$\mathbf{s}_{\boldsymbol{o} \boldsymbol{i}}$
1	$(0,0,1)$	$(0,0,0)$
2	$(0,-1,0)$	$(0,0,0)$
3	$(0,-1,0)$	$\left(a_{2}, 0,0\right)$
4	$(0,-1,0)$	$\left(a_{2}+a_{3}, 0,0\right)$
5	$(0,0,1)$	$\left(a_{2}+a_{3}+a_{4}, 0,0\right)$
6	$(1,0,0)$	$(0,0,0)$

- Target Pose:

Let the target position of the wrist be:
$\mathbf{u}=\left[u_{x}, u_{y}, u_{z}\right]^{\mathrm{T}}, \quad \mathbf{v}=\left[v_{x}, v_{y}, v_{z}\right]^{\mathrm{T}}, \quad \mathbf{w}=\left[w_{x}, w_{y}, w_{z}\right]^{\mathrm{T}}$,
$\mathbf{p}=\left[p_{x}, p_{y}, p_{z}\right]^{\mathrm{T}}$.
And for the end effector $\boldsymbol{q}=\left[q_{x}, q_{y}, q_{z}\right]^{T}$.

Forward Kinematics

- Successive Screw Method

Rosot
 Rosot

\checkmark Example 2: (Cont.)

- Screw Transformation Matrices:

$$
\left.\begin{array}{l}
A_{1}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} & -\mathrm{s} \theta_{1} & 0 & 0 \\
\mathrm{~s} \theta_{1} & \mathrm{c} \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{2}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{2} & 0 & -\mathrm{s} \theta_{2} & 0 \\
0 & 1 & 0 & 0 \\
\mathrm{~s} \theta_{2} & 0 & \mathrm{c} \theta_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{3}=\left[\begin{array}{ccc}
\mathrm{c} \theta_{3} & 0 & -\mathrm{s} \theta_{3} \\
0 & a_{2}\left(1-\mathrm{c} \theta_{3}\right) \\
0 & 1 & 0 \\
\mathrm{~s} \theta_{3} & 0 & \mathrm{c} \theta_{3} \\
0 & 0 & 0
\end{array}\right] \\
A_{4}
\end{array}\right]=\left[\begin{array}{cccc}
\mathrm{c} \theta_{4} & 0 & -\mathrm{s} \theta_{4} \mathrm{~s} \theta_{3} \\
0 & 1 & 0 & \left(a_{2}+a_{3}\right)\left(1-\mathrm{c} \theta_{4}\right) \\
\mathrm{s} \theta_{4} & 0 & \mathrm{c} \theta_{4} & -\left(a_{2}+a_{3}\right) \mathrm{s} \theta_{4} \\
0 & 0 & 0 & 1
\end{array}\right], \quad A_{5}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{5} & -\mathrm{s} \theta_{5} & 0 & \left(a_{2}+a_{3}+a_{4}\right)\left(1-\mathrm{c} \theta_{5}\right) \\
\mathrm{s} \theta_{5} & \mathrm{c} \theta_{5} & 0 & -\left(a_{2}+a_{3}+a_{4}\right) \mathrm{s} \theta_{5} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],
$$

Forward Kinematics

- Successive Screw Method

\checkmark Example 3

- Consider 6DoF Stanford Arm (2RP3R)
- Reference Pose:

Consider all the joint variables $\theta_{i}=d_{i}=0$.
Consider the base frame $x-y-z$ and
The end effector frame $u-v-w$
Derive the reference pose by:

$$
\begin{aligned}
& \boldsymbol{u}_{0}=[1,0,0]^{T}, \boldsymbol{v}_{0}=[0,0,-1]^{T}, \boldsymbol{w}_{0}=[0,1,0]^{T} \\
& \boldsymbol{x}_{E}^{0}=\boldsymbol{q}_{0}=[g, h, 0]^{T}
\end{aligned}
$$

And for the wrist point \boldsymbol{P}

$$
\boldsymbol{p}_{0}=[g, 0,0]^{T} .
$$

Forward Kinematics

- Successive Screw Method
\checkmark Example 3: (Cont.)
- Reference Pose:

Denote the screws $\hat{\$}_{i}$ as on the diagram
Find the screw parameters $\hat{\boldsymbol{s}}_{\boldsymbol{i}}$ and $\boldsymbol{s}_{\boldsymbol{o}_{\boldsymbol{i}}}$ as

Joint i	$\mathbf{s}_{i}\left(s_{x}, s_{y}, s_{z}\right)$	$\mathbf{s}_{o i}\left(s_{o x}, s_{o y}, s_{o z}\right)$
1	$(0,0,1)$	$(0,0,0)$
2	$(1,0,0)$	$(0,0,0)$
3	$(0,1,0)$	$(g, 0,0)$
4	$(0,1,0)$	$(g, 0,0)$
5	$(0,0,1)$	$(g, 0,0)$
6	$(0,1,0)$	$(g, 0,0)$

- Target Pose:

Let the target position of the wrist be:
$\mathbf{u}=\left[u_{x}, u_{y}, u_{z}\right]^{\mathrm{T}}, \quad \mathbf{v}=\left[v_{x}, v_{y}, v_{z}\right]^{\mathrm{T}}, \quad \mathbf{w}=\left[w_{x}, w_{y}, w_{z}\right]^{\mathrm{T}}$,
$\mathbf{p}=\left[p_{x}, p_{y}, p_{z}\right]^{\mathrm{T}}$.
And for the end effector $\boldsymbol{q}=\left[q_{x}, q_{y}, q_{z}\right]^{T}$,
Where $\boldsymbol{p}=\boldsymbol{q}-h \boldsymbol{w}$.

Forward Kinematics

- Successive Screw Method
\checkmark Example 3: (Cont.)
- Screw Transformation Matrices:

$$
\begin{aligned}
& A_{1} A_{2} A_{3}=
\end{aligned}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} & -\mathrm{s} \theta_{1} & 0 & 0 \\
\mathrm{~s} \theta_{1} & \mathrm{c} \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \mathrm{c} \theta_{2} & -\mathrm{s} \theta_{2} & 0 \\
0 & \mathrm{~s} \theta_{2} & \mathrm{c} \theta_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & d_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Forward Kinematics

- Successive Screw Method
\checkmark Example 3: (Cont.)
- Screw Transformation Matrices:

End Effector Orientation:

$$
\begin{aligned}
R_{4} R_{5} R_{6} & =\left[\begin{array}{ccc}
\mathrm{c} \theta_{4} & 0 & \mathrm{~s} \theta_{4} \\
0 & 1 & 0 \\
-\mathrm{s} \theta_{4} & 0 & \mathrm{c} \theta_{4}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c} \theta_{5} & -\mathrm{s} \theta_{5} & 0 \\
\mathrm{~s} \theta_{5} & \mathrm{c} \theta_{5} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c} \theta_{6} & 0 & \mathrm{~s} \theta_{6} \\
0 & 1 & 0 \\
-\mathrm{s} \theta_{6} & 0 & \mathrm{c} \theta_{6}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathrm{c} \theta_{4} \mathrm{c} \theta_{5} \mathrm{c} \theta_{6}-\mathrm{s} \theta_{4} \mathrm{~s} \theta_{6} & -\mathrm{c} \theta_{4} \mathrm{~s} \theta_{5} & \mathrm{c} \theta_{4} \mathrm{c} \theta_{5} \mathrm{~s} \theta_{6}+\mathrm{s} \theta_{4} \mathrm{c} \theta_{6} \\
\mathrm{~s} \theta_{5} \mathrm{c} \theta_{6} & \mathrm{c} \theta_{5} & \mathrm{~s} \theta_{5} \mathrm{~s} \theta_{6} \\
-\mathrm{s} \theta_{4} \mathrm{c} \theta_{5} \mathrm{c} \theta_{6}-\mathrm{c} \theta_{4} \mathrm{~s} \theta_{6} & \mathrm{~s} \theta_{4} \mathrm{~s} \theta_{5} & -\mathrm{s} \theta_{4} \mathrm{c} \theta_{5} \mathrm{~s} \theta_{6}+\mathrm{c} \theta_{4} \mathrm{c} \theta_{6}
\end{array}\right],
\end{aligned}
$$

Forward Kinematics

- Frame Terminology
\checkmark The Base Frame, $\{B\}$
\checkmark The Station Frame, $\{S\}$
\checkmark The Wrist Frame, $\{W\}$
\checkmark The Tool Frame, $\{T\}$
\checkmark The Goal Frame, $\{G\}$
- Where is The Tool?

Where means the position and orientation ${ }_{T}^{S} T$ indicates where the tool is with respect to the station frame $\{S\}$

$$
{ }_{T}^{S} T={ }_{S}^{B} T^{-1}{ }_{W}^{B} T{ }_{T}^{W} T .
$$

To reach the tool to the goal one may solve the kinematics problem of:

$$
{ }_{T}^{S} T={ }_{G}^{S} T .
$$

Introduction

```
1 Definitions, kinematic loop closure, forward and inverse kinematics, joint and task space variables,
```


Forward Kinematics

2 Motivating example, geometric and algorithmic approach, frame assignment, DH parameters, Craig's and Paul's conventions, DH homogeneous transformations, case studies. Successive screw method., Screw-based transformations, Case studies, frame terminology.

Inverse Kinematics

Inverse problem, solvability, existence of solutions, reachable and dexterous workspace.
3 Methods of solution, Algebraic, trigonometric, geometric solutions, reduction to
polynomials, Pieper's solution, method of successive screws, Case studies.

In this chapter we define the forward and inverse kinematic of serial manipulators. Different geometric, algorithmic, and screw-based solution methods will be examined, and Denavit- Hartenberg, and homogeneous transformation is introduced. The loop closure method in forward and inverse problem is solved for a number of case studies.
Robotics: Mechanics and Control
K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Kinematic Analysis

- Inverse Kinematics

\checkmark Solve the inverse problem

- Forward kinematics Given \boldsymbol{q} find χ
 Inverse kinematics Given $\boldsymbol{\chi}$ find \boldsymbol{q}
- Solve the loop closure equation for: Given χ find \boldsymbol{q}

$$
\begin{gathered}
{ }_{E}^{0} T={ }_{\mathrm{n}}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T \cdots{ }_{\mathrm{n}-1}^{\mathrm{n}-2} T{ }_{\mathrm{n}}^{\mathrm{n}-1} T \\
\left({ }_{3}^{2} T\right)^{-1}\left({ }_{2}^{1} T\right)^{-1}\left({ }_{1}^{0} T\right)^{-1}{ }_{E}^{0} T={ }_{4}^{3} T \cdots{ }_{\mathrm{n}-1}^{\mathrm{n}-2} T{ }_{\mathrm{n}}^{\mathrm{n}-1} T
\end{gathered}
$$

Direct inversion is not practical, and usually using the wrist frame $\{w\}$ for separation of position and orientation equation is very effective

Inverse Kinematic

- Solvability
\checkmark The vector loop closure equations are nonlinear and trigonometric
- For 6DoF manipulator, the number of variables are six
- The number of equations are twelve (9 for ${ }_{E}^{0} T, 3$ for x_{E}^{0})
- Only three out of 9 equations are independent
- Finding the solution is difficult
- IK might have no solution (out of workspace) or multiple solutions
\checkmark Existence of Solutions
- Solution exists if the end-effector is within the reachable workspace of the robot (might have multiple solutions)
- On the border of the reachable workspace the solution is unique.
- Reachable Workspace (RW)

The Volume of Space (6DoF space in general) that the end-effector of the robot can reach

- Dexterous Workspace (DW)

The Volume of space that the end-effector of the robot can reach with all configuration
Dextereous Workspace is a subset of Reachable Workspace

- Constant Orientation Workspace (COW)

The Volume of Space (6DoF Space) that the end-effector of the robot can reach with constant configuration This is used to better visualization (6DoF workspace)

- Workspace
\checkmark Reachable \& Dexterous Workspace
- Consider Planar RR Manipulator

IF $L_{1}=L_{2}$ (with no joint limit)
RW: A disc with radius $2 L_{1}$ DW: Only one point; the origin
IF $L_{1}>L_{2}$ (with no joint limit)

RW: A Ring with outer radius $L_{1}+L_{2}$, and the inner radius $L_{1}-L_{2}$;
DW: Empty Set; \varnothing

On the boundaries of the workspace:
One double solution for Fully extended/folded Arm

Inverse Kinematic

- Methods of Solution
\checkmark Closed-Form Solution \& Numerical Solution
- Restrict ourselves to closed-form solution
- IK of a 6DoF manipulator with R and P joints are solvable

Algebraic (Trigonometric) Solution
Analytical Geometric Solution
Reduction to Polynomial
Pieper's Solution (When three axes intersects)
Method of Successive Screws

Inverse Kinematics

- Algebraic (Trigonometric) Solution
\checkmark Kinematic loop closure
- Consider Planar RRR Manipulator

Shorthand notation (FK)

$$
\begin{gathered}
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123}=x_{E} \\
a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123}=y_{E} \\
\phi=\Theta_{E}=\theta_{1}+\theta_{2}+\theta_{3}
\end{gathered}
$$

Consider the wrist point P vs the end effector point Q

$$
p_{x}=x_{E}-a_{3} c \phi ; \quad p_{y}=y_{E}-a_{3} s \phi
$$

On the other side,

$$
\begin{aligned}
& p_{x}=a_{1} \mathrm{c} \theta_{1}+a_{2} \mathrm{c} \theta_{12}, \\
& p_{y}=a_{1} \mathrm{~s} \theta_{1}+a_{2} \mathrm{~s} \theta_{12},
\end{aligned}
$$

By this means θ_{3} disappears. Note that the distance between P to O is independent of θ_{1}. Hence eliminate θ_{1} by summing the squares of above equations:

Solving for θ_{2} :

$$
p_{x}^{2}+p_{y}^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \mathrm{c} \theta_{2}
$$

where

$$
\begin{gathered}
\theta_{2}=\cos ^{-1} \kappa, \\
\kappa=\frac{p_{x}^{2}+p_{y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}
\end{gathered}
$$

Inverse Kinematic

- Algebraic Approach

\checkmark Kinematic loop closure

- Consider Planar RRR Manipulator

Inverse cosine equation yields to two real roots if $|\kappa|<1$. If $\theta_{2}=\theta^{*}$ is the solution, then $\theta_{2}=-\theta^{*}$ is as well. (Elbow up and Elbow down config)
One double root if $|\kappa|=1$ (Border of the workspace).
No solution if $|\kappa|>1$ (Out of workspace).

- Solve for θ_{1}, by expanding the loop closure equations

$$
\begin{aligned}
& \left(a_{1}+a_{2} \mathrm{c} \theta_{2}\right) \mathrm{c} \theta_{1}-\left(a_{2} \mathrm{~s} \theta_{2}\right) \mathrm{s} \theta_{1}=p_{x}, \\
& \left(a_{2} \mathrm{~s} \theta_{2}\right) \mathrm{c} \theta_{1}+\left(a_{1}+a_{2} \mathrm{c} \theta_{2}\right) \mathrm{s} \theta_{1}=p_{y} . \\
& \mathrm{c} \theta_{1}=\frac{p_{x}\left(a_{1}+a_{2} \mathrm{c} \theta_{2}\right)+p_{y} a_{2} \mathrm{~s} \theta_{2}}{\Delta}, \\
& \mathrm{~s} \theta_{1}=\frac{-p_{x} a_{2} \mathrm{~s} \theta_{2}+p_{y}\left(a_{1}+a_{2} \mathrm{c} \theta_{2}\right)}{\Delta} .
\end{aligned}
$$

Solve for θ_{1}

In which

$$
\Delta=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} c \theta_{2} .
$$

Two solutions for $|\kappa|<1$
One double root for fully extended Arm

We might use Atan2. $\quad \theta_{1}=\operatorname{Atan} 2\left(s \theta_{1}, c \theta_{1}\right)$.

Inverse Kinematics

- Geometric Approach

\checkmark Decompose the spatial geometry to a number of plane-geometry

- When $\alpha_{i}=0$ or $\pm \pi / 2$ it is plausible.
- Consider Planar RRR Manipulator

Consider the solid triangle apply the law of cosines

$$
x^{2}+y^{2}=l_{1}^{2}+l_{2}^{2}-2 l_{1} l_{2} \cos \left(180-\theta_{2}\right) .
$$

In which, $\cos \left(180-\theta_{2}\right)=-c_{2}$, therefore

$$
c_{2}=\frac{x^{2}+y^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} l_{2}}
$$

This has a solution if the radius of the goal point P is less than $l_{1}+l_{2}$.
To solve for θ_{1} follow the procedure given in the previous slide.
Note that the geometric approach gives much faster solution.

Inverse Kinematic

- Reduction to Polynomial

\checkmark Trigonometric relation to polynomial

- Use half-angle tangent relation

$$
u=\tan \frac{\theta}{2}, \quad \cos \theta=\frac{1-u^{2}}{1+u^{2}}, \quad \sin \theta=\frac{2 u}{1+u^{2}} .
$$

Example: Convert the following equation to algebraic polynomials

$$
a \cos \theta+b \sin \theta=c
$$

Substitute the above relation and manipulate:

$$
a\left(1-u^{2}\right)+2 b u=c\left(1+u^{2}\right) .
$$

Collecting the powers:

$$
(a+c) u^{2}-2 b u+(c-a)=0,
$$

This is solved by quadratic polynomial solution $\quad u=\frac{b \pm \sqrt{b^{2}+a^{2}-c^{2}}}{a+c}$.
Hence:

$$
\theta=2 \tan ^{-1}\left(\frac{b \pm \sqrt{b^{2}+a^{2}-c^{2}}}{a+c}\right) .
$$

Inverse Kinematic

- Pieper's Solution (When three axes intersects)
\checkmark For 6DoF robots with three consecutive joint axis intersection
- Consider the three last joint intersecting (most of commercial Robots)

Origin of frames $\{4\},\{5\}$, and $\{6\}$ are at the point of intersection

$$
P_{O 4}^{0}={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T P_{O 4}^{3}
$$

Use DH-convention

$$
P_{O 4}^{0}={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T\left[\begin{array}{c}
a_{3} \\
-d_{4} s \alpha_{3} \\
d_{4} c \alpha_{3} \\
1
\end{array}\right]
$$

Determine this point by calculation of general DH-transformation ${ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T$

$$
P_{O 4}^{0}=\left[\begin{array}{c}
c_{1} g_{1}-s_{1} g_{2} \\
s_{1} g_{1}+c_{1} g_{2} \\
g_{3} \\
1
\end{array}\right]
$$

$$
\begin{array}{ll}
g_{1}=c_{2} f_{1}-s_{2} f_{2}+a_{1}, & f_{1}=a_{3} c_{3}+d_{4} s \alpha_{3} s_{3}+a_{2}, \\
\text { In which } & g_{2}=s_{2} c \alpha_{1} f_{1}+c_{2} c \alpha_{1} f_{2}-s \alpha_{1} f_{3}-d_{2} s \alpha_{1}, \\
g_{3}=s_{2} s \alpha_{1} f_{1}+c_{2} s \alpha_{1} f_{2}+c \alpha_{1} f_{3}+d_{2} c \alpha_{1} . & f_{3}=a_{3} c \alpha_{2} s_{3}-d_{4} s \alpha_{3} c \alpha_{2} c_{3}-d_{4} s \alpha_{2} c \alpha_{3}-d_{3} s \alpha_{2}, \\
2
\end{array}, d_{4} s \alpha_{3} s \alpha_{2} c_{3}+d_{4} c \alpha_{2} c \alpha_{3}+d_{3} c \alpha_{2} .
$$

K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Inverse Kinematic

- Pieper's Solution (When three axes intersects)

- Find magnitude of P_{04}^{0} as r

$$
r=g_{1}^{2}+g_{2}^{2}+g_{3}^{2} ; \quad \text { therefore } \quad r=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+a_{1}^{2}+d_{2}^{2}+2 d_{2} f_{3}+2 a_{1}\left(c_{2} f_{1}-s_{2} f_{2}\right)
$$

Write this equation along with the z-component of $P_{O 4}^{0}$

$$
\begin{array}{ll}
r=\left(k_{1} c_{2}+k_{2} s_{2}\right) 2 a_{1}+k_{3}, \\
z=\left(k_{1} s_{2}-k_{2} c_{2}\right) s \alpha_{1}+k_{4},
\end{array} \quad \begin{aligned}
& k_{1}=f_{1} \\
& \\
& k_{2}=-f_{2} \\
& \\
& k_{3}=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+a_{1}^{2}+d_{2}^{2}+2 d_{2} f_{3} \\
& k_{4}=f_{3} c \alpha_{1}+d_{2} c \alpha_{1}
\end{aligned}
$$

In this equation θ_{1} is eliminated and is of simple form of θ_{2}. Now Solve for θ_{3} :

1. If $a_{1}=0$, then we have $r=k_{3}$, where r is known. The right-hand side $\left(k_{3}\right)$ is a function of θ_{3} only. After the substitution (4.35), a quadratic equation in $\tan \frac{\theta_{3}}{2}$ may be solved for θ_{3}.
2. If $s \alpha_{1}=0$, then we have $z=k_{4}$, where z is known. Again, after substituting via (4.35), a quadratic equation arises that can be solved for θ_{3}.
K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Department of Systems and Control, Advanced Robotics and Automated Systems

Inverse Kinematic

- Pieper's Solution (When three axes intersects)

Furthermore,
3. Otherwise, eliminate s_{2} and c_{2} from (4.50) to obtain

$$
\begin{equation*}
\frac{\left(r-k_{3}\right)^{2}}{4 a_{1}^{2}}+\frac{\left(z-k_{4}\right)^{2}}{s^{2} \alpha_{1}}=k_{1}^{2}+k_{2}^{2} . \tag{4.52}
\end{equation*}
$$

This equation, after the (4.35) substitution for θ_{3}, results in an equation of degree 4 , which can be solved for $\theta_{3}{ }^{3}$
Having solved for θ_{3}, one may solve for θ_{2}, and then for θ_{1}.

- Complete the solution:

We need to solve for $\theta_{4}, \theta_{5}, \theta_{6}$, since these axis intersect:
These joint angles determines the orientation of the end effector
This can be computed by the orientation of the goal ${ }_{6}^{0} R$.
First determine the orientation of link frame $\{4\}$ relative to the base frame when $\theta_{4}=0$, denote this with $\left.{ }_{4}^{0} R\right|_{\theta_{4}=0}$. This found by

$$
\left.{ }_{6}^{4} R\right|_{\theta_{4}=0}=\left.{ }_{4}^{0} R^{-1}\right|_{\theta_{4}=0}{ }_{6}^{0} R
$$

This part of the orientation may be found by suitable Euler angles, usually $Z-Y-Z$ one.
K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Department of Systems and Control, Advanced Robotics and Automated Systems

Inverse Kinematic

- Examples:
\checkmark See IK solution examples in the references.
- Example 1: Consider the 6DoF Fanuc S-900w robot
- Algorithmic Approach (Paul's Convention)

Denote $\boldsymbol{q}=\left[\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}\right]^{T}$ and $\chi=\left[\boldsymbol{x}_{E}, \Theta_{E}\right]^{T}$
Affix the frames and find DH-parameters as given in the next slide.
Find the homogeneous transformations:

$$
\begin{aligned}
& { }^{0} A_{1}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} & 0 & \mathrm{~s} \theta_{1} & a_{1} \mathrm{c} \theta_{1} \\
\mathrm{~s} \theta_{1} & 0 & -\mathrm{c} \theta_{1} & a_{1} \mathrm{~s} \theta_{1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],{ }^{1} A_{2}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{2} & -\mathrm{s} \theta_{2} & 0 & a_{2} \mathrm{c} \theta_{2} \\
\mathrm{~s} \theta_{2} & \mathrm{c} \theta_{2} & 0 & a_{2} \mathrm{~s} \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],{ }^{2} A_{3}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{3} & 0 & \mathrm{~s} \theta_{3} & a_{3} \mathrm{c} \theta_{3} \\
\mathrm{~s} \theta_{3} & 0 & -\mathrm{c} \theta_{3} & a_{3} \mathrm{~s} \theta_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
& { }^{3} A_{4}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{4} & 0 & -\mathrm{s} \theta_{4} & 0 \\
\mathrm{~s} \theta_{4} & 0 & \mathrm{c} \theta_{4} & 0 \\
0 & -1 & 0 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right], \quad{ }^{4} A_{5}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{5} & 0 & \mathrm{~s} \theta_{5} & 0 \\
\mathrm{~s} \theta_{5} & 0 & -\mathrm{c} \theta_{5} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad{ }^{5} A_{6}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{6} & -\mathrm{s} \theta_{6} & 0 & 0 \\
\mathrm{~s} \theta_{6} & \mathrm{c} \theta_{6} & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

$$
{ }^{0} A_{6}=\left[\begin{array}{cccc}
u_{x} & v_{x} & w_{x} & q_{x} \\
u_{y} & v_{y} & w_{y} & q_{y} \\
u_{z} & v_{z} & w_{z} & q_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Inverse Kinematic

- Example 1: Fanuc S-900w robot

Denavit-Hartenberg parameters

\boldsymbol{i}	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}$	$\boldsymbol{\theta}_{\boldsymbol{i}}$
1	$\pi / 2$	a_{1}	0	θ_{1}
2	0	a_{2}	0	θ_{2}
3	$\pi / 2$	a_{3}	0	θ_{3}
4	$-\pi / 2$	0	d_{4}	θ_{4}
5	$\pi / 2$	0	0	θ_{5}
6	0	0	d_{6}	θ_{6}

Inverse Kinematic

- Example 1: Fanuc S-900w robot

Note that the last three joints intersect @ P
While: ${ }^{6} \mathbf{p}=\overline{Q P}=\left[0,0,-d_{6}, 1\right]^{\mathrm{T}} . \quad$ and: $\quad{ }^{0} \mathbf{p}=\overline{O P}=\left[\begin{array}{c}p_{x} \\ p_{x} \\ p_{z} \\ 1\end{array}\right]=\left[\begin{array}{c}q_{x}-d_{6} w_{x} \\ q_{x}-d_{6} w_{y} \\ q_{z}-d_{6} w_{z} \\ 1\end{array}\right]$
By inspection it is easy to see

$$
{ }^{3} \mathbf{p}=\overline{C P}=\left[0,0, d_{4}, 1\right]^{\mathrm{T}}
$$

Transform it to the base frame by: $\quad{ }^{0} \mathbf{p}={ }^{0} A_{3}{ }^{3} \mathbf{p}$.
Now manipulate

$$
\left({ }^{0} A_{1}\right)^{-10} \mathbf{p}={ }^{1} A_{3}{ }^{3} \mathbf{p}
$$

Use homogeneous transformations to find ...

$$
\begin{align*}
p_{x} \mathrm{c} \theta_{1}+p_{y} \mathrm{~s} \theta_{1}-a_{1} & =a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23}+d_{4} \mathrm{~s} \theta_{23}, \tag{2.81}\\
p_{z} & =a_{2} \mathrm{~s} \theta_{2}+a_{3} \mathrm{~s} \theta_{23}-d_{4} \mathrm{c} \theta_{23}, \tag{2.82}\\
p_{x} \mathrm{~s} \theta_{1}-p_{y} \mathrm{c} \theta_{1} & =0, \tag{2.83}
\end{align*}
$$

Where p_{x}, p_{y}, p_{z} is found from q_{x}, q_{y}, q_{z}.
A solution for θ_{1} is found by the last equation:

$$
\theta_{1}=\tan ^{-1} \frac{p_{y}}{p_{x}} .
$$

There will be two solutions for this joint angle.

Inverse Kinematic

- Example 1: Fanuc S-900w robot

By observation the distance between \boldsymbol{A} and \boldsymbol{P} is independent to θ_{1} and θ_{2}. Therefore these two variables can be eliminated simultaneously
Sum the squares of (2.81) - (2.83)

$$
\begin{equation*}
\kappa_{1} \mathrm{~s} \theta_{3}+\kappa_{2} \mathrm{c} \theta_{3}=\kappa_{3} \tag{2.85}
\end{equation*}
$$

Where

$$
\kappa_{1}=2 a_{2} d_{4}, \kappa_{2}=2 a_{2} a_{3}
$$

$$
\kappa_{3}=p_{x}^{2}+p_{v}^{2}+p_{z}^{2}-2 p_{x} a_{1} \mathrm{c} \theta_{1}-2 p_{y} a_{1} \mathrm{~s} \theta_{1}+a_{1}^{2}-a_{2}^{2}-a_{3}^{2}-d_{4}^{2} .
$$

Convert (2.85) into polynomial by half angle relations
to obtain

$$
\mathrm{c} \theta_{3}=\frac{1-t_{3}^{2}}{1+t_{3}^{2}} \quad \text { and } \quad \mathrm{s} \theta_{3}=\frac{2 t_{3}}{1+t_{3}^{2}}, \quad \text { where } \quad t_{3}=\tan \frac{\theta_{3}}{2}
$$

$$
\begin{equation*}
\left(\kappa_{3}+\kappa_{2}\right) t_{3}^{2}-2 \kappa_{1} t_{3}+\left(\kappa_{3}-\kappa_{2}\right)=0 \tag{2.86}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{\theta_{3}}{2}=\tan ^{-1} \frac{\kappa_{1} \pm \sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}-\kappa_{3}^{2}}}{\kappa_{3}+\kappa_{2}} \tag{2.87}
\end{equation*}
$$

This yields to two real roots (Elbow up and down solution)

Inverse Kinematic

- Example 1: Fanuc S-900w robot

Once θ_{1} and θ_{3} are known, θ_{2} is found by back substitution
Expand (2.81) and (2.82)

$$
\begin{align*}
& \mu_{1} \mathrm{c} \theta_{2}+\nu_{1} \mathrm{~s} \theta_{2}=\gamma_{1}, \tag{2.88}\\
& \mu_{2} \mathrm{c} \theta_{2}+\nu_{2} \mathrm{~s} \theta_{2}=\gamma_{2}, \tag{2.89}
\end{align*}
$$

Solve (2.88) and (2.89) for $c \theta_{2}$ and $c \theta_{2}$, a unique solution is found for θ_{2}

$$
\begin{equation*}
\theta_{2}=\operatorname{Atan} 2\left(\mathrm{~s} \theta_{2}, \mathrm{c} \theta_{2}\right) \tag{2.90}
\end{equation*}
$$

Four solution is found for wrist position, but only two is physically possible.

Inverse Kinematic

- Example 1: Fanuc S-900w robot

Loop closure equation for end effector orientation:

$$
\begin{equation*}
{ }^{3} A_{6}=\left({ }^{0} A_{3}\right)^{-1}{ }^{0} A_{6} \tag{2.91}
\end{equation*}
$$

In which $\left({ }_{3}^{0} A\right)^{-1}$ can be found, knowing θ_{1}, θ_{2} and θ_{3}
Using homogeneous transformations

$$
\begin{gathered}
{ }^{0} A_{3}={ }^{0} A_{1}{ }^{1} A_{2}{ }^{2} A_{3}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} \mathrm{c} \theta_{23} & \mathrm{~s} \theta_{1} & \mathrm{c} \theta_{1} \mathrm{~s} \theta_{23} & \mathrm{c} \theta_{1}\left(a_{1}+a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23}\right. \\
\mathrm{s} \theta_{1} \mathrm{c} \theta_{23} & -\mathrm{c} \theta_{1} & \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{23} & \mathrm{~s} \theta_{1}\left(a_{1}+a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23}\right) \\
\mathrm{s} \theta_{23} & 0 & -\mathrm{c} \theta_{23} & a_{2} \mathrm{~s} \theta_{2}+a_{3} s \theta_{23} \\
0 & 0 & 0 & 1
\end{array}\right] . \\
{ }^{3} A_{6}={ }^{3} A_{4}{ }^{4} A_{5}{ }^{5} A_{6}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{4} \mathrm{c} \theta_{5} \mathrm{c} \theta_{6}-\mathrm{s} \theta_{4} \mathrm{~s} \theta_{6} & -\mathrm{c} \theta_{4} \mathrm{c} \theta_{5} \mathrm{~s} \theta_{6}-\mathrm{s} \theta_{4} \mathrm{c} \theta_{6} & \mathrm{c} \theta_{4} \mathrm{~s} \theta_{5} & d_{6} \mathrm{c} \theta_{\mathrm{s}} \mathrm{~s} \theta_{5} \\
\mathrm{~s} 4_{4} \mathrm{c} \theta_{5} \mathrm{c} \theta_{6}+\mathrm{c} \theta_{4} \mathrm{~s} \theta_{6} & -\mathrm{s} \theta_{4} \mathrm{c} \theta_{5} \mathrm{~s} \theta_{6}+\mathrm{c} \theta_{4} \mathrm{c} \theta_{6} & \mathrm{~s} \theta_{4} \mathrm{~s} \theta_{5} & d_{6} \mathrm{~s} 4_{4} \mathrm{~s} \theta_{5} \\
-\mathrm{s} \theta_{5} \mathrm{c} \theta_{6} & \mathrm{~s} \theta_{5} \mathrm{~s} \theta_{6} & \mathrm{c} \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

From the rotation matrices θ_{5} can be found

$$
\begin{gather*}
\theta_{5}=\cos ^{-1} r_{33} \tag{2.92}\\
r_{33}=w_{x} \mathrm{c} \theta_{1} \mathrm{~s} \theta_{23}+w_{y} \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{23}-w_{z} \mathrm{c} \theta_{23}
\end{gather*}
$$

Two real roots are found.

Inverse Kinematic

- Example 1: Fanuc S-900w robot

Assuming $s \theta_{1} \neq 0$ we can solve for θ_{4} and θ_{6}
Use $(1,3)$ and $(2,3)$ components of the rotation matrix:

$$
\mathrm{c} \theta_{4}=\frac{w_{x} \mathrm{c} \theta_{1} \mathrm{c} \theta_{23}+w_{y} \mathrm{~s} \theta_{1} \mathrm{c} \theta_{23}+w_{z} \mathrm{~s} \theta_{23}}{\mathrm{~s} \theta_{5}} . \quad \mathrm{s} \theta_{4}=\frac{w_{x} \mathrm{~s} \theta_{1}-w_{y} \mathrm{c} \theta_{1}}{\mathrm{~s} \theta_{5}} .
$$

Hence, a unique solution can be found by

$$
\theta_{4}=\operatorname{Atan} 2\left(\mathrm{~s} \theta_{4}, \mathrm{c} \theta_{4}\right)
$$

Similarly, se $(3,1)$ and $(3,2)$ components of the rotation matrix:

$$
\begin{array}{r}
\mathrm{c} \theta_{6}=-\frac{u_{x} \mathrm{c} \theta_{1} \mathrm{~s} \theta_{23}+u_{y} \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{23}-u_{z} \mathrm{c} \theta_{23}}{\mathrm{~s} \theta_{\varsigma}} . \\
\mathrm{s} \theta_{6}=\frac{v_{x} \mathrm{c} \theta_{1} \mathrm{~s} \theta_{23}+v_{y} \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{23}-v_{z} \mathrm{c} \theta_{23}}{\mathrm{~s} \theta_{5}} .
\end{array}
$$

A unique solution of θ_{6} is found

$$
\theta_{6}=\operatorname{Atan} 2\left(\mathrm{~s} \theta_{6}, \mathrm{c} \theta_{6}\right)
$$

Inverse Kinematic

- Method of Successive Screws
\checkmark Loop closure for wrist position \boldsymbol{P}

$$
\boldsymbol{P}=A_{1} A_{2} \ldots A_{i} \boldsymbol{P}_{\mathbf{0}}
$$

- Matrix manipulation: for given \boldsymbol{x}, find the joint space variable \boldsymbol{q}.

$$
A_{1}^{-1} \boldsymbol{P}=A_{2} \ldots A_{i} \boldsymbol{P}_{\mathbf{0}}, \ldots
$$

\checkmark Loop closure end effector orientation.

$$
\begin{array}{ll}
\text { use } & \boldsymbol{w}=R_{1} R_{2} \ldots R_{6} \boldsymbol{w}_{\mathbf{0}} \\
\text { or } & \boldsymbol{u}=R_{1} R_{2} \ldots R_{6} \boldsymbol{u}_{\mathbf{0}} \\
\text { or } & \boldsymbol{v}=R_{1} R_{2} \ldots R_{6} \boldsymbol{v}_{\mathbf{0}}
\end{array}
$$

- Where R_{i} is the rotation matrix corresponding to A_{i}
- Matrix manipulation: for given \boldsymbol{x}, find the joint space variable \boldsymbol{q}.

$$
R_{3}^{T} R_{2}^{T} R_{1}^{T} \boldsymbol{w}=R_{4} R_{5} R_{6} \boldsymbol{w}_{\mathbf{0}}, \ldots
$$

Inverse Kinematics

- Successive Screw Method
\checkmark Example 1
- Consider 6DoF Elbow Manipulator (6R) Screw Transformation Matrices:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} & -\mathrm{s} \theta_{1} & 0 & 0 \\
\mathrm{~s} \theta_{1} & \mathrm{c} \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{2}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{2} & 0 & -\mathrm{s} \theta_{2} & 0 \\
0 & 1 & 0 & 0 \\
\mathrm{~s} \theta_{2} & 0 & \mathrm{c} \theta_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad A_{3}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{3} & 0 & -\mathrm{s} \theta_{3} & a_{2}\left(1-\mathrm{c} \theta_{3}\right) \\
0 & 1 & 0 & 0 \\
\mathrm{~s} \theta_{3} & 0 & \mathrm{c} \theta_{3} & -a_{2} \mathrm{~s} \theta_{3} \\
0 & 0 & 0 & 1
\end{array}\right], \\
& A_{4}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{4} & 0 & -\mathrm{s} \theta_{4} & \left(a_{2}+a_{3}\right)\left(1-\mathrm{c} \theta_{4}\right) \\
0 & 1 & 0 & 0 \\
\mathrm{~s} \theta_{4} & 0 & \mathrm{c} \theta_{4} & -\left(a_{2}+a_{3}\right) \mathrm{s} \theta_{4} \\
0 & 0 & 0 & 1
\end{array}\right], \quad A_{5}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{5} & -\mathrm{s} \theta_{5} & 0 & \left(a_{2}+a_{3}+a_{4}\right)\left(1-\mathrm{c} \theta_{5}\right) \\
\mathrm{s} \theta_{5} & \mathrm{c} \theta_{5} & 0 & -\left(a_{2}+a_{3}+a_{4}\right) \mathrm{s} \theta_{5} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

$$
A_{6}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \mathrm{c} \theta_{6} & -\mathrm{s} \theta_{6} & 0 \\
0 & \mathrm{~s} \theta_{6} & \mathrm{c} \theta_{6} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Inverse Kinematics

- Successive Screw Method
\checkmark Example 1: (Cont.)
\checkmark Loop closure for wrist position \boldsymbol{P}

$$
\boldsymbol{P}=A_{1} A_{2} A_{3} A_{4} \boldsymbol{P}_{\mathbf{0}}
$$

Manipulate

$$
\begin{gathered}
\mathrm{A}_{1}^{-1}\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=A_{2} A_{3} A_{4}\left[\begin{array}{c}
a_{2}+a_{3}+a_{4} \\
0 \\
0 \\
1
\end{array}\right], \quad\left({ }^{0} A_{1}\right)^{-1}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} & \mathrm{~s} \theta_{1} & 0 & 0 \\
-\mathrm{s} \theta_{1} & \mathrm{c} \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
A_{2} A_{3} A_{4}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{234} & 0 & -\mathrm{s} \theta_{234} & a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23}-\left(a_{2}+a_{3}\right) \mathrm{c} \theta_{234} \\
0 & 1 & 0 & 0 \\
\mathrm{~s} \theta_{234} & 0 & \mathrm{c} \theta_{234} & a_{2} \mathrm{~s} \theta_{2}+a_{3} \mathrm{~s} \theta_{23}-\left(a_{2}+a_{3}\right) \mathrm{s} \theta_{234} \\
0 & 0 & 0 & 1
\end{array}\right],
\end{gathered}
$$

Inverse Kinematics

- Successive Screw Method
\checkmark Example 1: (Cont.)
- This leads to:

$$
\begin{align*}
p_{x} \mathrm{c} \theta_{1}+p_{y} \mathrm{~s} \theta_{1} & =a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23}+a_{4} \mathrm{c} \theta_{234}, \tag{2.144}\\
-p_{x} \mathrm{~s} \theta_{1}+p_{y} \mathrm{c} \theta_{1} & =0, \tag{2.145}\\
p_{z} & =a_{2} \mathrm{~s} \theta_{2}+a_{3} \mathrm{~s} \theta_{23}+a_{4} \mathrm{~s} \theta_{234} . \tag{2.146}
\end{align*}
$$

From (2.145) two solutions are found by

$$
\begin{equation*}
\theta_{1}=\tan ^{-1} \frac{p_{y}}{p_{x}} \tag{2.147}
\end{equation*}
$$

- For this manipulator position and orientation is not decoupled Write the orientation loop closure

$$
\begin{equation*}
R_{1}^{\mathrm{T}} \mathbf{w}=R_{2} R_{3} R_{4} R_{5} \mathbf{w}_{0} \tag{2.148}
\end{equation*}
$$

This results in:

$$
\begin{align*}
w_{x} \mathrm{c} \theta_{1}+w_{y} \mathrm{~s} \theta_{1} & =\mathrm{c} \theta_{234} \mathrm{c} \theta_{5}, \tag{2.149}\\
-w_{x} \mathrm{~s} \theta_{1}+w_{y} \mathrm{c} \theta_{1} & =\mathrm{s} \theta_{5}, \tag{2.150}\\
w_{z} & =\mathrm{s} \theta_{234} \mathrm{c} \theta_{5} . \tag{2.151}
\end{align*}
$$

Inverse Kinematics

- Successive Screw Method
\checkmark Example 1: (Cont.)
From (2.150) two solutions are found by

$$
\begin{equation*}
\theta_{5}=\sin ^{-1}\left(-w_{x} \mathrm{~s} \theta_{1}+w_{y} \mathrm{c} \theta_{1}\right) \tag{2.152}
\end{equation*}
$$

Equations (2.149) and (2.151) may be used to solve for θ_{234}

$$
\begin{equation*}
\theta_{234}=\operatorname{Atan} 2\left[w_{z} / \mathrm{c} \theta_{5},\left(w_{x} \mathrm{c} \theta_{1}+w_{y} \mathrm{~s} \theta_{1}\right) / \mathrm{c} \theta_{5}\right] \tag{2.153}
\end{equation*}
$$

Next use (2.144) and (2.146) to solve for θ_{2} and θ_{3}. Lets rewrite them as

$$
\begin{align*}
a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23} & =k_{1}, \tag{2.154}\\
a_{2} \mathrm{~s} \theta_{2}+a_{3} \mathrm{~s} \theta_{23} & =k_{2}, \tag{2.155}
\end{align*}
$$

Where $k_{1}=p_{x} \mathrm{c} \theta_{1}+p_{y} \mathrm{~s} \theta_{1}-a_{4} \mathrm{c} \theta_{234}$ and $k_{2}=p_{z}-a_{4} \mathrm{~s} \theta_{234}$.
Summing the squares

$$
\begin{align*}
& a_{2}^{2}+a_{3}^{2}+2 a_{2} a_{3} \mathrm{c} \theta_{3}=k_{1}^{2}+k_{2}^{2} \tag{2.156}\\
& \theta_{3}=\cos ^{-1} \frac{k_{1}^{2}+k_{2}^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}} \tag{2.157}
\end{align*}
$$

Inverse Kinematics

- Successive Screw Method
\checkmark Example 1: (Cont.)
To solve for θ_{6}, write the orientation loop closure for \boldsymbol{u}.

$$
\begin{equation*}
\left(R_{1} R_{2} R_{3} R_{4}\right)^{\mathrm{T}} \mathbf{u}=R_{5} R_{6} \mathbf{u}_{0} \tag{2.158}
\end{equation*}
$$

This results in:

$$
\begin{align*}
u_{x} \mathrm{c} \theta_{1} \mathrm{c} \theta_{234}+u_{y} \mathrm{~s} \theta_{1} \mathrm{c} \theta_{234}+u_{z} \mathrm{~s} \theta_{234} & =\mathrm{s} \theta_{5} \mathrm{~s} \theta_{6} \tag{2.159}\\
-u_{x} \mathrm{~s} \theta_{1}+u_{y} \mathrm{c} \theta_{1} & =-\mathrm{c} \theta_{5} \mathrm{~s} \theta_{6} \tag{2.160}\\
-u_{x} \mathrm{c} \theta_{1} \mathrm{~s} \theta_{234}-u_{y} \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{234}+u_{z} \mathrm{c} \theta_{234} & =\mathrm{c} \theta_{6} \tag{2.161}
\end{align*}
$$

Solve (2.159) and (2.160) for $s \theta_{6}$

$$
\begin{equation*}
\mathrm{s} \theta_{6}=\mathrm{s} \theta_{5}\left(u_{x} \mathrm{c} \theta_{1} \mathrm{c} \theta_{234}+u_{y} \mathrm{~s} \theta_{1} \mathrm{c} \theta_{234}+u_{z} \mathrm{~s} \theta_{234}\right)-\mathrm{c} \theta_{5}\left(-u_{x} \mathrm{~s} \theta_{1}+u_{y} \mathrm{c} \theta_{1}\right) \tag{2.162}
\end{equation*}
$$

And use (2.161)

$$
\begin{equation*}
\theta_{6}=\operatorname{Atan} 2\left(\mathrm{~s} \theta_{6}, \mathrm{c} \theta_{6}\right) \tag{2.163}
\end{equation*}
$$

By this means the inverse kinematics is completed.

Inverse Kinematics

- Successive Screw Method

- 8
 Rosot

\%

\checkmark Example 2: Stanford Arm (2RP3R)

- Screw Transformation Matrices:

$$
\left.\begin{array}{rl}
A_{1} A_{2} A_{3} & =\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} & -\mathrm{s} \theta_{1} & 0 & 0 \\
\mathrm{~s} \theta_{1} & \mathrm{c} \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \mathrm{c} \theta_{2} & -\mathrm{s} \theta_{2} & 0 \\
0 & \mathrm{~s} \theta_{2} & \mathrm{c} \theta_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & d_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\mathrm{c} \theta_{1} & -\mathrm{s} \theta_{1} \mathrm{c} \theta_{2} & \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{2} & -d_{3} \mathrm{~s} \theta_{1} \mathrm{c} \theta_{2} \\
\mathrm{~s} \theta_{1} & \mathrm{c} \theta_{1} \mathrm{c} \theta_{2} & -\mathrm{c} \theta_{1} \mathrm{~s} \theta_{2} & d_{3} \mathrm{c} \theta_{1} \mathrm{c} \theta_{2} \\
0 & \mathrm{~s} \theta_{2} & \mathrm{c} \theta_{2} & d_{3} \mathrm{~s} \theta_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \\
\text { Wrist Position: p} & =A_{1} A_{2} A_{3} \boldsymbol{p}_{\mathbf{0}}
\end{array}\right\} .
$$

Inverse Kinematics

- Successive Screw Method

x
 ROBOT

4MAYs5
4
\checkmark Example 2: (Cont.)
Find d_{3} by summing the squares of the equations:

$$
\begin{equation*}
p_{x}^{2}+p_{y}^{2}+p_{z}^{2}=g^{2}+d_{3}^{2} \tag{2.170}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
d_{3}= \pm \sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}-g^{2}} \tag{2.171}
\end{equation*}
$$

This equation yield to two real roots if the end-effector is in the reachable workspace, but only the positive d_{3} is acceptable.
Now use (2.169) to solve for θ_{2} : $\quad \theta_{2}=\sin ^{-1} \frac{p_{z}}{d_{3}}$.
Here two solutions could be found, $\theta_{2}=\theta_{2}^{*}, \pi-\theta_{2}^{*}$
Now solve for θ_{1} :

$$
\begin{align*}
& \mathrm{c} \theta_{1}=\frac{g p_{x}+d_{3} p_{y} \mathrm{c} \theta_{2}}{g^{2}+d_{3}^{2} \mathrm{c}^{2} \theta_{2}}, \tag{2.173}\\
& \mathrm{~s} \theta_{1}=\frac{g p_{y}-d_{3} p_{x} \mathrm{c} \theta_{2}}{g^{2}+d^{2} \mathrm{c}^{2} \theta_{2}} . \tag{2.174}
\end{align*}
$$

hence

$$
\begin{equation*}
\theta_{1}=\operatorname{Atan} 2\left(\mathrm{~s} \theta_{1}, \mathrm{c} \theta_{1}\right) \tag{2.175}
\end{equation*}
$$

Inverse Kinematics

- Successive Screw Method

\checkmark Example 2: (Cont.)

- End effector orientation loop closure equation for w

Manipulate

$$
\begin{equation*}
\mathbf{w}=R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} \mathbf{w}_{0} . \tag{2.177}
\end{equation*}
$$

$$
\begin{equation*}
R_{3}^{\mathrm{T}} R_{2}^{\mathrm{T}} R_{1}^{\mathrm{T}} \mathbf{w}=R_{4} R_{5} R_{6} \mathbf{w}_{0} \tag{2.178}
\end{equation*}
$$

In which

$$
\begin{aligned}
R_{4} R_{5} R_{6} & =\left[\begin{array}{ccc}
\mathrm{c} \theta_{4} & 0 & \mathrm{~s} \theta_{4} \\
0 & 1 & 0 \\
-\mathrm{s} \theta_{4} & 0 & \mathrm{c} \theta_{4}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c} \theta_{5} & -\mathrm{s} \theta_{5} & 0 \\
\mathrm{~s} \theta_{5} & \mathrm{c} \theta_{5} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c} \theta_{6} & 0 & \mathrm{~s} \theta_{6} \\
0 & 1 & 0 \\
-\mathrm{s} \theta_{6} & 0 & \mathrm{c} \theta_{6}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathrm{c} \theta_{4} \mathrm{c} \theta_{5} \mathrm{c} \theta_{6}-\mathrm{s} \theta_{4} \mathrm{~s} \theta_{6} & -\mathrm{c} \theta_{4} \mathrm{~s} \theta_{5} & \mathrm{c} \theta_{4} \mathrm{c} \theta_{5} \mathrm{~s} \theta_{6}+\mathrm{s} \theta_{4} \mathrm{c} \theta_{6} \\
\mathrm{~s} \theta_{5} \mathrm{c} \theta_{6} & \mathrm{c} \theta_{5} & \mathrm{~s} \theta_{5} \mathrm{~s} \theta_{6} \\
-\mathrm{s} \theta_{4} \mathrm{c} \theta_{5} \mathrm{c} \theta_{6}-\mathrm{c} \theta_{4} \mathrm{~s} \theta_{6} & \mathrm{~s} \theta_{4} 5 \theta_{5} & -\mathrm{s} \theta_{4} \mathrm{c} \theta_{5} \mathrm{~s} \theta_{6}+\mathrm{c} \theta_{4} \mathrm{c} \theta_{6}
\end{array}\right],
\end{aligned}
$$

Let us define ${ }^{3} \mathbf{w} \equiv R_{3}^{\mathrm{T}} R_{2}^{\mathrm{T}} R_{1}^{\mathrm{T}} \mathbf{w}$.
${ }^{3} w_{x}=w_{x} \mathrm{c} \theta_{1}+w_{y} \mathrm{~s} \theta_{1}$,
${ }^{3} w_{y}=\left(-w_{x} \mathrm{~s} \theta_{1}+w_{y} \mathrm{c} \theta_{1}\right) \mathrm{c} \theta_{2}+w_{z} \mathrm{~s} \theta_{2}$,
where

$$
-\mathrm{c} \theta_{4} \mathrm{~s} \theta_{5}={ }^{3} w_{x},
$$

${ }^{3} w_{z}=\left(w_{x} \mathrm{~s} \theta_{1}-w_{y} \mathrm{c} \theta_{1}\right) \mathrm{s} \theta_{2}+w_{z} \mathrm{c} \theta_{2}$.
Note that \boldsymbol{w} is independent of θ_{6}. Solve (2.180) for θ_{5}

$$
\begin{equation*}
\theta_{5}=\cos ^{-1}\left({ }^{3} w_{y}\right) \tag{2.182}
\end{equation*}
$$

This equation yields to two real roots in the reachable workspace.

Inverse Kinematics

- Successive Screw Method

ROBOT
 Robot
 安

\checkmark Example 2: (Cont.)
Assume that $s \theta_{5} \neq 0$ use (2.179) and (2.181) solve for θ_{5} :

$$
\begin{equation*}
\theta_{4}=\operatorname{Atan} 2\left({ }^{3} w_{z} / \mathrm{s} \theta_{5},-{ }^{3} w_{x} / \mathrm{s} \theta_{5}\right) \tag{2.183}
\end{equation*}
$$

Now solve for θ_{6} by using loop closure equation for \boldsymbol{u}.

$$
\begin{equation*}
\mathbf{u}=R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} \mathbf{u}_{0} \tag{2.184}
\end{equation*}
$$

Manipulate

$$
\begin{equation*}
R_{3}^{\mathrm{T}} R_{2}^{\mathrm{T}} R_{1}^{\mathrm{T}} \mathbf{u}=R_{4} R_{5} R_{6} \mathbf{u}_{0} \tag{2.185}
\end{equation*}
$$

Define ${ }^{3} \mathbf{u} \equiv R_{3}^{\mathrm{T}} R_{2}^{\mathrm{T}} R_{1}^{\mathrm{T}} \mathbf{u}$. This yields to:

$$
\begin{array}{ll}
{ }^{3} u_{x}=u_{x} \mathrm{c} \theta_{1}+u_{y} \mathrm{~s} \theta_{1}, & { }^{3} u_{x}=\mathrm{c} \theta_{4} \mathrm{c} \theta_{5} \mathrm{c} \theta_{6}-\mathrm{s} \theta_{4} \mathrm{~s} \theta_{6}, \\
{ }^{3} u_{y}=\left(-u_{x} \mathrm{~s} \theta_{1}+u_{y} \mathrm{c} \theta_{1}\right) \mathrm{c} \theta_{2}+u_{z} \mathrm{~s} \theta_{2}, & \text { where } \\
{ }^{3} u_{y}=\mathrm{s} \theta_{5} \mathrm{c} \theta_{6}, \tag{2.188}\\
{ }^{3} u_{z}=\left(u_{x} \mathrm{~s} \theta_{1}-u_{y} \mathrm{c} \theta_{1}\right) \mathrm{s} \theta_{2}+u_{z} \mathrm{c} \theta_{2} . & { }^{3} u_{z}=-\mathrm{s} \theta_{4} \mathrm{c} \theta_{5} \mathrm{c} \theta_{6}-\mathrm{c} \theta_{4} \mathrm{~s} \theta_{6},
\end{array}
$$

Multiply (2.186) by $s \theta_{4}$ and (2.188) by $c \theta_{4}$

$$
\begin{equation*}
\mathrm{s} \theta_{4}{ }^{3} u_{x}+\mathrm{c} \theta_{4}{ }^{3} u_{z}=-\mathrm{s} \theta_{6} . \tag{2.189}
\end{equation*}
$$

This yields to

$$
\theta_{6}=\operatorname{Atan} 2\left(-\mathrm{s} \theta_{4}{ }^{3} u_{x}-\mathrm{c} \theta_{4}{ }^{3} u_{z},{ }^{3} u_{y} / \mathrm{s} \theta_{5}\right)
$$

And completes the IK solution.

Hamid D. Taghirad Professor

About Hamid D. Taghirad

Hamid D. Taghirad has received his B.Sc. degree in mechanical engineering from Sharif University of Technology, Tehran, Iran, in 1989, his M.Sc. in mechanical engineering in 1993, and his Ph.D. in electrical engineering in 1997, both from McGill University, Montreal, Canada. He is currently the University ViceChancellor for Global strategies and International Affairs, Professor and the Director of the Advanced Robotics and Automated System (ARAS), Department of Systems and Control, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran. He is a senior member of IEEE, and Editorial board of International Journal of Robotics: Theory and Application, and International Journal of Advanced Robotic Systems. His research interest is robust and nonlinear contro/ applied to robotic systems. His publications include five books, and more than 250 papers in international Journals and conference proceedings.

Robotics: Mechanics \& Control

K. N. Toosi University of Technology, Faculty of Electrical Engineering, Department of Systems and Control, Advanced Robotics and Automated Systems

