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Chapter 4: Differential Kinematics
In this chapter we review the Jacobian analysis for serial robots. First the 
definition to angular and linear velocities are given, then the Jacobian 
matrix is defined in conventional and screw-based representation, while 
their general and iterative derivation methods are given. Next the static 
wrench and its relation to Jacobian transpose is introduced, and Jacobian 
characteristics such as singularity, isotropy, dexterity and manipulability 
are elaborated. Inverse Jacobian solution for fully-, under- and 
redundantly-actuator robots are formulated, and redundancy resolution 
schemes are detailed. Finally, Stiffness analysis of robotic manipulators is 
reviewed in detail. 
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Introduction

• Preliminaries

 Angular Velocity of a Rigid Body

 Attribute of the whole rigid body

 The rate of instantaneous rotation of frame {𝐵} attached 

to the rigid body with respect to a fixed frame {𝐵}.

A vector denoted by 𝛀 along the screw axis

With the value equal to the rate of rotation ሶ𝜃.

 Angular velocity vector can be expressed in any frame:

In which, Ω𝑥 , Ω𝑦, Ω𝑧 are the components of this vector.

5
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Preliminaries

 Angular Velocity & Rotation Matrix Rate

 Angular velocity is defined based-on screw representation

 What is its relation to the rotation matrix representation?

Note that

Differentiate both side with respect to time

Substitute: 

This means that                  is a 3 × 3 skew symmetric matrix 𝛀×:

It can be shown that the three parameters Ω𝑥 , Ω𝑦 , Ω𝑧 are the components of 

angular velocity vector.

6



Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,                              

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021

 Angular Velocity & Euler Angles Rate

 Angular velocity is a vector but Euler angels are not.

 Angular velocity is not equal to the rate of Euler Angels

But

Use 

Or equivalently

To derive 𝐸(𝛼, 𝛽, 𝛾). For example for 𝑤 − 𝑣 − 𝑤 Euler angles we have:

and

Preliminaries
7
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Preliminaries

 Linear Velocity of a Point

 Linear velocity of a point 𝑷 is the time derivative of the position 

vector 𝒑 with respect to a fixed frame.

 Relative velocity with respect to a moving frame is denoted by

In which the partial derivative notation is used to denote relativeness

 Golden Rule

OR 

In which 𝛀 denotes the angular velocity of the moving frame with respect to 

the fixed frame, and 𝛀× denotes its skew-symmetric matrix representation

8
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Preliminaries

 Linear Velocity of a Point

 Verify the derivative of the rotation matrix

While

Hence,

This verifies the relation of angular velocity vector with the rate of 

rotation matrix

9
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Preliminaries

 Linear Velocity of a Point

 Consider the position vector 𝑷

Differentiate with respect to time

where

The time derivative of rotation matrix is given

Hence,

If 𝑷 is embedded in the rigid body, the relative velocity is         zero. Then

10
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Preliminaries

• Twist: Screw Coordinates

 General Motion: Screw Representation

 General Motion = 

Rotation about ො𝒔 + Translation along ො𝒔

ො𝒔, 𝜃 + {𝒔𝟎, 𝑑}

Assume the ratio of 𝑑 to 𝜃 is denoted by pitch 𝜆

𝜆 =
𝑑

𝜃
or  𝜆 =

ሶ𝑑

ሶ𝜃
in (𝑚/𝑟𝑎𝑑) unit

 Define Screw Coordinate (6 × 1)

Unit Screw coordinate $ by pair of two vectors:

In which 𝑠0 could be selected on any arbitrary point on the axis ො𝒔.

11
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Preliminaries

• Twist: Screw Coordinates

 General motion of a point 𝑷 on the rigid body

 Twist: A (6 × 1) Tuple  

Twist =
Angular velocity of the rigid body
Linear velocity of the point 𝑷

=
𝛀
ሶ𝑷

To find the screw for point 𝑷, attach an instantaneous fixed frame 

On point P aligned with the reference frame {0} then

Twist:                           $ = ሶ𝑞 $

In which, the first vector reads:

and the second vector is:

This gives the linear velocity of the interested embedded point 𝑷 on the rigid body

12
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Preliminaries

• Twist: Screw Coordinates

 General motion of a point 𝑷 on the rigid body

 To find the screw for point 𝑷, attach an instantaneous fixed frame 

On point 𝑷 aligned with the reference frame {0} then

Twist =
Angular velocity of the rigid body
Linear velocity of the point 𝑷

=
𝛀
ሶ𝑷

Both vectors with respect to the fixed frame {0}

 Screw coordinate 

Twist:          $ = ሶ𝑞 $ = ሶq

13
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Preliminaries

• Twist: Screw Representation

 Twist for Revolute joint (R)

 For pure rotational joint 𝜆 = 0 and ሶ𝑞 = ሶ𝜃
The twist is represented by

where, instantaneous frame {0} is attached on point 𝑷

 Twist for Prismatic joint (P)

 For pure translational joint 𝜆 = ∞ and ሶ𝑞 = ሶ𝑑
The twist is represented by

 Since we use the primary joint in serial 

manipulators these two screw representations are 

used in the differential kinematics.

14

Consider the angular and linear 

velocity of a point 𝑷 in a circular 

disk with rotary joint
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ො𝒔

𝒔0 × ො𝒔
ሶ𝜃

=
𝛀

𝛀 × (−𝒔0)
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𝛀

𝛀 × 𝑹

𝝎𝒅𝒊𝒔𝒌 = 𝛀

𝒗𝒑 = 𝛀 × 𝑹

Consider a point 𝑷 on a moving piston:

$ =
𝟎
ො𝒔

ሶ𝑑 →
𝝎𝒑 = 𝟎

𝒗𝒑 = ሶ𝑑ො𝒔
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Jacobian

• Definition

 Differential Kinematic Map

 Forward Map                                                                Inverse Map 

Given ሶ𝒒 find ሶ𝝌 Given ሶ𝝌 find ሶ𝒒

 Forward kinematics is a nonlinear map

𝜒𝑖 = 𝑓𝑖 𝑞1, 𝑞2, … , 𝑞𝑛 for 𝑖 = 1,2, … , 𝑛

 Take time derivative:

ሶ𝝌 = 𝑱(𝒒) ሶ𝒒 ,       in which,     𝑱(𝒒) =

𝜕𝑓1

𝜕𝑞1

𝜕𝑓1

𝜕𝑞2
⋯

𝜕𝑓1

𝜕𝑞𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑞1

𝜕𝑓𝑛

𝜕𝑞2
⋯

𝜕𝑓𝑛

𝜕𝑞𝑛

is called the Jacobian matrix

16

Joint 
Space

ሶ𝒒

Task 
Space

ሶ𝝌

𝑱

𝑱†

ሶ𝝌 = 𝑱(𝒒) ሶ𝒒
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Jacobian

• Motivating Example

 Direct approach

 Consider 2R manipulator

Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2
𝑇

and  ሶ𝝌 = ሶ𝑥𝐸 , ሶ𝑦𝐸
𝑇

Forward Kinematics:

𝑥𝑒 = 𝑙1𝑐1 + 𝑙2𝑐12
𝑦𝑒 = 𝑙1𝑠1 + 𝑙2𝑠12

Take time derivative:

ሶ𝑥𝑒 = −𝑙1𝑠1 ሶ𝜃1 − 𝑙2𝑠12( ሶ𝜃1 + ሶ𝜃2)

ሶ𝑦𝑒 = 𝑙1𝑐1 ሶ𝜃1 + 𝑙2𝑐12( ሶ𝜃1 + ሶ𝜃2)

Determine Jacobian:

ሶ𝝌 = 𝑱 ሶ𝒒 ,       in which,     𝑱 =
−𝑙1𝑠1 − 𝑙2𝑠12 −𝑙2𝑠12
𝑙1𝑐1 + 𝑙2𝑐12 𝑙2𝑐12

17

𝒙 = 𝑥𝑒, 𝑦𝑒
𝑇
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Jacobian

• Definition

 In General

ሶ𝒒 = ሶ𝑞1, ሶ𝑞2, … , ሶq𝑛
𝑇 in which ሶ𝑞𝑖 = ൝

ሶ𝜃𝑖 for a revolute joint
ሶ𝑑𝑖 for a prismatic joint

 While for the task space variable

ሶ𝝌 = ሶ𝝂 =
𝒗𝐸
𝝎𝐸

For Conventional Jacobian and

ሶ𝝌 = ሶ𝝂 =
𝝎𝐸

𝒗𝐸
For Screw-based Jacobian 

In which 𝒗𝐸 is the velocity of the end effector, 𝝎𝐸 denotes the angular velocity of the end effector 

link.

 Linear velocity and angular velocity sub-Jacobians

ሶ𝝌 =
𝒗𝐸
𝝎𝐸

= 𝑱 𝒒 ሶ𝒒 =
𝑱𝒗
𝑱𝝎

ሶ𝒒

In which 𝑱𝒗 corresponds to the linear velocity Jacobian,

While𝑱𝝎 corresponds to the angular velocity Jacobian.

18
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Jacobian

• Definition

 In General

ሶ𝒒 = ሶ𝑞1, ሶ𝑞2, … , ሶq𝑛
𝑇 and ሶ𝝌 = ሶ𝝂 =

𝒗𝐸
𝝎𝐸

The joint and task variable can be given with reference to any frame

Hence, 

0 ሶ𝒒 = 0𝑱 0 ሶ𝝌 or     𝑛 ሶ𝒒 = 𝑛𝑱 𝑛 ሶ𝝌

In which

From

We may conclude :            𝐴𝑱 𝒒 = 𝐵
𝐴𝑹 𝟎

𝟎 𝐵
𝐴𝑹

𝐵𝑱 𝒒 .

19
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𝒙 = 𝑥𝑒 , 𝑦𝑒
𝑇

Jacobian

• Motivating Example

 Different Frames

 Consider task variables in end – effector frame {2}

Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2
𝑇

and  ሶ𝝌 = ሶ𝑥𝐸 , ሶ𝑦𝐸
𝑇

While in base frame: 0𝑱 =
−𝑙1𝑠1 − 𝑙2𝑠12 −𝑙2𝑠12
𝑙1𝑐1 + 𝑙2𝑐12 𝑙2𝑐12

In frame {2}: 2𝑱 = 2
0𝑹 0𝑱 =

𝑐12 −𝑠12
𝑠12 𝑐12

−𝑙1𝑠1 − 𝑙2𝑠12 −𝑙2𝑠12
𝑙1𝑐1 + 𝑙2𝑐12 𝑙2𝑐12

2𝑱 = ⋯ =
𝑙1𝑠2 0

𝑙1𝑐2 + 𝑙2 𝑙2

 Note: Although the appearance is different, the invariant properties of the 

Jacobians are the same, i.e.

𝑑𝑒𝑡 0𝑱 = −𝑙1𝑙2𝑠1𝑐12 − 𝑙2
2𝑠12𝑐12 + 𝑙1𝑙2𝑐1𝑠12 + 𝑙2

2𝑐12𝑠12 = 𝑙1𝑙2𝑠2
𝑑𝑒𝑡 2𝑱 = 𝑙1𝑙2𝑠2 = 𝑑𝑒𝑡 0𝑱

20
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Jacobian

• Conventional Jacobian:

 General Derivation Method

ሶ𝝌 = 𝑱 𝒒 ሶ𝒒 =
𝑱𝒗
𝑱𝝎

ሶ𝒒

In which

Where as shown in the figure 𝑖−1𝒑𝑛
∗ is defined as a vector from origin of the 𝑖 − 1 link 

frame to the origin of the end effector frame (𝑛)

All the vectors shall be expressed in the frame of interest.

21



Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,                              

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021

Jacobian

• Conventional Jacobian:

 General Derivation Method

 To derive the Jacobian

The direction and location of each

joint shall be determined.

Where, 

Denotes the vector 𝑂𝑖−1𝑂𝑖 expressed in frame {𝑖 − 1}.

22
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Conventional Jacobians

• Examples:

 Example 1: Planar RRR Manipulator

 Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝜃3
𝑇

and ሶ𝝌 = ሶ𝑥𝐸 , ሶ𝑦𝐸 , ሶ𝜙
𝑇

First compute the vectors 𝒛𝑖−1and          , for 𝑖 = 1,2,3

Hence ሶ𝝌 = 𝑱 ሶ𝒒 where, 

Note Jacobian of the wrist position 𝑷 will be:

23
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Conventional Jacobians

• Examples:

 Example 2: SCARA Manipulator

 Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝑑3, ሶ𝜃4
𝑇

and ሶ𝝌 = ሶ𝑥𝐸 , ሶ𝑦𝐸 , ሶ𝑧𝐸 , 𝜔𝐸
𝑇

Recall DH-parameters and homogeneous transformations:

1
0𝑇 =

𝑐1 −𝑠1
𝑠1 𝑐1

0 𝑎1𝑐1
0 𝑎1𝑠1

0 0
0 0

1 𝑑1
0 1

,  2
1𝑇 =

𝑐2 𝑠2
𝑠2 −𝑐2

0 𝑎2𝑐2
0 𝑎2𝑠2

0 0
0 0

−1 0
0 1

,

3
2𝑇 =

1 0
0 1

0 0
0 0

0 0
0 0

1 𝑑3
0 1

, 4
3𝑇 =

𝑐4 −𝑠4
𝑠4 𝑐4

0 0
0 0

0 0
0 0

1 𝑑4
0 1

. 

First compute the vectors 𝒛𝑖−1
𝒛0 = 𝒛1 = 0, 0, 1 𝑇 , 𝒛2 = 𝒛3 = 0,0, −1 𝑇

Now compute: 𝑖−1 𝒑4
∗ , for 𝑖 = 3,4 by inspection (red/purple vectors):

3𝒑4
∗ =

0
0

−𝑑4

, 2𝒑4
∗ =

0
0

−𝑑3 − 𝑑4

. 

24
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Conventional Jacobians

• Examples:

 Example 2: SCARA Manipulator

 Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝑑3, ሶ𝜃4
𝑇

and ሶ𝝌 = ሶ𝑥𝐸 , ሶ𝑦𝐸 , ሶ𝑧𝐸 , 𝜔𝐸
𝑇

Furthermore, calculate 𝑖−1𝒑4
∗ , for 𝑖 = 1,2 iteratively:

1𝒑4
∗ = 𝟐

𝟎𝑹
𝑎2
0
0

+ 2𝒑4
∗ =

𝑎2𝑐12
𝑎2𝑠12

−𝑑3 − 𝑑4
,

0𝒑4
∗ = 𝟏

𝟎𝑹

𝑎1
0
𝑑1

+ 1𝒑4
∗ =

𝑎1𝑐1 + 𝑎2𝑐12
𝑎1𝑠1 + 𝑎2𝑠12
𝑑1−𝑑3 − 𝑑4

.

Hence ሶ𝝌 = 𝑱 ሶ𝒒 where, 𝑱 is a 6 × 4matrix as:

𝑱 =
𝒛0 ×

0𝒑4
∗

𝒛0

𝒛𝟏 ×
1𝒑4

∗

𝒛𝟏

𝒛3
𝟎

𝒛4 ×
3𝒑4

∗

𝒛4
=

−𝑎1𝑠1 − 𝑎2𝑠12
𝑎1𝑐1 + 𝑎2𝑐12

0
0
0
1

𝑎2𝑠12
𝑎2𝑐12
0
0
0
1

0
0
−1
0
0
0

0
0
0
0
0
−1

.

Note: The angular velocity is found as 𝜔𝐸 = ሶ𝜃1 + ሶ𝜃2 − ሶ𝜃4 in 𝑧 direction. 
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𝑎1
0
𝑑1

𝑎2
0
0

Matlab Program: Jacobian_scara.m
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Conventional Jacobians

 Example 3: Stanford Manipulator

 For wrist 𝑷 position ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝑑3, ሶ𝜃4, ሶ𝜃5, ሶ𝜃6
𝑇

and ሶ𝝌 = ሶ𝒙𝑝, 𝝎𝑝
𝑇

Recall DH parameters, and homogeneous transformations

26

𝜽𝒊𝒅𝒊𝒂𝒊𝜶𝒊𝒊

𝜃100−𝜋/21

𝜃2𝑑20𝜋/22

0𝑑3003

𝜃400−𝜋/24

𝜃500𝜋/25

𝜃60006

𝑷
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𝑷

Conventional Jacobians

 Example 3: Stanford Manipulator

 For wrist 𝑷 position ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝑑3, ሶ𝜃4, ሶ𝜃5, ሶ𝜃6
𝑇
and ሶ𝝌 = ሶ𝒙𝑝, 𝝎𝑝

𝑇

First compute the vectors 𝒛𝑖−1

and           for 𝑖 = 1,2, … , 6 :                           𝟎

27

𝑑2
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Conventional Jacobians

 Example 3: Stanford Manipulator

 For wrist 𝑷 position ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝑑3, ሶ𝜃4, ሶ𝜃5, ሶ𝜃6
𝑇
and ሶ𝝌 = ሶ𝒙𝑝, 𝝎𝑝

𝑇

Hence ሶ𝝌 = 𝑱 ሶ𝒒 in reference frame {0} is given by: 

Where 𝒛4, 𝒛5 are joint axis unit vectors given before.

Note 1: Since the wrist position is considered for the manipulations, the Jacobian 

matrix is upper triangular.

Note 2: The Jacobian matrix will be much simplified if it is given w.r.t frame {2}.

28



Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,                              

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021

Jacobian

• Screw-based Jacobian:

 General Derivation Method

ሶ𝝌 =
𝝎𝐸

𝒗𝑃
= 𝑱 𝒒 ሶ𝒒 =

𝑱𝝎
𝑱𝒗

ሶ𝒒

ሶ𝝌 = σ𝑖=1
𝑛 $𝑖 ሶ𝑞𝑖

Where the unit twist is defined in slide 15 as:

 For rotary joint (R)

 For prismatic joint (P)

Therefore, the Jacobian matrix consists of the unit screws:

𝑱 = $1, $2, … , $𝑛 .

29
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Jacobian
• Screw-based Jacobian:

 General Derivation Method

ሶ𝝌 =
𝝎𝐸

𝒗𝑃
= 𝑱 𝒒 ሶ𝒒 =

𝑱𝝎
𝑱𝒗

ሶ𝒒

𝑱 = $1, $2, … , $𝑛

 Note that the task space variable

ሶ𝝌 =
𝝎𝐸

𝒗𝑃
Consist of the angular velocity of the end effector

But linear velocity of any point 𝑷 (including the end effector 𝑬) 

 To assign the screw parameters

Consider an instantaneous fixed frame on the point of interest 𝑷.

 The direction of the joint axes can be determined by inspection or by the third column of 𝑖−1
0𝑨.

 The distance of the screw axes from this instantaneous frame is denoted by 𝒔𝑜,𝑖 represented in this 

instantaneous frame 

 If the origin of intermediate frames (3 or 4) is used as the point of interest, the Jacobian is much simpler. 

Notice the notation of 𝒔𝑜,𝑖 denotes the origin of frame 𝑖 w.r.t  the instantaneous frame on point 𝑷.

30
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𝑧0

𝑦0
𝑥0
𝑷

Jacobian

• Screw-based Jacobian:

 Iterative Recipe:

 Initial Conditions

Consider frame {𝑗} to represent the Jacobian

Begin with 𝑠𝑗+1 = 0, 0, 1 𝑇 , 𝑠𝑜,𝑗+1 = 0, 0, 0 𝑇

 Forward Computation

For 𝑖 = 𝑗 + 1,… , 𝑛 − 1 compute
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Jacobian

• Screw-based Jacobian:

 Iterative Recipe:

 Backward Computation

For 𝑖 = 𝑗 − 1,… , 0 compute

Where

Furthermore,

and 

Is the position vector from 𝑂𝑖−1 to 𝑂𝑖 expressed in 𝑖𝑡ℎ frame.

Assembling the unit screws derived above, yields to the Jacobian of the point 𝑷 as:

𝟎𝝎𝑬
𝟎𝒗𝒑

= 𝑱 ሶ𝒒 → 𝑱 = 𝐽𝑛 , 𝐽2, … , 𝐽𝑛 and 𝐽𝑖 =
𝒔𝑖

𝒔𝒐,𝑖 × 𝒔𝑖
for (R) joint or 𝐽𝑖 =

𝟎
𝒔𝑖

for (P) joints.
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Screw-Based Jacobians

• Examples:

 Example 1: Planar RRR Manipulator

 Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝜃3
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑄
𝑇

 Put an instantaneous frame {0} on point 𝑸.

 Find the screw details by inspection: 

For $3:

𝒔3 = 0, 0, 1 𝑇 ,   𝒔𝑜,3= 3
0𝑹

−𝑎3
0
0

=
−𝑎3𝑐123
−𝑎3𝑠123

0
.

For $2:

𝒔2 = 0, 0, 1 𝑇 ,   𝒔𝑜,2=𝒔𝑜,3+2
0𝑹

−𝑎2
0
0

=
−𝑎2𝑐12 − 𝑎3𝑐123
−𝑎2𝑠12 − 𝑎3𝑠123

0
.

For $1:

𝒔1 = 0, 0, 1 𝑇 ,   𝒔𝑜,1=𝒔𝑜,2+1
0𝑹

−𝑎1
0
0

=
−𝑎1𝑐1 − 𝑎2𝑐12 − 𝑎3𝑐123
−𝑎1𝑠1 − 𝑎2𝑠12 − 𝑎3𝑠123

0
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$1

$2

$3

𝒔𝑜,3

𝒔𝑜,2𝒔𝑜,1

𝑥0

𝑦0

Matlab Program: Jacobian_screw_RRR_inspection.m
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Screw-Based Jacobians

 Example 1: Planar RRR Manipulator

 Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝜃3
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑄
𝑇

 The Jacobian ሶ𝝌 = 𝑱 𝒒 ሶ𝒒 is found by 𝑱 = [$1, $2, $3],

 In which, $𝑖 =
𝒔𝑖

𝒔𝑜,𝑖 × 𝒔𝑖
, hence: 

𝑱 =

0
0
1

−𝑎1𝑠1 − 𝑎2𝑠12 − 𝑎3𝑠123
𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123

0

0
0
1

−𝑎2𝑠12 − 𝑎3𝑠123
𝑎2𝑐12 + 𝑎3𝑐123

0

0
0
1

−𝑎3𝑠123
𝑎3𝑐123
0

 In planar coordinates, this means:

𝜔𝒛 = ሶ𝜙 = ሶ𝜃1 + ሶ𝜃2 + ሶ𝜃3

ሶ𝑥𝑸 = − 𝑎1𝑠1 + 𝑎2𝑠12 + 𝑎3𝑠123 ሶ𝜃1 − 𝑎2𝑠12 + 𝑎3𝑠123 ሶ𝜃2 − 𝑎3𝑠123 ሶ𝜃3

ሶ𝑦𝑸 = 𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123 ሶ𝜃1 − 𝑎2𝑐12 + 𝑎3𝑐123 ሶ𝜃2 − 𝑎3𝑐123 ሶ𝜃3

Which is exactly as found before (see slide 23).
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$1

$2

$3

𝒔𝑜,2

𝒔𝑜,1

𝑥0

𝑦0

Screw-Based Jacobians

 Example 1: Planar RRR Manipulator

 Jacobian for wrist Point 𝑷 : ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝜃3
𝑇

and ሶ𝝌 = 𝝎𝑬, 𝒗𝒑
𝑇

 Put an instantaneous frame {0} on point 𝑷.

 Find the screw details by inspection: 

𝒔3 = 𝒔2 = 𝒔1 = 0, 0, 1 𝑇 ,   𝒔𝑜,3=
0
0
0
, 𝒔𝑜,2=2

0𝑹
−𝑎2
0
0

=
−𝑎2𝑐12
−𝑎2𝑠12

0
.

𝒔𝑜,1=𝒔𝑜,2+1
0𝑹

−𝑎1
0
0

=
−𝑎1𝑐1 − 𝑎2𝑐12
−𝑎1𝑠1 − 𝑎2𝑠12

0

 Hence, 

𝑱 =

0
0
1

−𝑎1𝑠1 − 𝑎2𝑠12
𝑎1𝑐1 + 𝑎2𝑐12

0

0
0
1

−𝑎2𝑠12
𝑎2𝑐12
0

0
0
1
0
0
0

or component-wise:   

𝜔𝒛 = ሶ𝜙 = ሶ𝜃1 + ሶ𝜃2 + ሶ𝜃3
ሶ𝑥𝒑 = − 𝑎1𝑠1 + 𝑎2𝑠12 ሶ𝜃1 − 𝑎2𝑠12 ሶ𝜃2

ሶ𝑦𝒑 = 𝑎1𝑐1 + 𝑎2𝑐12 ሶ𝜃1 + 𝑎2𝑐12 ሶ𝜃2

Which is exactly as found before (see slide 23).
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Screw-Based Jacobians
• Examples:

 Example 1: Planar RRR Manipulator

 Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2, ሶ𝜃3
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑄
𝑇

 Put an instantaneous frame {0} on point 𝑸.

 Find the screw details by iteration: 

 Initial Conditions:

For 𝑗 = 3, 𝒔4 = 0, 0, 1 𝑇 , 𝒔𝑜,4 = 0, 0, 0 𝑇 .

 (BI) Now look backward, for 𝑖 = 2:

𝒔3=2
3𝑹 𝒛2 =

0
0
1
, 0𝒔𝑜,3= 0𝒔𝑜,4 − 3

0𝑹3
3𝑹

𝑎3
0
0

=
− 𝑎3𝑐123
− 𝑎3𝑠123

0

𝒔2=1
3𝑹 𝒛1 =

0
0
1
, 𝒔𝑜,2=𝒔𝑜3 − 2

0𝑹
𝑎2
0
0

=
−𝑎2𝑐12 − 𝑎3 𝑐123
−𝑎2𝑠12 − 𝑎3 𝑠123

0

𝒔1=0
3𝑹 𝒛0 =

0
0
1
, 𝒔𝑜,1=𝒔𝑜,2 − 1

0𝑹
𝑎1
0
0

=
−𝑎1𝑐1 − 𝑎2𝑐12 − 𝑎3 𝑐123
−𝑎1𝑠1 − 𝑎2𝑠12 − 𝑎3 𝑠123

0
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$1

$2

$3

𝑥4||𝑥0

𝑦4||𝑦0

𝟎𝝎𝑬
𝟎𝒗𝑸

= 𝑱 ሶ𝒒 → 𝑱 = 𝐽1, 𝐽2, … , 𝐽3 , and 𝐽𝑖 =
𝒔𝑖

𝒔𝒐,𝑖 × 𝒔𝑖

𝑱 =

0
0
1

−𝑎1𝑠1 − 𝑎2𝑠12 − 𝑎3𝑠123
𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123

0

0
0
1

−𝑎2𝑠12 − 𝑎3𝑠123
𝑎2𝑐12 + 𝑎3𝑐123

0

0
0
1

−𝑎3𝑠123
𝑎3𝑐123
0

Matlab Program: Jacobian_screw_RRR.m
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Screw-Based Jacobians

 Example 2: Elbow Manipulator

 Consider the point of Interest 𝑶′ the origin of frame {4}

 Denote ሶ𝒒 = ሶ𝜃1, … , ሶ𝜃6
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑂′
𝑇

 Initial Conditions:

For 𝑗 = 4, 𝒔5 = 0, 0, 1 𝑇 , 𝑠𝑜,5 = 0, 0, 0 𝑇 .

 (FI) Find the 6th axes details. For 𝑖 = 5:

 (BI) Now look backward, For 𝑖 = 3:
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Screw-Based Jacobians

 Example 2: Elbow Manipulator

 Denote ሶ𝒒 = ሶ𝜃1, … , ሶ𝜃6
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑂′
𝑇

 For 𝑖 = 2

 For 𝑖 = 1 :

 For 𝑖 = 0 :
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Screw-Based Jacobians

 Example 2: Elbow Manipulator

 Denote ሶ𝒒 = ሶ𝜃1, … , ሶ𝜃6
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑂′
𝑇

Hence ሶ𝝌 = 𝑱 ሶ𝒒 in reference frame {4} is given by: 

In which, 
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Screw-Based Jacobians

 Example 3: Stanford Arm (2RP3R)

 Consider the wrist point 𝑷 the origin of frame {3}

 Denote ሶ𝒒 = ሶ𝜃1, … , ሶ𝜃6
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑃
𝑇

 Initial Conditions:

For 𝑗 = 3, 𝒔4 = 0, 0, 1 𝑇 , 𝑠𝑜,4 = 0, 0, 0 𝑇 .

 Find the 5th and 6th axes details. For 𝑖 = 4:

For 𝑖 = 5:
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Matlab Program: Jacobian_screw_stanford.m
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Screw-Based Jacobians

 Example 3: Stanford Arm (2RP3R)

 Denote ሶ𝒒 = ሶ𝜃1, … , ሶ𝜃6
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑃
𝑇

Find the 3rd, 2nd and 1st axes details. For 𝑖 = 2:

For 𝑖 = 1:
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Matlab Program: Jacobian_screw_stanford.m
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Screw-Based Jacobians

 Example 3: Stanford Arm (2RP3R)

 Denote ሶ𝒒 = ሶ𝜃1, … , ሶ𝜃6
𝑇

and ሶ𝝌 = 𝝎𝐸 , 𝒗𝑃
𝑇

For 𝑖 = 0:

Hence ሶ𝝌 = 𝑱 ሶ𝒒 in reference frame {3} is given by: 

Observe that the Jacobian is greatly simplified for the wrist point 𝑷.
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Matlab Program: Jacobian_screw_stanford.m
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Contents

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is 
defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation 
to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian 
solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of 
robotic manipulators is reviewed in detail. 

43

Jacobian Chacteristics
Singularity, twist and wrench map, singular configurations, 
singularity decoupling, dexterity, dexterity ellipsoid, isotropy, 
manipulability, condition number, 

4

Inverse Solutions
Inverse map, fully- and under-actuated robots, redundancy, 
redundancy resolution, optimization problem, inverse 
acceleration, obstacle avoidance, singularity circumvention.

5

Stiffness Analysis
Sources of compliance, Compliance and stiffness matrix, force 
ellipsoid, case studies.6

Preliminaries
Angular velocity, rotation matrix and Euler angle rates, Linear 
velocity, golden rule in differentiation, twist, screw 
representation. 

1

Jacobian
Definition, motivating example, direct approach, general and  
iterative methods, case studies, screw based Jacobian, general 
and iterative methods, case studies.

2

Static Wrench
Wrench definition, principle of virtual work, Jacobian transpose 
mapping, examples.3
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Static Wrench

• Applied Wrench to the Environment

 How much actuator effort is needed to apply such forces/Moments

 Define the actuator torque/force

𝝉 = 𝜏1, 𝜏2, … , 𝜏𝑛
𝑇 in which 𝜏𝑖 = ቊ

𝜏𝑖 for a revolute joint
𝑓𝑖 for a prismatic joint

 Define the applied wrench to the environment: (6 × 1) tuple

𝓕 = 𝑭𝐸 , 𝒏𝐸
𝑇 in which ൝

𝑭𝐸 = 𝐹𝑥 𝐹𝑦 𝐹𝑧 𝑇 The applied force

𝒏𝐸 = 𝑛𝑥 𝑛𝑦 𝑛𝑧 𝑇 The applied torque

Wrench is a screw-based coordinate as twist

 Jacobian transpose maps the joint space variables to task space by:

𝝉 = 𝑱𝑻 𝒒 𝓕

44

Joint 
Space
𝝉

Task 
Space
𝓕

𝑱−𝑻

𝑱𝑻

𝑭𝐸

𝒏𝐸
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Static Wrench

• Principle of Virtual Work

 Virtual Displacement

 Infinitesimal change in the position and orientation 𝛿𝒒 or 𝛿𝝌
Which does not really change the posture and force distribution in the robot.

𝛿𝒒 = 𝛿𝑞1, 𝛿𝑞2, … 𝛿𝑞𝑛
𝑇: The virtual displacement of the joint variables 

𝛿𝝌 = 𝛿𝑥, 𝛿𝑦, 𝛿𝑧, 𝛿𝜃𝑥 , 𝛿𝜃𝑦 , 𝛿𝜃𝑧
𝑇
: The virtual displacement of the end effector, where 𝛿𝜃𝑥 , 𝛿𝜃𝑦 , 𝛿𝜃𝑧

𝑇
= 𝛿𝜃ො𝒔

is the orientation variable in screw representation.

 System Under Static Balance

 The total virtual work, 𝛿𝑊, done by all the actuators and external forces is equal to zero.

𝛿𝑊 = 𝝉𝑇𝛿𝒒 − 𝓕𝑇𝛿𝝌 = 0.

where, −𝓕𝑇 is used in here, to include the wrench applied to the robot by environment.

 Jacobian maps: ሶ𝝌 = 𝑱 𝒒 ሶ𝒒 therefore, 𝛿𝝌 = 𝑱 𝒒 𝛿𝒒.

 Substitute 𝛿𝑊 = 𝝉𝑇 −𝓕𝑇𝑱 𝒒 𝛿𝒒 = 0

 This holds for any arbitrary virtual displacement 𝛿𝒒; Hence

𝝉𝑇 − 𝓕𝑇𝑱 𝒒 = 0 or  𝝉 = 𝑱𝑻 𝒒 𝓕

This means 𝑱𝑻 𝒒 maps the wrenches 𝓕 applied to the environment into the actuator torques 𝝉
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Static Wrench

 Example 1: Planar RRR Manipulator

 Denote 𝝉 = 𝜏1, 𝜏2, 𝜏3
𝑇: The actuator forces in the joints, and

 and 𝓕 = 𝑓𝑥 , 𝑓𝑦, 𝑛𝑧
𝑇

the planar force 𝑭𝑬 = 𝑓𝑥 , 𝑓𝑦
𝑇

and 𝑛𝑧 the torque 

exerted to the environment

 The Jacobian map  𝝉 = 𝑱𝑻 𝒒 𝓕 may be used 

In which,

𝑱(𝒒) =
−𝑎1𝑠1 − 𝑎2𝑠12 − 𝑎3𝑠123 −𝑎2𝑠12 − 𝑎3𝑠123 −𝑎3𝑠123
𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123 𝑎2𝑐12 + 𝑎3𝑐123 𝑎3𝑐123

1 1 1

 This means:

𝜏1 = − 𝑎1𝑠1 + 𝑎2𝑠12 + 𝑎3𝑠123 𝑓𝑥 + 𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123 𝑓𝑦 + 𝑛𝑧

𝜏2 = − 𝑎2𝑠12 + 𝑎3𝑠123 𝑓𝑥 + 𝑎2𝑐12 + 𝑎3𝑐123 ሶ𝜃2 + 𝑛𝑧

𝜏3 = − 𝑎3𝑠123 𝑓𝑥 + 𝑎3𝑐123 𝑓𝑦 + 𝑛𝑧

 This may be verified by Newton-Euler free body diagram method.
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Contents

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is 
defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation 
to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian 
solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of 
robotic manipulators is reviewed in detail. 
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Inverse Solutions
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acceleration, obstacle avoidance, singularity circumvention.
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Jacobian Characteristics

• Singularity

 Jacobian reveals the forward differential kinematic map ሶ𝝌 = 𝑱(𝒒) ሶ𝒒

 Forward Map                                                             Inverse Map 

Given ሶ𝒒 find ሶ𝝌 Given ሶ𝝌 find ሶ𝒒

 Consider the inverse map

For square Jacobians if 𝑱−𝟏(𝒒) exists then ሶ𝒒 = 𝑱−𝟏 𝒒 ሶ𝝌

This is used to find the required joint speeds to achieve a desired velocity in task space. 

 At singular configurations of  𝑱(𝒒),  this matrix is not invertible (det 𝑱 = 0).

@ singular configuration, with finite joint speeds all arbitrary task velocities are not achievable!

 This will happen at the boundary of the workspace, and …
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Singularity

• Motivating Example

 Consider the planar 2R manipulator

 Denote ሶ𝒒 = ሶ𝜃1, ሶ𝜃2
𝑇

and  ሶ𝝌 = ሶ𝑥𝐸 , ሶ𝑦𝐸
𝑇

Jacobian in frame{0}: 0𝑱 =
−𝑙1𝑠1 − 𝑙2𝑠12 −𝑙2𝑠12
𝑙1𝑐1 + 𝑙2𝑐12 𝑙2𝑐12

, and in frame {2}: 2𝑱 =
𝑙1𝑠2 0

𝑙1𝑐2 + 𝑙2 𝑙2
.

 Singular configurations

𝑑𝑒𝑡 0𝑱 = 𝑑𝑒𝑡 2𝑱 = 𝑙1𝑙2𝑠2 = 0 if 𝑠2 = 0 or 𝜃2 = 0 or 𝜋

 Physically: Fully extended or retracted arms (We saw this when one double solution for IK occurs, on the 

boundaries of the workspace)

 Let us find the inverse solution:

ሶ𝒒 = 𝑱−𝟏 𝒒 ሶ𝝌 →
ሶ𝜃1
ሶ𝜃2

=
1

𝑙1𝑙2𝑠2

𝑙2𝑐12 𝑙2𝑠12
−𝑙1𝑐1 − 𝑙2𝑐12 −𝑙1𝑠1 − 𝑙2𝑠12

ሶ𝑥𝐸
ሶ𝑦𝐸

To visualize, consider ሶ𝑥𝐸 = 1 while ሶ𝑦𝐸 = 0 (move in 𝑥 direction), then 

ሶ𝜃1 =
1

𝑙1𝑙2𝑠2
,   ሶ𝜃2 =

−1

𝑙1𝑙2𝑠2
(𝑙1𝑐1 + 𝑙2𝑐12)

As the arms are fully extended 𝑠2 → 0, and ሶ𝜃1, ሶ𝜃2 → ∞

At the boundary of the workspace 𝑠2 = 0, no further out movement in x direction is possible.
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Singularity

• General Description

 Consider a 6 × 𝑛 Jacobian 𝑱(𝑞) of a nDoF robot denoted by

ሶ𝜒 = 𝐽1 ሶ𝑞1 + 𝐽2 ሶ𝑞2 +⋯+ 𝐽𝑛 ሶ𝑞𝑛 or ሶ𝜒 = $1 ሶ𝑞1 + $2 ሶ𝑞2 +⋯+ $𝑛 ሶ𝑞𝑛
Where 𝐽𝑖 or $𝑖 are the columns of the Jacobian matrix

 Robot EE can reach any arbitrary twist if rank 𝑱(𝑞) = 6.
rank 𝑱(𝑞) = No. of independent 𝐽𝑖 or $1 (Configuration Dependent)

For a 6DoF robot rank 𝑱(𝑞) ≤ 6 and @ 𝑞 that  < 6 singularity occurs

For a 2DoF robot rank 𝑱(𝑞) ≤ 2 and @ 𝑞 that  < 2 singularity occurs

 At singular configurations:

Certain direction of motion is unattainable (undesired)

Bounded end-effector velocities → unbounded joint speeds

Bounded joint torques → unbounded end-effector forces (desired)

Often occurs @ boundary of workspace (where one double solution for 

IK occurs)
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Singularity

• Singular Configurations

 For Square Jacobians: Find 𝑞 such that det 𝑱(𝑞) = 0.

 Decoupling of Singularities

 For the case of 𝑛 = 6: 𝑱 𝑞 = 𝑱𝑎𝑟𝑚 | 𝑱𝑤𝑟𝑖𝑠𝑡 =
𝑱11 𝑱12
𝑱21 𝑱22

 If wrist axes are revolute and intersect at a point then 𝑱𝑤𝑟𝑖𝑠𝑡 =
𝟎
𝑱22

=
0
ො𝒔𝟒

0
ො𝒔𝟓

0
ො𝒔𝟓

 The Jacobian is upper triangular 𝑱 𝑞 =
𝑱11 𝟎
𝑱21 𝑱22

 Singularity occurs @ 𝑞, in which: 

det 𝑱(𝑞) = det 𝑱11(𝑞) ⋅ det 𝑱22 𝑞 = 0

 Determine Singular configuration of arm and wrist separately.

Wrist singularity  occurs @ 𝑞, in which: det 𝑱22 𝑞 = 0

Arm singularity  occurs @ 𝑞, in which: det 𝑱11 𝑞 = 0
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Singularity

• Decoupling of Singularities

 Wrist Singularities

 Consider 3R intersecting wrist: 

A typical industrial design is like 𝑤 − 𝑢 − 𝑤 Euler configuration.

det 𝑱22 𝑞 = 0

This happens when the 𝑧𝑖 axes are linearly dependent.

Singular configuration: when 𝑧3 and 𝑧5 are collinear.

Then: 𝜃5 = 0 or  𝜋

 Wrist Singularities

 Consider 3R Elbow manipulator like design

 The determinant is:
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Singularity

• Decoupling of Singularities

 Wrist Singularities

 Consider 3R Elbow manipulator like design

 Singular configurations: If    𝑠3 = 0 or    𝜃3 = 0 or  𝜋

Fully extended or retracted.

 Or when 𝑎2𝑐2 + 𝑎3𝑐23 = 0
The wrist point intersect the base axis

This case occurs @ infinitely many configurations

Where infinitely many solution exist for IK.

If the elbow manipulator has an offset this singular configuration vanishes.
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Singularity

• Decoupling of Singularities

 Wrist Singularities

 Consider 2RP Spherical Manipulator with no off set

By inspection singular configuration exists if:

The wrist point intersect the base axis:

 Consider SCARA Manipulator 

The Jacobian is derived before, in which

where

det 𝐽11 = 0 if     𝛼1𝛼4 − 𝛼2𝛼3 = 0.

This occurs if 𝑠2 = 0, which implies 𝜃2 = 0 or 𝜋.

This is similar to Elbow manipulator for fully extended or retracted arm.
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Dexterity

• Motivation Example:

 Cobra Attack: Optimal Posture

55



Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,                              

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021

Dexterity

• Definition: 

 Skill in performing tasks, especially with the hands. “quickness”
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Dexterity

• “Quickness” in Multi Dimensional Space?

 Consider norm bound joint velocities (unit sphere) 

ሶ𝒒 2
2 = ሶ𝑞1

2 + ሶ𝑞2
2 +⋯+ ሶ𝑞𝑛

2 ≤ 1

 What happens to the task space velocities?

ሶ𝒒 2
2 = ሶ𝒒𝑇 ሶ𝒒 = 𝑱† ሶ𝝌

𝑇
𝑱† ሶ𝝌 = ሶ𝝌𝑇𝑱†

𝑻
𝑱† ሶ𝝌 = ሶ𝝌𝑇 𝑱𝑱𝑻

†
ሶ𝝌

For all fat, square or tall Jacobians: 𝑱𝑱𝑻 is a 6 × 6 matrix, hence

ሶ𝒒 2
2 = ሶ𝝌𝑇 𝑱𝑱𝑻

−1
ሶ𝝌

 This result into Dexterity or Manipulability Ellipsoid

for a uniform input ሶ𝒒 2
2 = 1, the output task velocities shall have a weighted norm along this ellipsoid
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Isotropy

• Eigenvalues and Eigenvectors

 The ellipsoid is characterized by its eigen parameters

det 𝑱𝑱𝑇 = 𝜆1 ⋅ 𝜆2 ⋅⋅⋅ 𝜆𝑛

 Two extreme cases:

 Singularity: 
∃ 𝜆𝑖 = 0 → det 𝑱𝑱𝑇 = 𝜆1 ⋅ 𝜆2 ⋅⋅⋅ 𝜆𝑛 = 0

The ellipsoid is changed to a cylinder in 𝑣𝑖 (eigenvector) direction.

There exist no finite joint velocities to reach to task velocities in 𝑣𝑖
direction

 Isotropy: 

∀ 𝜆𝑖 = 1 → 𝑱𝑱𝑇 = 𝑰 unit matrix   → det 𝑱𝑱𝑇 = 1

The ellipsoid is changed to a sphere 

Dexterity in all task space direction with finite joint velocities

Isotropy in applying equal velocities in all directions

58

𝑣𝑖

Isotropy

Singularity



Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,                              

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021

Manipulability

• Gain of the Velocity Map

 Applying a uniform and unit norm input ሶ𝒒 2
2 = 1

 Gain of the output is given by
det 𝑱𝑱𝑇 = 𝜆1 ⋅ 𝜆2 ⋅⋅⋅ 𝜆𝑛

Where 𝜆𝑖 denote the eigenvalue of 𝑱𝑱𝑇

 Singular value of 𝑱 ?

For a general even non-square matrix 𝑱

𝜎𝑖 𝑱 = 𝜆𝑖 𝑱𝑱
𝑇

Where 𝜎𝑖 denotes the singular value of matrix 𝑱

 Manipulability Measure 𝜇 of 𝑱(𝑞)

𝜇 = det 𝑱𝑱𝑇 = 𝜆1 ⋅ 𝜆2 ⋅⋅⋅ 𝜆𝑛 = 𝜎1 ⋅ 𝜎2 ⋅⋅⋅ 𝜎𝑛 singular values of (𝑱)

The measure is configuration dependent.

If 𝜇 → 0 the configuration of the robot tends to singularity.

If 𝜇 → 1 the configuration of the robot tends to isotropy.

𝜇 = 0 , if and only if rank 𝑱 < 𝑛, the DoF’s of the robot.
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Manipulability

• Gain of the Velocity Map

 Manipulability Measure 𝜇 of 𝑱(𝑞)

 If the robot is under actuated it is deficient and 𝜇 = 0.

 If the robot is redundantly actuated, there are extra 𝜎𝑖 ’s than Dof’s

This could be used to increase 𝜇 (Biological designs!)

Reconsider Cobra attack, the snake uses redundant posture for the attack.

 In general

ሶ𝒒 2
2 = ሶ𝝌𝑇 𝑱𝑱𝑻

−1
ሶ𝝌 ≤

1

𝑱𝑱𝑻
ሶ𝝌 2
2 =

1

𝜇2
ሶ𝝌 2
2 → ሶ𝝌 ≥ 𝜇 ሶ𝒒

max ሶ𝝌 = 𝜎𝑚𝑎𝑥 ሶ𝒒

min ሶ𝝌 = 𝜎𝑚𝑖𝑛 ሶ𝒒

in direction of 𝑣𝑚𝑎𝑥

in direction of 𝑣𝑚𝑖𝑛

𝜇 denotes the gain required to generate a specific task space velocity

If 𝜇 = 0 some velocity directions are not attainable.

If 𝜇 = 1 the uniform input is projected uniformly in all directions of the outputs.

The shape of the ellipsoid is also very informative on the attainable directions.
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Manipulability

• Other Measures

 Reciprocal of Condition number of 𝑱(𝑞)

 Definition: Condition number of a matrix 𝑱 is  𝜅(𝑱) =
𝜎𝑚𝑎𝑥(𝑱)

𝜎𝑚𝑖𝑛(𝑱)

In which 𝜎𝑚𝑎𝑥(𝑱), and 𝜎𝑚𝑖𝑛(𝑱) denotes the largest and smallest singular value of 𝑱, respectively. 

 The measure: rcond 𝐉 = 1/𝜅(𝑱) =
𝜎𝑚𝑖𝑛(𝑱)

𝜎𝑚𝑎𝑥(𝑱)

 If rcond = 0: at least one of the singular values are zero: singular configuration

 If rcond = 1: All singular values are one: isotropic configuration

𝜇 considers all the singular values by rcond only extreme values 

The analysis are similar but the ellipsoids are not analyzed in rcond.

 Global Measures

 All measures are configuration dependent

There could be good at a pose and bad at another. 

Integrate the measure in the whole space to get an averaged global measure
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Manipulability

• Examples:

 Example 1: Isotropy Analysis of 2R Robot

 In 2R manipulator:

ሶ𝝌 = 𝑱 ሶ𝒒 , in which 𝑱 in frame 2 is 2𝑱 =
𝑙1𝑠2 0

𝑙1𝑐2 + 𝑙2 𝑙2

 Inspired by human arm, consider 𝑙1 = 2, and 𝑙2 = 1.

Use symbolic manipulator to find 𝑱𝑱𝑻 and its eigenvalues:

𝑱𝑱𝑻 =
2𝑠2

2 2𝑐2𝑠2 + 2𝑠2

2𝑐2𝑠2 + 2𝑠2 2 2𝑐2 + 1
2
+ 1

; det(𝑱𝑱𝑻) = 2𝑠2
2, 

𝜆1,2 = ± 4𝑐2
2 + 4 2 𝑐2 + 2

1/2
+ 2𝑐2 + 2

In Isotropic configurations 𝜆1 = 𝜆2 = 1.

Only for this bio-inspired design isotropy happens @ 𝜃2 = ±
3𝜋

4
∀𝜃1.

The locus of isotropic configurations are shown in figure.

While singularity happens at fully-extended or retracted arm!
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Manipulability

 Example 1: (Cont.)

 Now consider 𝜃2 =
𝜋

2
; for this configuration:

𝑱𝑱𝑻(𝜃2 =
𝜋

2
) =

2 2

2 2
;   𝑱𝑱𝑻

−𝟏
=

1 −1/ 2

−1/ 2 1

Calculate the velocity map gains

For 𝑱𝑱𝑻 →
𝜆1 = 3.414
𝜆2 = 0.586

;   while  𝑣1 =
1

2

1
1
, 𝑣2 =

1

2

−1
1

,

then for 𝑱𝑱𝑻
−𝟏

→
𝜆1 = 0.292
𝜆2 = 1.707

For  𝑱 ; 
𝐺𝑚𝑎𝑥 = 𝜎𝑚𝑎𝑥 = 1.847
𝐺𝑚𝑖𝑛 = 𝜎𝑚𝑖𝑛 = 0.734

;  while Ԧ𝑣𝑚𝑎𝑥 =
1
1
, Ԧ𝑣𝑚𝑖𝑛 =

−1
1

The gains are singular values of 𝑱.

Directions are found by eigenvalues of 𝑱𝑱𝑻
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Manipulability

 Example 1: (Cont.)

 Proof of the mapping gains for 𝜃2 =
𝜋

2
configuration:

From  ሶ𝒒 2
2 = ሶ𝝌𝑇 𝑱𝑱𝑻

−1
ሶ𝝌 → ሶ𝜃1

2 + ሶ𝜃2
2 = 𝑣𝑥

2 − 2 𝑣𝑥𝑣𝑦 + 𝑣𝑦
2

ሶ𝜃1
2 + ሶ𝜃2

2 = 0.292
𝑣𝑥

2
+
𝑣𝑦

2

2

+ 1.707
𝑣𝑥

2
−
𝑣𝑦

2

2

For 𝑣1 =
1
1
, 𝑣𝑥 = 𝑣𝑦 → ሶ𝜃1

2 + ሶ𝜃2
2 = 0.292 2 𝑣𝑥

2
→ 2 𝑣𝑥

2
= 3.414 ሶ𝜃1

2 + ሶ𝜃2
2

⇒ ሶ𝜒𝑚𝑎𝑥 = 1.848 ሶ𝒒 in Ԧ𝑣𝑚𝑎𝑥 =
1
1

direction

For 𝑣1 =
−1
1

, 𝑣𝑥 = −𝑣𝑦 → ሶ𝜃1
2 + ሶ𝜃2

2 = 1.707 2 𝑣𝑥
2
→ 2 𝑣𝑥

2
= 0.586 ሶ𝜃1

2 + ሶ𝜃2
2

⇒ ሶ𝜒𝑚𝑖𝑛 = 0.734 ሶ𝒒 in Ԧ𝑣𝑚𝑖𝑛 =
−1
1

direction
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Manipulability

 Example 1: (Cont.)

 For 𝜃2 =
𝜋

2
configuration:

⇒ ሶ𝜒𝑚𝑎𝑥 = 1.848 ሶ𝒒 = 𝜎𝑚𝑎𝑥 ሶ𝒒 in Ԧ𝑣𝑚𝑎𝑥 direction

⇒ ሶ𝜒𝑚𝑖𝑛 = 0.734 ሶ𝒒 = 𝜎𝑚𝑖𝑛 ሶ𝒒 in Ԧ𝑣𝑚𝑖𝑛 direction

 Dexterity Measures: 𝜇 = det 𝑱𝑱𝑇 = 𝜆1 ⋅ 𝜆2 = 2 ,  rcond =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
=

0.764

1.848
= 0.414
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ሶ𝒒 2
2 = ሶ𝝌𝑇 𝑱𝑱𝑻

−1
ሶ𝝌

Ԧ𝑣𝑚𝑖𝑛 =
−1
1

Ԧ𝑣𝑚𝑎𝑥
1
1

𝑣𝑥

𝑣𝑦

1

1

ሶ𝑞1

ሶ𝑞2
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Contents

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is 
defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation 
to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian 
solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of 
robotic manipulators is reviewed in detail. 
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Jacobian Characteristics
Singularity, twist and wrench map, singular configurations, 
singularity decoupling, dexterity, dexterity ellipsoid, isotropy, 
manipulability, condition number, 

4

Inverse Solutions
Inverse map, fully- and under-actuated robots, redundancy, 
redundancy resolution, optimization problem, inverse 
acceleration, obstacle avoidance, singularity circumvention.

5

Stiffness Analysis
Sources of compliance, Compliance and stiffness matrix, force 
ellipsoid, case studies.6

Preliminaries
Angular velocity, rotation matrix and Euler angle rates, Linear 
velocity, golden rule in differentiation, twist, screw 
representation. 

1

Jacobian
Definition, motivating example, direct approach, general and  
iterative methods, case studies, screw based Jacobian, general 
and iterative methods, case studies.

2

Static Wrench
Wrench definition, principle of virtual work, Jacobian transpose 
mapping, examples.3



Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,                              

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021

Inverse Solutions

• Definition:

 Jacobian Forward Map     ሶ𝝌 = 𝑱 𝒒 ሶ𝒒 or    𝝉 = 𝑱𝑻 𝒒 𝓕

 Inverse Solution for Fully Actuated Robot (𝑚 = 𝑛 = 6)

 Jacobian matrix is square:

In non-singular configurations 𝒒, where 𝑱−𝟏 𝒒 exists:

ሶ𝒒 = 𝑱−𝟏 𝒒 ሶ𝝌 or     𝓕 = 𝑱−𝑻 𝒒 𝝉

 Near singular configurations:

To achieve a finite velocity ሶ𝝌 very large joint velocities is required ሶ𝒒 → ∞.

Very large forces could be applied to the environment with low actuator torques

 Inverse Solution for Under Actuated Robot (𝑚 < 6)

 Jacobian matrix is tall rectangular (6 × 𝑚):

Solution exist only if ሶ𝝌 lies in the range space of 𝑱 𝒒 or 𝝉 lies in the range space of 𝑱𝑻 𝒒

This is satisfied if rank 𝑱 𝒒 = rank 𝑱 𝒒 | ሶ𝝌

 The solution is found by left pseudo inverse of 𝑱 𝒒

ሶ𝒒 = 𝑱† 𝒒 ሶ𝝌 where 𝑱† = 𝑱𝑻𝑱
−𝟏
𝑱𝑻 Note: (𝑱𝑻𝑱) is 𝑚×𝑚:
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Redundancy in Nature

Human Arm: 7 Joints                                 Mammal’s Neck: 7 Vertebra

Human Shoulder: 4 Muscles 
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Redundancy in Nature

Human wrist: 8 Bones                    Bird’s Neck: 14 Vertebra!
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Inverse Solution

 Inverse Solution for Redundantly Actuated Robot (𝑚 > 6)

 Jacobian matrix is fat rectangular (6 × 𝑚):

Infinitely many solution exists for the inverse problem

Basic solution is found by min-norm or least-squares solution:

Find ሶ𝒒 such that    ሶ𝝌 = 𝑱 𝒒 ሶ𝒒 while   ሶ𝒒 𝟐 is minimized

 The solution is found by right pseudo inverse of 𝑱 𝒒

ሶ𝒒𝑳𝑺 = 𝑱† 𝒒 ሶ𝝌 where  𝑱† = 𝑱𝑻 𝑱𝑱𝑻
−𝟏

Note: (𝑱𝑻𝑱) is 6 × 6

 Right pseudo inverse properties:

𝑱𝑱† = 𝑱𝑱𝑻 𝑱𝑱𝑻
−𝟏

= 𝑰

 Set of all solutions:

ሶ𝒒 = 𝑱† 𝒒 ሶ𝝌 + 𝑰 − 𝑱†𝑱 𝒃

In which, 𝒃 ∈ ℝ𝑛 is any arbitrary vector, and 𝑰 − 𝑱†𝑱 ≠ 𝟎.

All vectors in the form of ሶ𝒒𝑛 = 𝑰 − 𝑱†𝑱 𝒃 lie in the null space of 𝑱: 𝓝 𝑱

ሶ𝒒𝑛 ≠ 𝟎 but the corresponding task space velocity ሶ𝝌𝑛 = 𝑱 𝒒 ሶ𝒒𝑛 = 𝟎 (self –motion)
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Inverse Solution

 Inverse Solution for Redundantly Actuated Robot (𝑚 > 6)

 LS solution is always a suitable alternative;

 Redundancy Resolution

Finding suitable ሶ𝒒𝑛 to accomplish some other objectives

71

Obstacle 
Avoidance

1
Singularity 

Circumvention

2
Increasing
Dexterity

3
Maximizing

Manipulability

4
Limited Actuator 

Torques 

5

A combined objective
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Inverse Solution

 Inverse Solution for Redundantly Actuated Robot (𝑚 > 6)

 Optimization Problem

Define a cost function to be minimized by redundancy resolution: 𝑉(𝒒 , ሶ𝒒) or 𝑉(𝝌 , ሶ𝝌) (e.g. ሶ𝒒 𝟐)  

Consider Jacobian mapping as an equality constraint: ሶ𝝌 = 𝑱 𝒒 ሶ𝒒

Consider Forward kinematics as a nonlinear equality constraint: 𝝌 = 𝒇𝑭𝑲(𝒒)

Consider joint limits as inequality constraints: 𝒒𝑚𝑖𝑛 ≤ 𝒒 ≤ 𝒒𝑚𝑎𝑥 and/or  ሶ𝒒𝑚𝑖𝑛 ≤ ሶ𝒒 ≤ ሶ𝒒𝑚𝑎𝑥

min
𝒒 , ሶ𝑞

𝑉(𝒒 , ሶ𝒒)

Subject to 

ሶ𝝌 = 𝑱 𝒒 ሶ𝒒
𝝌 = 𝒇𝑭𝑲(𝒒)

𝒒𝑚𝑖𝑛 ≤ 𝒒 ≤ 𝒒𝑚𝑎𝑥

ሶ𝒒𝑚𝑖𝑛 ≤ ሶ𝒒 ≤ ሶ𝒒𝑚𝑎𝑥

⋮

 Analytical Solutions: Lagrange and KKT Multipliers

 Numerical Solutions : Interior Point Method       “fmincon” in Matlab

Genetic Algorithms , …
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Inverse Solution

 Inverse Solution for Redundantly Actuated Robot (𝑚 > 6)
 Numerical Solution: fmincon function in Matlab

Nonlinear Programming Solver
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Inverse Acceleration

 Differentiate Jacobian Forward Map     ሶ𝝌 = 𝑱 𝒒 ሶ𝒒

ሷ𝝌 = 𝑱 𝒒 ሷ𝒒 + ሶ𝑱 𝒒 ሶ𝒒

 Inverse Solution for Fully Actuated Robot (𝑚 = 𝑛 = 6)

𝑱 𝒒 ሷ𝒒 = ሷ𝝌 − ሶ𝑱 𝒒 ሶ𝒒

 Jacobian matrix is square:

In non-singular configurations 𝒒, where 𝑱−𝟏 𝒒 exists:

ሶ𝒒 = 𝑱−𝟏 𝒒 ሶ𝝌

This results in:

ሷ𝒒 = 𝑱−𝟏 𝒒 ሷ𝝌 − ሶ𝑱 𝒒 ሶ𝒒 OR

ሷ𝒒 = 𝑱−𝟏 𝒒 ሷ𝝌 − ሶ𝑱 𝒒 𝑱−𝟏 𝒒 ሶ𝝌

For non-square Jacobians such manipulation is not possible.
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Obstacle Avoidance

• Example 2:

 Redundancy Resolution for 3R Robot: 

 Consider a desired vertical motion (2D)

From 𝒒0 = 20𝑜, 30𝑜, 20𝑜 𝑇 → 𝑄0 ≅ 𝑥0, 𝑦0
𝑇 To  𝑄𝑓 ≅ 𝑥0, 0

𝑇

Avoiding obstacle shown in the figure:

 In task space: 

Move 𝝌0 = 𝑥0, 𝑦0
𝑇 ≅ 1.7, 1.4 𝑇 To 𝝌𝑓 = 𝑥0, 0

𝑇 in one seconds.

Use cubic trajectory planning:

𝑥𝑑 𝑡 = 𝑥0, 𝑦𝑑 𝑡 = 𝑦0(1 − 3 − 2𝑡 𝑡2)

 In velocity space given: 
ሶ𝑥𝑑 𝑡 = 0, ሶ𝑦𝑑 𝑡 = 𝑦0(6𝑡

2 − 6𝑡)

Find 𝒒 𝑡 = 𝑞1, 𝑞2, 𝑞3
𝑇 to traverse this path while avoiding obstacle.

 Robot has 3Dof, and for this task has one degree of redundancy

To move along 𝝌2×1(𝑡) there exist infinite number of joint space solutions 𝒒3×1(𝑡)

Find the one to avoid interfering with the obstacle.
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Obstacle Avoidance

• Example 2: (Cont.)

 Redundancy Resolution for 3R Robot: 

 The Jacobin is 2 × 3 , the LS solution is not good

Robot shall go to elbow-up posture to avoid the obstacle

 Formulate an optimization problem 

min
𝒒 , ሶ𝑞

𝑉(𝒒 , ሶ𝒒)

Subject to ቊ
ሶ𝝌 = 𝑱 𝒒 ሶ𝒒

𝝌 = 𝒇𝑭𝑲(𝒒)

Robot desired posture (elbow up) 𝒒𝑑 = 45𝑜, −70𝑜, −10𝑜 𝑇

Performance index: minimize 𝑉 𝒒 = 𝒒 − 𝒒𝑑 2

Robot Jacobian ሶ𝝌 𝑡 = 𝑱 ሶ𝒒(𝑡), where 

𝑱 =
−𝑎1𝑠1 − 𝑎2𝑠12 − 𝑎3𝑠123 −𝑎2𝑠12 − 𝑎3𝑠123 −𝑎3𝑠123
𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123 𝑎2𝑐12 + 𝑎3𝑐123 𝑎3𝑐123

Robot Forward Kinematics 𝝌 = 𝒇𝑭𝑲(𝒒):

𝜒1 = 𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3 𝑐123
𝜒2 = 𝑎1𝑠1 + 𝑎2𝑠12 + 𝑎3 𝑠123
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• Example 2: (Cont.)

 Redundancy Resolution for 3R 

Robot: 

 Consider the base Solution:

ሶ𝒒𝑳𝑺 = 𝑱† 𝒒 ሶ𝝌 where  𝑱† = 𝑱𝑻 𝑱𝑱𝑻
−𝟏

 This solution minimizes 

𝒒
ሶ𝒒
𝟐

 But It is not good for obstacle 

avoidance:

Obstacle Avoidance
77

Obstacle

Matlab Program: Obstacle_3R.m
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Obstacle Avoidance

• Example 2: (Cont.)

 Redundancy Resolution for 3R 

Robot: 

 Solve optimization problem

min
𝒒 , ሶ𝑞

𝒒 − 𝒒𝑑 2

Subject to ቊ
ሶ𝝌 = 𝑱 𝒒 ሶ𝒒

𝝌 = 𝒇𝑭𝑲(𝒒)

For Robot desired posture (elbow up) 

𝒒𝑑 = 45𝑜, −70𝑜, −10𝑜 𝑇

The trajectory is traversed without 

interfering with the obstacle.
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Obstacle Avoidance

• Example 2: (Cont.)

 Redundancy Resolution for 3R 

Robot: 

 Solve optimization problem

min
𝒒 , ሶ𝑞

𝒒 − 𝒒𝑑 2

Subject to ቐ

ሶ𝝌 = 𝑱 𝒒 ሶ𝒒
𝝌 = 𝒇𝑭𝑲(𝒒)

ሶ𝒒𝒎𝒊𝒏 ≤ ሶ𝒒 ≤ ሶ𝒒𝒎𝒂𝒙

With     −1.2 ≤ ሶ𝒒𝒊 ≤ 1.2

At some instances, the robot needs to 

exceed the velocity bound, and therefore, 

the trajectory is not traversed perfectly.
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Singularity Circumvention

• Example 3:

 Redundancy Resolution for 3R Robot: 

 Consider a desired vertical motion (2D) near singular 

configuration

From 𝒒0 = −180𝑜 , −179𝑜 , 10𝑜 𝑇 → 𝑄0 = 𝑥0, 𝑦0
𝑇

To  𝑄𝑓 = 𝑥0, −0.1
𝑇

 In task space: 

Move 𝝌0 = 𝑥0, 𝑦0
𝑇 ≅ 1.7, 0.07 𝑇 To 𝝌𝑓 = 𝑥0, 0

𝑇 in one seconds.

Use cubic trajectory planning:

𝑥𝑑 𝑡 = 𝑥0, 𝑦𝑑 𝑡 = 𝑦0 − 3 − 2𝑡 𝑡2 (𝑦0 + 0.1)

 In velocity space given: 
ሶ𝑥𝑑 𝑡 = 0, ሶ𝑦𝑑 𝑡 = (𝑦0 + 0.1)(18𝑡2 − 6𝑡)

Find 𝒒 𝑡 = 𝑞1, 𝑞2, 𝑞3
𝑇 to traverse this path while circumventing 

singularities.

 Consider the base Solution:

ሶ𝒒𝑳𝑺 = 𝑱† 𝒒 ሶ𝝌 where  𝑱† = 𝑱𝑻 𝑱𝑱𝑻
−𝟏

 But this solution is close to singular configurations.
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Singularity Circumvention

• Example 2: (Cont.)

 Redundancy Resolution for 3R 

Robot: 

 Solve optimization problem

min
𝒒 , ሶ𝑞

−𝜇 𝑞 = − det( 𝐽𝐽𝑇)

Subject to ቊ
ሶ𝝌 = 𝑱 𝒒 ሶ𝒒

𝝌 = 𝒇𝑭𝑲(𝒒)

In which, 𝐽 in 𝜇 is considered to be the 

Jacobian of the first two links, in order to 

traverse he trajectory while getting away 

from fully retracted arms. 
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Contents

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is 
defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation 
to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian 
solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of 
robotic manipulators is reviewed in detail. 
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Jacobian Chacteristics
Singularity, twist and wrench map, singular configurations, 
singularity decoupling, dexterity, dexterity ellipsoid, isotropy, 
manipulability, condition number, 

4

Inverse Solutions
Inverse map, fully- and under-actuated robots, redundancy, 
redundancy resolution, optimization problem, inverse 
acceleration, obstacle avoidance, singularity circumvention.

5

Stiffness Analysis
Sources of compliance, Compliance and stiffness matrix, force 
ellipsoid, case studies.6

Preliminaries
Angular velocity, rotation matrix and Euler angle rates, Linear 
velocity, golden rule in differentiation, twist, screw 
representation. 

1

Jacobian
Definition, motivating example, direct approach, general and  
iterative methods, case studies, screw based Jacobian, general 
and iterative methods, case studies.

2

Static Wrench
Wrench definition, principle of virtual work, Jacobian transpose 
mapping, examples.3
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Stiffness Analysis

Consider a robot in contact to the environment 

Applying wrench to the environment

Focus on the deflections resulting by the applied wrench

83

𝑭𝐸

𝒏𝐸

01

03

0504

02

Stiffness

Links
The size and material of the links 
contribute greatly in the stiffness 

Robot Structure
Closed Kinematic chains cause 

higher stiffness  to the robot

Joints
Flexible versus rigid joints contribute 
in the compliance of the robot

Control Structure
Through suitable control schemes, the stiffness of 
the robot might be shaped to the desired value

Actuators and Transmissions
The main source of compliance in the robots, the flexible 

elements in the transmission and force transducers
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Stiffness Analysis

• Sources of Stiffness

 Consider just the actuators and transmissions 

 As the main source of compliance

 Harmonic Drive Systems

Transmission is performed through a flexible element (Flexspline) 
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Flexspline

Circular spline

Wave generator
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Stiffness Analysis

• Compliance and Stiffness Matrix

 Note the stiffness relation in the 𝑖𝑡ℎ robot joint

𝜏𝑖 = 𝑘𝑖Δ𝑞𝑖
 Joint stiffness constant: 𝑘𝑖

𝜏𝑖 denotes the transmitted torque through the actuator

Δ𝑞𝑖 denotes the resulting deflection at the joint

 Use vector notation

𝝉 = 𝒦 Δ𝒒

𝝉 = 𝜏1, 𝜏2, … , 𝜏𝑚
𝑇 denotes the vector of transmitted torques

𝚫𝒒 = 𝑞1, 𝑞2, … , 𝑞𝑚
𝑇 denotes the vector of resulting deflections at the joints and

𝒦 = 𝑑𝑖𝑎𝑔 𝑘1, 𝑘2, … , 𝑘𝑚

 Use Jacobian relation

𝚫𝝌 = 𝑱 𝚫𝒒 and  𝝉 = 𝑱𝑻𝓕

This results in            𝚫𝝌 = 𝑱 𝚫𝒒 = 𝑱 𝒦−1𝝉 = 𝑱 𝒦−1𝑱𝑻𝓕 = 𝑪𝓕 for a squared Jacobian.
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Stiffness Analysis

• Compliance and Stiffness Matrix

 Manipulator Compliance Matrix 𝑪 :

𝚫𝝌 = 𝑪 𝓕 where  𝑪𝑚×𝑚 = 𝑱 𝒦−1𝑱𝑻

 Manipulator Stiffness Matrix 𝑲 = 𝑪−1; the inverse map:

𝓕 = 𝑲 𝚫𝝌 where  𝑲𝑚×𝑚 = 𝑱−𝑇𝒦 𝑱−1

 Both 𝑪 and 𝑲 are configuration dependent.

 For uniform joint stiffness 𝑘1 = 𝑘2 = ⋯ = 𝑘𝑚 = 𝑘:

𝑪 = 𝑘−1 𝑱𝑱𝑻 while 𝑲 = 𝑘 𝑱𝑱𝑻
−𝟏

 Interesting to reach to the same manipulability matrix 𝑱𝑱𝑻

 Scaled Ellipsoid for Force – Deflection relation

 For a uniform and unit end effector deflection 𝚫𝝌 2 = 1.

𝚫𝝌𝑻𝚫𝝌 = 1 → 𝓕𝑻𝑪𝑻 𝑪 𝓕 = 1.
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Stiffness Analysis

 Example: Stiffness Analysis of 2R Manipulator

 Inspired by human arm, consider 𝑙1 = 2, and 𝑙2 = 1.

 Consider 𝜃2 =
𝜋

2
, and 𝑘1 = 𝑘2 = 1𝑁 ⋅ 𝑚 , then for this 

configuration:

𝑪 = 𝑱𝑱𝑻(𝜃2 =
𝜋

2
) =

2 2

2 2
;   𝑪𝑻𝑪 =

6 4 2

4 2 6

Calculate the compliance map gains

For 𝑪𝑻𝑪 →
𝜆1 = 11.657
𝜆2 = 0.3431

;   while  𝑣1 =
1

2

1
1
, 𝑣2 =

1

2

−1
1

,

For  𝑪 ; 
𝐺𝑚𝑎𝑥 = 𝜎𝑚𝑎𝑥 = 3.414
𝐺𝑚𝑖𝑛 = 𝜎𝑚𝑖𝑛 = 0.586

;  while Ԧ𝑣𝑚𝑎𝑥 =
1
1
, Ԧ𝑣𝑚𝑖𝑛 =

−1
1
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Stiffness Analysis

 Example 1: 

 Proof of the obtained gains for 𝜃2 =
𝜋

2
configuration:

From  𝚫𝝌 2
2 = 𝓕𝑻𝑪𝑻𝑪𝓕 → Δ𝑥2 + Δ𝑦2 = 6𝑓𝑥

2 + 8 2𝑓𝑥𝑓𝑦 + 𝑓𝑦
2

Δ𝑥2 + Δ𝑦2 = 11.657
𝑓𝑥

2
+
𝑓𝑦

2

2

+ 0.343
𝑓𝑥

2
−
𝑓𝑦

2

2

For 𝑣1 =
1
1
, 𝑓𝑥 = 𝑓𝑦 → Δ𝑥2 + Δ𝑦2 = 11.657 2𝑓𝑥

2
→ 2𝑓𝑥

2
= 0.085 Δ𝑥2 + Δ𝑦2

⇒ 𝑓𝑚𝑖𝑛 = 0.292 𝚫𝝌 =
1

𝜎𝑚𝑎𝑥
𝚫𝝌 in Ԧ𝑣𝑚𝑖𝑛 =

1
1

direction

For 𝑣1 =
−1
1

, 𝑓𝑥 = −𝑓𝑦 → Δ𝑥2 + Δ𝑦2 = 0.343 2𝑓𝑥
2
→ 2𝑓𝑥

2
= 2.914 Δ𝑥2 + Δ𝑦2

⇒ 𝑓𝑚𝑎𝑥 = 1.707 𝚫𝝌 =
1

𝜎𝑚𝑖𝑛
𝚫𝝌 in Ԧ𝑣𝑚𝑎𝑥 =

−1
1

direction
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Stiffness Analysis

 Example: (Cont.)

 For 𝜃2 =
𝜋

2
configuration:

⇒ 𝓕𝑚𝑎𝑥 = 1.707 𝚫𝝌 =
1

𝜎𝑚𝑖𝑛
𝚫𝝌 in Ԧ𝑣𝑚𝑎𝑥 direction

⇒ 𝓕𝑚𝑖𝑛 = 0.292 𝚫𝝌 =
1

𝜎𝑚𝑎𝑥
𝚫𝝌 in Ԧ𝑣𝑚𝑖𝑛 direction
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𝚫𝝌 2
2 = 𝓕𝑻𝑪𝑻𝑪𝓕

Ԧ𝑣𝑚𝑎𝑥 =
−1
1

Ԧ𝑣𝑚𝑖𝑛
1
1

𝑓𝑥

𝑓𝑦

1

1

Δ𝑥

Δ𝑦
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Chapter 4: Differential Kinematics
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