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Chapter 4: Differential Kinematics
In this chapter we review the Jacobian analysis for serial robots. First the 
definition to angular and linear velocities are given, then the Jacobian 
matrix is defined in conventional and screw-based representation, while 
their general and iterative derivation methods are given. Next the static 
wrench and its relation to Jacobian transpose is introduced, and Jacobian 
characteristics such as singularity, isotropy, dexterity and manipulability 
are elaborated. Inverse Jacobian solution for fully-, under- and 
redundantly-actuator robots are formulated, and redundancy resolution 
schemes are detailed. Finally, Stiffness analysis of robotic manipulators is 
reviewed in detail. 
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Introduction

Å Preliminaries

VAngular Velocity of a Rigid Body

Á Attribute of the whole rigid body

Á The rate of instantaneous rotation of frame ὄ attached 

to the rigid body with respect to a fixed frame ὄ.

A vector denoted by along the screw axis

With the value equal to the rate of rotation —.

Á Angular velocity vector can be expressed in any frame:

In which, ɱȟɱȟɱ are the components of this vector.
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Preliminaries

V Angular Velocity & Rotation Matrix Rate

Á Angular velocity is defined based-on screw representation

Á What is its relation to the rotation matrix representation?

Note that

Differentiate both side with respect to time

Substitute: 

This means that                  is a σ σskew symmetric matrix :

It can be shown that the three parameters ɱȟɱȟɱ are the components of 

angular velocity vector.

6
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V Angular Velocity & Euler Angles Rate

Á Angular velocity is a vector but Euler angels are not.

Á Angular velocity is not equal to the rate of Euler Angels

But

Use 

Or equivalently

To derive Ὁ‌ȟ‍ȟ‎. For example for ύ ὺ ύEuler angles we have:

and

Preliminaries
7
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Preliminaries

V Linear Velocity of a Point

Á Linear velocity of a point ╟is the time derivative of the position 

vector ▬with respect to a fixed frame.

Á Relative velocity with respect to a moving frame is denoted by

In which the partial derivative notation is used to denote relativeness

Á Golden Rule

OR 

In which denotes the angular velocity of the moving frame with respect to 

the fixed frame, and denotes its skew-symmetric matrix representation

8
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Preliminaries

VLinear Velocity of a Point

Á Verify the derivative of the rotation matrix

While

Hence,

This verifies the relation of angular velocity vector with the rate of 

rotation matrix

9
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Preliminaries

V Linear Velocity of a Point

Á Consider the position vector ╟

Differentiate with respect to time

where

The time derivative of rotation matrix is given

Hence,

If ╟is embedded in the rigid body, the relative velocity is         zero. Then

10
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Preliminaries

Å Twist: Screw Coordinates

V General Motion: Screw Representation

Á General Motion = 

Rotation about ▼ Translation along ▼

▼ȟ— ▼ȟὨ

Assume the ratio of Ὠto —is denoted by pitch‗

‗ or  ‗ in άȾὶὥὨ) unit

Á Define Screw Coordinate φ ρ

Unit Screw coordinate Αby pair of two vectors:

In which ί could be selected on any arbitrary point on the axis ▼Ȣ

11
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Preliminaries

Å Twist: Screw Coordinates

V General motion of a point ╟on the rigid body

Á Twist: A φ ρ Tuple  

Twist 
!ÎÇÕÌÁÒÖÅÌÏÃÉÔÙÏÆÔÈÅÒÉÇÉÄÂÏÄÙ
,ÉÎÅÁÒÖÅÌÏÃÉÔÙÏÆÔÈÅÐÏÉÎÔ╟ ╟

To find the screw for point ╟, attach an instantaneous fixed frame 

On point P aligned with the reference frame {0} then

Twist:                           Α ήΑ

In which, the first vector reads:

and the second vector is:

This gives the linear velocity of the interested embedded point ╟on the rigid body

12
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Preliminaries

Å Twist: Screw Coordinates

V General motion of a point ╟on the rigid body

Á To find the screw for point ╟, attach an instantaneous fixed frame 

On point ╟aligned with the reference frame {0} then

Twist 
!ÎÇÕÌÁÒÖÅÌÏÃÉÔÙÏÆÔÈÅÒÉÇÉÄÂÏÄÙ
,ÉÎÅÁÒÖÅÌÏÃÉÔÙÏÆÔÈÅÐÏÉÎÔ╟ ╟

Both vectors with respect to the fixed frame π

Á Screw coordinate 

Twist:          Α ήΑ Ñ
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Preliminaries

Å Twist: Screw Representation

V Twist for Revolute joint (R)

Á For pure rotational joint ‗ πand ή —
The twist is represented by

where, instantaneous frame {0} is attached on point ╟

V Twist for Prismatic joint (P)

Á For pure translational joint ‗ Њand ή Ὠ
The twist is represented by

Á Since we use the primary joint in serial 

manipulators these two screw representations are 

used in the differential kinematics.
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Jacobian

Å Definition

V Differential Kinematic Map

Á Forward Map                                                                Inverse Map 

Given ▲find Ⱶ Given Ⱶfind ▲

Á Forward kinematics is a nonlinear map

… Ὢήȟήȟȣȟή ÆÏÒὭ ρȟςȟȣȟὲ

Á Take time derivative:

Ⱶ ╙▲▲,       in which,     ╙▲

Ễ

ể Ệ ể

Ễ

is called the Jacobian matrix
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Jacobian

Å Motivating Example

VDirect approach

Á Consider 2R manipulator

Denote ▲ —ȟ— and  Ⱶ ὼȟώ

Forward Kinematics:

ὼ ὰὧ ὰὧ

ώ ὰί ὰί

Take time derivative:

ὼ ὰί— ὰί — —

ώ ὰὧ— ὰὧ — —

Determine Jacobian:

Ⱶ ╙▲,       in which,     ╙
ὰί ὰί ὰί
ὰὧ ὰὧ ὰὧ

17
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Jacobian

Å Definition

V In General

▲ ήȟήȟȣȟÑ in which ή
— ÆÏÒÁÒÅÖÏÌÕÔÅÊÏÉÎÔ

Ὠ ÆÏÒÁÐÒÉÓÍÁÔÉÃÊÏÉÎÔ

Á While for the task space variable

Ⱶ ⱨ
○
ⱷ For Conventional Jacobian and

Ⱶ ⱨ
ⱷ
○ For Screw-based Jacobian 

In which ○ is the velocity of the end effector, ⱷ denotes the angular velocity of the end effector 

link.

Á Linear velocity and angular velocity sub-Jacobians

Ⱶ
○
ⱷ ╙▲▲

╙○
╙ⱷ
▲

In which ╙○corresponds to the linear velocity Jacobian,

While╙ⱷ corresponds to the angular velocity Jacobian.

18
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Jacobian

Å Definition

V In General

▲ ήȟήȟȣȟÑ and Ⱶ ⱨ
○
ⱷ

The joint and task variable can be given with reference to any frame

Hence, 

▲ ╙Ⱶ or     ▲ ╙Ⱶ

In which

From

We may conclude :            ╙▲
╡

╡
╙▲Ȣ
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● ὼȟώ

Jacobian

Å Motivating Example

V Different Frames

Á Consider task variables in end ïeffector frame ς

Denote ▲ —ȟ— and  Ⱶ ὼȟώ

While in base frame: ╙
ὰί ὰί ὰί
ὰὧ ὰὧ ὰὧ

In frame ς: ╙ ╡ ╙
ὧ ί
ί ὧ

ὰί ὰί ὰί
ὰὧ ὰὧ ὰὧ

╙ Ễ
ὰί π
ὰὧ ὰ ὰ

Á Note: Although the appearance is different, the invariant properties of the 

Jacobians are the same, i.e.

ὨὩὸ╙ ὰὰίὧ ὰί ὧ ὰὰὧί ὰὧί ὰὰί

ὨὩὸ╙ ὰὰί ὨὩὸ╙
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Jacobian

Å Conventional Jacobian:

V General Derivation Method

Ⱶ ╙▲▲
╙○
╙ⱷ
▲

In which

Where as shown in the figure ▬ᶻ is defined as a vector from origin of the Ὥ ρlink 

frame to the origin of the end effector frame ὲ

All the vectors shall be expressed in the frame of interest.

21
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Jacobian

Å Conventional Jacobian:

V General Derivation Method

Á To derive the Jacobian

The direction and location of each

joint shall be determined.

Where, 

Denotes the vector ὕ ὕ expressed in frame Ὥ ρ.

22
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Conventional Jacobians

Å Examples:

V Example 1: Planar RRR Manipulator

Á Denote ▲ —ȟ—ȟ— and Ⱶ ὼȟώȟ‰

First compute the vectors ◑ and          , for Ὥ ρȟςȟσ

Hence Ⱶ ╙▲where, 

Note Jacobian of the wrist position ╟will be:

23
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Conventional Jacobians

Å Examples:

V Example 2: SCARA Manipulator

Á Denote ▲ —ȟ—ȟὨȟ— and Ⱶ ὼȟώȟᾀȟ‫

Recall DH-parameters and homogeneous transformations:

Ὕ

ὧ ί
ί ὧ

π ὥὧ
π ὥί

π π
π π

ρ Ὠ
π ρ

,  Ὕ

ὧ ί
ί ὧ

π ὥὧ
π ὥί

π π
π π

ρ π
π ρ

,

Ὕ

ρ π
π ρ

π π
π π

π π
π π

ρ Ὠ
π ρ

, Ὕ

ὧ ί
ί ὧ

π π
π π

π π
π π

ρ Ὠ
π ρ

. 

First compute the vectors ◑

◑ ◑ πȟπȟρ ȟ ◑ ◑ πȟπȟρ

Now computeȡ ▬ᶻȟfor Ὥ σȟτby inspection (red/purple vectors):

▬ᶻ
π
π
Ὠ

, ▬ᶻ
π
π
Ὠ Ὠ

. 
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Conventional Jacobians

Å Examples:

V Example 2: SCARA Manipulator

Á Denote ▲ —ȟ—ȟὨȟ— and Ⱶ ὼȟώȟᾀȟ‫

Furthermore, calculate ▬ᶻȟfor Ὥ ρȟςiteratively:

▬ᶻ ╡
ὥ
π
π

▬ᶻ
ὥὧ
ὥί
Ὠ Ὠ

,

▬ᶻ ╡

ὥ
π
Ὠ

▬ᶻ
ὥὧ ὥὧ
ὥί ὥί
Ὠ Ὠ Ὠ

Ȣ

Hence Ⱶ ╙▲where, ╙is aφ τmatrix as:

╙
◑ ▬ᶻ

◑
◑ ▬ᶻ

◑

◑ ◑ ▬ᶻ

◑

ὥί ὥί
ὥὧ ὥὧ

π
π
π
ρ

ὥί
ὥὧ
π
π
π
ρ

π
π
ρ
π
π
π

π
π
π
π
π
ρ

.

Note: The angular velocity is found as ‫ — — — in ᾀdirection. 

25

ὥ
π
Ὠ

ὥ
π
π

MatlabProgram: Jacobian_scara.m
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Conventional Jacobians

V Example 3: Stanford Manipulator

Á For wrist ╟position ▲ —ȟ—ȟὨȟ—ȟ—ȟ— and Ⱶ ●ȟⱷ

Recall DH parameters, and homogeneous transformations

26
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