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In this chapter we review the Jacobian analysis for serial robots. First the
definition to angular and linear velocities are given, then the Jacobian
matrix is defined in conventional and screw-based representation, while
their general and iterative derivation methods are given. Next the static
wrench and its relation to Jacobian transpose is introduced, and Jacobian
characteristics such as singularity, isotropy, dexterity and manipulability
are elaborated. Inverse Jacobian solution for fully-, under- and
redundantly-actuator robots are formulated, and redundancy resolution
schemes are detailed. Finally, Stiffness analysis of robotic manipulators is
reviewed in detail.
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About ARAS

ARAS Research group originated in 1997 and is proud of its 22+ years of brilliant background, and its contributions to
the advancement of academic education and research in the field of Dynamical System Analysis and Control in the
robotics application.ARAS are well represented by the industrial engineers, researchers, and scientific figures graduated
from this group, and numerous industrial and R&D projects being conducted in this group. The main asset of our
research group is its human resources devoted all their time and effort to the advancement of science and technology.
One of our main objectives is to use these potentials to extend our educational and industrial collaborations at both
national and international levels. In order to accomplish that, our mission is to enhance the breadth and enrich the
quality of our education and research in a dynamic environment.
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eﬁ‘ja Introduction

* Preliminaries
v Angular Velocity of a Rigid Body

= Attribute of the whole rigid body {43 A
= The rate of instantaneous rotation of frame {B} attached ar
to the rigid body with respect to a fixed frame {B}. B

w

A vector denoted by Q along the screw axis
With the value equal to the rate of rotation 6.
Q=08. )
= Angular velocity vector can be expressed in any frame: y

A0 = Qi + Q) + Q:2

In which, Q,, Q,, Q, are the components of this vector.
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eﬁ?’ Preliminaries

v" Angular Velocity & Rotation Matrix Rate

= Angular velocity is defined based-on screw representation
What is its relation to the rotation matrix representation?
Note that

AR 1RL =1,
Differentiate both side with respect to time
AR “RY + “Rp 4RT, = 0.
Substitute: “R} = “R3!and “Rp = (“R3")"
(ARB ARgl) + (ARB ARBl)T =0.
This means that 4Rz “R;' Is a 3 x 3 skew symmetric matrix Q*:

. O _QZ Qy
Q=4RpR;'=| Q. 0 -
—Q, Q 0

It can be shown that the three parameters (,, (,, (1, are the components of

angular velocity vector.
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eﬁ?’ Preliminaries

v" Angular Velocity & Euler Angles Rate
= Angular velocity is a vector but Euler angels are not.
= Angular velocity is not equal to the rate of Euler Anaels

d_{ o
Q+£|B But Q=E@,B,y)|B
y 4

AR ~1

Qy = 731721 + 732122 + 733723,
Or equivalently Qy = F11r31 + 712732 + 713733,
2, = Fo17r11 + Po2112 + 23713,

To derive E(a, §,y). For example for w — v — w Euler angles we have:

Ryvuw(a, B,y) = Ry(a)Ry(B)Ry (y)

cacfcy —sasy  —cacBsy —sacy casp
= | sacBcy +casy —soacfsy +cacy sasf

0 —sa casp
and E'a}'ga} = 0 cw SOlSﬁ

—sfBcy sBsy ofé} 1 0 cp
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6533 Preliminaries

v' Linear Velocity of a Point

= Linear velocity of a point P is the time derivative of the position
vector p with respect to a fixed frame.

: dp
r=P= (a)ﬁx

= Relative velocity with respect to a moving frame is denoted by

Vyo] = P
rd B at moov

In which the partial derivative notation is used to denote relativeness
= Golden Rule

dOY (a0 @) _(&) X,
(E)ﬁ;(ﬂmﬁ‘““' OR (df o ot ) T

In which Q denotes the angular velocity of the moving frame with respect to
the fixed frame, and Q* denotes its skew-symmetric matrix representation
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eﬁ‘ja Preliminaries o

v’ Linear Velocity of a Point

= Verify the derivative of the rotation matrix

d(“Rp)\ _ [3(“Ra) A
(&%), - (57, oo

0(“Rp)\
( at )mov B 0

ARB = Q~ ARB.

While

Hence,

This verifies the relation of angular velocity vector with the rate of

rotation matrix Q" = AR, ARB?1
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sﬁa Preliminaries

v’ Linear Velocity of a Point
= Consider the position vector P
AP = 4Po, + “Rp *P,
Differentiate with respect to time
Ap = 4Pp, + ARp BP + 4Rp BP

B Avp = ATJOB + ARB Bp - ARB BTJp,
where "Up = Uyl

The time derivative of rotation matrix is given

ARB = AQx ARB.
Hence,
A,Up — A,UOB _|_ ARB va + Aszx ARB BP.
: : . : ... B
If P is embedded in the rigid body, the relative velocity is "?p zero. Then
Avp = Y0, + 2% Rp BP.
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sﬁa Preliminaries

* Twist:
v" General Motion: Screw Representation

Robotics: Mechanics and Control
Prof. Hamid D. Taghirad

Screw Coordinates

General Motion =

Rotation about § + Translation along §

{5,6} + {S0,d}

Assume the ratio of d to 6 is denoted by pitch A

2=% or A=1% in (m/rad) unit

Define Screw Coordinate (6 x 1)

Unit Screw coordinate $ by pair of two vectors:

EX
$2

$_ s L
T lso xs+As| T [ $a

$5

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems

| 6]
In which s, could be selected on any arbitrary point on the axis s.

April 27, 2021




sﬁa Preliminaries

 Twist: Screw Coordinates

v' General motion of a point P on the rigid body
= Twist: A (6 X 1) Tuple

Twist = [Angular velocity of the rigid body] _ [g]

Linear velocity of the point P

To find the screw for point P, attach an instantaneous fixed frame
On point P aligned with the reference frame {0} then

Twist: $=¢$

In which, the first vector reads: 50 = 4Q.

and the second vector is: (s, x § + A8)d = s, x 05 + 163

=5, X @+ 168
=Q x (—s,) +4ds
=@ x BPo, +ds.

This gives the linear velocity of the interested embedded point P on the rigid body
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eﬁﬁa Preliminaries

 Twist: Screw Coordinates

v' General motion of a point P on the rigid body

= To find the screw for point P, attach an instantaneous fixed frame
On point P aligned with the reference frame {0} then

Twist — [Angular velocity of the rigid body] _ [ﬂ]

Linear velocity of the point P P

Both vectors with respect to the fixed frame {0}

= Screw coordinate 3
Twist: $=q$=q[50x§+kg}
X0
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GE% Preliminaries

« Twist: Screw Representation Consider the angular and linear
) .. velocity of a point P in a circular
v Twist for Revolute joint (R) Q disk with rotary joint
3

= For pure rotational joint A = 0 and ¢ = 6

The twist is represented by $= [s SX 3] 0
0

S .
$= [ A] 6. B Q
So XS QX (—so)
where, instantaneous frame {0} is attached on point P = [Q 3R ]
v Twist for Prismatic joint (P) B
_ - R Waisk = O
= For pure translational joint A = 0o and ¢ = d v = QxR
The twist is represented by P Z
s=|2|d g ‘T
o § ’ 0 I 1 = d.A
Yo S
_ o 77 %P
- Since we use the primary jointin serial Consider a point P on a moving piston:
manlpulators these two screw representatlons are 0 w. =0
. . . . . . P
used in the differential kinematics. $= H d - o
s v, =dS
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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£

J Contents

~J

Preliminaries Jacobian Chacteristics
Angular velocity, rotation matrix and Euler angle rates, Linear Singularity, twist and wrench map, singular configurations,
1 velocity, golden rule in differentiation, twist, screw 4 singularity decoupling, dexterity, dexterity ellipsoid, isotropy,
representation. manipulability, condition number,
Jacobian Inverse Solutions
Definition, motivating example, direct approach, general and Inverse map, fully- and under-actuated robots, redundancy,
2 iterative methods, case studies, screw based Jacobian, general 5 redundancy resolution, optimization problem, inverse
and iterative methods, case studies. acceleration, obstacle avoidance, singularity circumvention.
Static Wrench Stiffness Analysis

3 Wrench definition, principle of virtual work, Jacobian transpose 6 Sources of compliance, Compliance and stiffness matrix, force
mapping, examples. ellipsoid, case studies.

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is
defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation
to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian
solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of
robotic manipulators is reviewed in detail.

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



eﬁ? Jacobian

« Definition
v’ Differential Kinematic Map J

Robotics: Mechanics and Control
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Inverse Map
Given y find q

Forward Map
Given q find

Forward kinematics is a nonlinear map

xi = fi(q1,qz, ., q) for i=12,..,n
Take time derivative:

oh Oh . oK
0q1 0q; 9qn

x=Jq)q, in which, J(q) =|: : | is called the Jacobian matrix
0q, 0qy 9qn

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems
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sﬁ‘ﬁa Jacobian

« Motivating Example

v' Direct approach
Consider 2R manipulator

Denote g = [6;,6,] and j = [iz, ¥ 17
Forward Kinematics:
Xe = licy + e
Ye = 11+ 13812
Take time derivative:
Xe = —l15101 — 1551,(01 + 65)
Ve = Lic161 + 1pc12(0; + 63)
Determine Jacobian:

¥=Jq, inwhich 1:[_1

1817 — 13517 —l251zl
161 + 145 l,¢12
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<% Jacobian

* Definition
v In General

A - T . ) 6; for arevolute joint
q = 41,42, -, qn]" inwhich g; =1 B
d; for aprismatic joint
= While for the task space variable

v . .
¥=v= [wi:] For Conventional Jacobian and

. . () .
X=v= [vﬁ] For Screw-based Jacobian

In which vy is the velocity of the end effector, w; denotes the angular velocity of the end effector
link.

= Linear velocity and angular velocity sub-Jacobians

. _[VE] _ . J.1 .

X= [wE] =J(@)q= [,w] q
In which J,, corresponds to the linear velocity Jacobian,
WhileJ,, corresponds to the angular velocity Jacobian.
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2 -
P Jacobian

* Definition
v" In General

o W
4= [d1,Gz, -, 4n]” and g =v = | 7|

The joint and task variable can be given with reference to any frame

Hence,
0 .~ 0 0 . . .
q="]"%x or "q="]"%x
In which
A
From []_[R OM]
A - B :
w A w
0 s R
A gR 0 B
We may conclude : J(q) = P J(q).
0 4R
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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2 -
P Jacobian

« Motivating Example

v' Different Frames
= Consider task variables in end — effector frame {2}

Denote ¢ = [61,6,] and j = [#, 5 1"

151 — 13515 —12512]

While in base frame: °J = [_l ot L >
1C1 2C12 2C12

.27 _opoy_ [€12 TS12 [_1151_12512 —12512]
In frame {2}: °J = SR ]—[512 C1z] Lcy + Lyesy Ly,

2] = ... = L1s7 0]
l1C2 + l2 lz
= Note: Although the appearance is different, the invariant properties of the
Jacobians are the same, i.e.

0 — 2 2 —
det(°]) = —lil351¢12 — 15512612 + Lilze1812 + 15012812 = Lilzs,
2 — — 0
det(“]) = lilys, = det(°])
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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sﬁfja Jacobian S

 Conventional Jacobian:
v General Derivation Method

x=I@a=|"]a
In which
J = [Jls J2a ceey Jn],

[z, x ~lp* .

Ji= - " for a revolute joint, 0 End effector
L b Base
(2, . .

Ji= 10 : ] for a prismatic joint.

Where as shown in the figure ~1p: is defined as a vector from origin of the (i — 1)link
frame to the origin of the end effector frame (n)

All the vectors shall be expressed in the frame of interest.

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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%a Jacobian 2

« Conventional Jacobian:

v' General Derivation Method
= To derive the Jacobian
The direction and location of each
joint shall be determined.

0
zi 1 ="Ri_,|0],
|

End effector

(=1 % 0 i=1 [ Base
pu = Rf—' rf + pr:’ Xg

Where,
a; CQ,‘
r = | a;so;
d;

i—1

Denotes the vector 0;_,0; expressed in frame {i — 1}.
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%a Conventional Jacobians

« Examples:
v' Example 1: Planar RRR Manipulator

. . . .aT . . . T
- Denote q = [6,,60,,05] and y = |4z, V5, @]
First compute the vectors z;_,and ‘~'p}, for i = 1,2,3

0 [ a2 + aschin
n=n=2n=|01, 'py = | asb +azsbps |,
1] 0
aschys | [ a,cl) + archz + aschin
ps = | azshins |, Opt = | aisO +axsbpp + azsbin |,
0 0
- -

Hence y = J q where,

Robotics: Mechanics and Control

Prof. Hamid D. Taghirad

—(a1301 + az801 + a3shi3)  —(as0)2 + azsh23) —azsfias |
J = (aich +axchin + aschiz)  (axchip +aschiz)  actin
1 1 1
—(a180) + as012) —(azshy2) 0
Note Jacobian of the wrist position P will be: J=| (aich, +axchn) (axcb) 0
1 | 1

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems
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%a Conventional Jacobians

. Joint 2
« Examples: %
) . '\ Joint 3
v' Example 2: SCARA Manipulator T S |
- - Link 3
- Denote q = [91, 62,d3, 94] and X = [XE, YE, ZE, (UE]T Link 1 .
i T X
Recall DH-parameters and homogeneous transformations: A ’
dy
-Cl _Sl 0 a1C1 C2 52 0 a2C2 Zp [’
OT_ S1 1 0 a8, 1T_ S —C 0 a,S; H\dL d A X3
1 - ’ - )
00 o T o 0 o 1 = .
| 0 1
i . e
10 00 4 =S4 0 0 0 Yo
2 _ {01 0 0] 3._[S4 ¢ 0 0 Link 0
sT=00 0 1 dsf* T|o 0o 1 df T
0 0 0 1 0 0 0 1

First compute the vectors z;_;
ZO =Z1 = [0, 0, 1]T, zZ) = Z3 = [0,0,_1]T

Now compute: ©= pj , for i = 3,4 by inspection (red/purple vectors):

0 0
pa=| 0 | *pi= 0
—d4 —d3 —dy

Robotics: Mechanics and Control
Prof. Hamid D. Taghirad
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%a Conventional Jacobians

« Examples:

v Example 2: SCARA Manipulator

o
=9R|[0
1 0]
@
=9R| 0
|d |

+°ps =

+1p;

aC12
a512

—d, — dJ'

aiS1 + a2

[a1C1 + ay 012]

| d,—ds — d,

Hence y = J q where, J is a 6 X 4 matrix as:

z3 z, X 3p;

0 4% 1,,%
j=[20%°Pi 2% 7P}
ZO Zq 0

Zy

" Denote q = [91, 62,d3, 04] and)( = [xE,yE,ZE,(UE]T
Furthermore, calculate “~1p} , for i = 1,2 iteratively:

]:

Note: The angular velocity is found as wy = 6, + 6, — 8, in z direction.

K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Robotics: Mechanics and Control
Prof. Hamid D. Taghirad

Department of Systems and Control, Advanced Robotics and Automated Systems

Joint 2
Z4 .
'\ Joint 3
Joint 1 0, o
- Gl ._51_‘ 2 Link 3
— = | |
Link 1 =1 0-
‘i x LITTR = | - X?
Zo 7 |
| A int 4 7 X
H‘Q* / "o 6, A 3
[ .4 d1 ¥3 dy
TR L> Xy
/O/ 0 Q
Xy Link 0 Ya
T Zs
[—Q1S1 — Q2512 AzS12 O 07
aic1 +axci;  aciz 00
0 0 -1 0
0 0 0 0
0 0 0 0
1 1 0 -1l

Matlab Program: Jacobian_scara.m

April 27, 2021




%a Conventional Jacobians

v' Example 3: Stanford Manipulator

. . . . . . . . . 1T . . T
ROBOT = Forwrist P pOSItIOﬂ q= [81' 627 d3r 64» 95» 66] and X= [xp; wp]

ANALYSIS

- Recall DH parameters, and homogeneous transformations -nnnn
¢ty 0 —s6; 0O chh 0 sb, 0 1 —m/2 0 0 0y
dy 0 _ st 0 C91 0 1 _ 592 0 —092 0 2 2 0 d 0
A=l 10 ot =0 1 0 a4l " ——
0 0 0 1 0 0 0 1 3 0 0 ds 0
U & 4 —r/2 0 0 0,
0 10 0 sy 0 —s6; O 5 /2 0 0 05
2 _ -1 0 0 3 594 0 C94 0 6 0 0 0 0
ds A=l 01 a |t M=o 1 0 ol :
0 0 0 1 0 0 0 1
s 0 sf5s O g —st 0 0O
4 _ 895 0 —C95 0 5 _ 596 C96 0 0
AS - 0 1 0 01t’ A6 - 0 0 1 0
0 0 0 1 0 0 01
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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%a Conventional Jacobians

v' Example 3: Stanford Manipulator

e . Forwrist P position q = [6;,6,,ds, 64, 65, 66] and ¥ = [x,, @]

ANALYSIS

First compute the vectors z;_,

0 0 —st 0 CB] )
d, ) = O N , = ORI O = CQ] s ZQ = 23 = 0R2 O = SQ] 592 "
1 1 0 1 cth
0 —s6584 + cO;cOc04 0 $6,¢c04805 + c0ycH,860,805 + c56,¢05
Zy4 — 0R4 0| = 091394 + 891092094 , Zs = 0R5 0| = -—CQ] C94895 + 89109289456'5 + 891892C95
& 1 —892C94 1 —892894895 + C92C95
and ~'p¥, fori =1,2,..,6 : 'pe="p;="p;=0

dycH,56, d1cO186> — drst, d;cts6, — drs0)
0
2pt = | dastish, |, 'pi = | disOis6r +dach; |, "pi = | dssbisb, + dych,
d3092 d3C92 d3092
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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sﬁ‘ﬁa Conventional Jacobians g

v' Example 3: Stanford Manipulator

) . ) . . . . . .oaT ) ] T
RN - For wrist P position g = [0y, 0,,ds,0,,05,0¢] and x = [x,, @,]

ANALYSIS

Hence y = J q inreference frame {0} is given by:

" —dyst80, — dacO) dxchichr chish; 0 0 0~
dscO1s02 — dasO)  dzsOchr  sH;80; 0 0O O
J= 0 —dss6, cHr 0 0O O
o 0 —s0, 0 chs6,
0 ch, 0 sO;s0, Z4  Zs
B 1 0 0 ctr ~

Where z,, z; are joint axis unit vectors given before.

Note 1: Since the wrist position is considered for the manipulations, the Jacobian
matrix is upper triangular.

Note 2: The Jacobian matrix will be much simplified if it is given w.r.t frame {2}.

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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2 |
P Jacobian

« Screw-based Jacobian:
v General Derivation Method

Robotics: Mechanics and Control
Prof. Hamid D. Taghirad

x= o] =1@a =[] 4
X =20 8

Where the unit twist is defined in slide 15 as:

For rotary joint (R) 3 :
So X S
For prismatic joint (P) ol .

End effector Zn

Yo

Therefore, the Jacobian matrix consists of the unit screws:

J=1[51%2 . $.]

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



2 -
P Jacobian

«  Screw-based Jacobian: Z
Z
v" General Derivation Method P %
. [ ) . $
x=p|=1@a= [],;‘7’] q
~ ~ ~ ZD
] = [$1! $2r "'r$n] $
- $n 209
= Note that the task space variable b
_ “’E]
vP Z,

Robotics: Mechanics and Control
Prof. Hamid D. Taghirad

End effector
Consist of the angular velocity of the end effector

But linear velocity of any point P (including the end effector E) ° Base
To assign the screw parameters Xo
Consider an instantaneous fixed frame on the point of interest P.
The direction of the joint axes can be determined by inspection or by the third column of ;_%A.
The distance of the screw axes from this instantaneous frame is denoted by s, ; represented in this
instantaneous frame

If the origin of intermediate frames (3 or 4) is used as the point of interest, the Jacobian is much simpler.
Notice the notation of s, ; denotes the origin of frame i w.r.t the instantaneous frame on point P.

Yo

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



sﬁ‘ﬁa Jacobian

e Screw-based Jacobian:

v’ Iterative Recipe:

= |nitial Conditions
Consider frame {j} to represent the Jacobian
Begin with s;4; = [0,0,1]7, 5, j+1 = [0,0,0]" o[}

= Forward Computation
Fori=j+1,..,n—1compute % Base
siv1 = (R)('z),
So,i+1 = Soi + (Ri)('1y),
‘Rivi = UR)(Ri11).

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems
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%a Jacobian S

- Screw-based Jacobian: D
. : . Xo
v’ lterative Recipe: -
=  Backward Computation g
Fori=j—1,..,0 compute ;0
siv1 = (R (‘'zy), 1
So.i+1 = Soi+2 — CRix ) (i), 8, g $n 201
'Ri-1 = CR)(Ri-),
Where th._] — (i_]R[)T End effector Zn
Furthermore, ) Yo
' 0 a; Base
'z7=10| and ‘r;=| d;sqa; °
1 dica,-

Robotics: Mechanics and Control
Prof. Hamid D. Taghirad

Is the position vector from 0;_, to 0; expressed in it" frame.

Assembling the unit screws derived above, yields to the Jacobian of the point P as:

OwE

0
VUp

. S; . 0 ..
=Jq - J=Unl2 - Jnl andj; = [so,i % Si] for (R) jointor J; = [Si] for (P) joints.

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021




%a Screw-Based Jacobians

« Examples:
v' Example 1: Planar RRR Manipulator

- Denote ¢ = [6,, 92,93]T and j = [wg, g ]T

= Put an instantaneous frame {0} on point Q.
= Find the screw details by inspection:

For $5:
—dasz —aszC123
S3 = [01 OI 1]TI So,3= gR 0 = |—0as3S123|.

0 0
For $,:
[—az] [—A2C12 — A3C123
s, =10,0,1], SO,ZZSO,3+(2)R 0 |=|—az512 — a33123]-
| 01 | 0
For $1: Matlab Program: Jacobian_screw_RRR_inspection.m
[—a;] [—Q1C1 — AC12 — A3Cy23
s; =1[0,0, 1]7, So,1:So,2+(1)R 0 | =[—ais1 —azsiz — a35123]
| 01 L 0
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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%a Screw-Based Jacobians

v Example 1: Planar RRR Manipulator

- Denote q = [, 92,93]T and x = [wg, v ]T

= The Jacobian y = J(q)q is found by J = [$;, $5, $].

. S
= Inwhich, §; = [So,i v Si]’ hence:
0 0 0
0 0 0
J= 1 1 1
—Qa1S1 — A2S12 — 435123  —A2S12 — A3S123  —A35123
ai€; + azCip +azCipz3 A€z +azCy23 a3C123
0 0 0

Robotics: Mechanics and Control
Prof. Hamid D. Taghirad

In planar coordinates, this means:
w,=¢=01+6,+86;
xg = —(a;51 + azS15 + a35123)01 — (az512 + a35123)0; — (a35123)03
Yo = (ajcq +azeqn + a3¢123)01 — (az012 + a3¢123)0; — (a3c123)03
Which is exactly as found before (see slide 23).

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems
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%a Screw-Based Jacobians o

v Example 1: Planar RRR Manipulator

- Jacobian for wrist Point P : ¢ = [6,, 0,, 93]T and ¥ = [wg, v, ]T
= Put an instantaneous frame {0} on point P.
= Find the screw details by inspection:
—az —azC12
0 ] = [—azsn].

0
s; =5, =5, =10,0,1]", So,3=[0]rso,2=(2)R
0

0 0
—ag —a1C1 — A€ o
So1=SotIR | 0 | =[—ais1 —azsy, O“ _
0 0 By SR
= Hence, $;
[ 0 0 07
2 (1) 2 wz=(ﬁ=91+92+93
J= or component-wise: X, = —(a;5; + a;512)0; — (a2512)6;
—a1S1 — AyS512 —ayS12 0 . . .
¢4 +azci, axcy; 0 Yp = (@161 + a¢12)01 + (az612)0,
0 0 0
Which is exactly as found before (see slide 23)' Matlab Program: Jacobian_screw_RRR_inspection.m
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021
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%a Screw-Based Jacobians

« Examples:
v' Example 1: Planar RRR Manipulator

. Denote q = [9'1’9'2, 9’3]T and ){ = [wE,vQ ]T

ROBOT

ANALYSIS

= Put an instantaneous frame {0} on point Q.
= Find the screw details by iteration:
= Initial Conditions:
Forj=3,s,=10,0,1]",s,4 = [0,0,0]".
= (BI) Now look backward, for i = 2:

; [0] o as — Q3Cq23
— — 0 —0 —
s3=3R 2z, = 0|, "Sp3="Sp4 — 3R3R| 0 [ = [—azS123 Matlab Program: Jacobian_screw_RRR.m
[ 1] 0 0
0] az —QyC12 — A3Cq23 [ Owpg , g s
SzziR Zl = 0 , S0,2=SO3 — (Z)R O = —azslz —_ a3 5123 [)vQ _]q _)] - Ul!]ZJ ---’]3]1 an ]i - I:so‘i X si]
[ 1] 0 0 0 0 0
[0] a; —Q;1C1 — AC12 — A3C123)] (1) 2 (1)
$1=0R 2o = |0], $o1=S5,2— IR| 0 | = [—a151 — az512 — azS1z3| =
1] 0 0 | Q151 — A2S812 — A3S123  —A2S12 — A3S123  TA35123
a1Cy + €12 +A3C123  ApC1p + A3C123 a3C123
0 0 0
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



%ﬁ Screw-Based Jacobians

v' Example 2: Elbow Manipulator
= Consider the point of Interest O’ the origin of frame {4}

ROBOT

ANALYSIS

- Denote ¢4 = [0, ... 96] and y = [wg,v,]"
= [nitial Conditions:

Forj =4,s5 =[0,0,1]7,s,5 = [0,0,0]".
= (FI) Find the 6™ axes details. For i = 5:

895 0
= 4R5 5z5 =1 —cbls |, So6=S8u5+ R; 51’5 = .
0

= (BIl) Now look backward, For i = 3:

o O

0 —das cOi4 S634 0
4p 4 _
S4 = Ry 313 =|-1]1, S04 =So05— R4'ra = 0 v Ry = ‘Rs 3Rz = 0 0 1
0 0 —-8934 C934 0
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



%a Screw-Based Jacobians

v' Example 2: Elbow Manipulator

. : . T )
fosor Denote q = [0, .., 05| and ¥ = [wg, vo/]"

¥ = Fori=2 -
0 —a3chy — ay Xg X %o
S3 = 4R2 212 =|-1]), S0.3 = S04 — 4R3 3?’3 — 0 ' %
0 a3sty 1
Oy St O]
4R1 = 4R2 2R1 — 0 0 —1 25
—$6y34 COpa 0 | zg
= Fori=1:
0 —aych3y — a3chy — ay chichns  sOiCOns SO
Sz = 4R1 ]z1 = _'1 3 S(),2 —3 80’3 — 4R2 2"2 = 0 3 4R0 — 4R1 IR[) = —56] C91 O
0 8634 + azsty —c0;56234 —56156234 ¢34
= Fori=0:
59234 —a2c6'34 - a3094 — aq
S1 :4ROOZO= 0 So,1 =So,2_4R1 l"‘l = 0
c6s a28034 + a3s04
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



eﬁ‘ja Screw-Based Jacobians

v' Example 2: Elbow Manipulator

ROBOT

ANALYSIS

- Denote ¢ = [0, ...,96]T and ¥ = [wg, vyr]"

oo . . L
Hence y =] q in reference frame {4} is given by:
S6r34 0 0 0 0 sb |
0 —1 —1 -1 0 —C95
4y _ 6234 0 0 0O 1 0
0 8634 + a3 394 as 594 0 0 0
Xs] 0 0 0O 0 O
0 arcOx +ascly +as azcls +as ag4 0O 0
In which,
X51 = arcOr + azchrz + aschHry.
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



%a Screw-Based Jacobians o

v' Example 3: Stanford Arm (2RP3R) 2
= Consider the wrist point P the origin of frame {3}

ROBOT

ANALYSIS

g - Denote ¢4 = [0, ...,96]T and y = [wg, vp]T
= Initial Conditions:
Forj=3,s, =10,0, 1]T,so,4 = [0,0,0]".
= Find the 5" and 6" axes details. For i = 4:

—894 0 9
ss=Rytza=| cbs |. Sos=8Soa+Ri*ra=]0]|,
0 0

Ry =Ry *Rs = | sOsc0s  cOs  s04505

C@4C95 —S94 094865
—895 0 C95

Fori=>5:
094895 0
S¢ = 3R5 515 = | sb4s6s5 |, S0.6 = So,5 + 3R5 5r5 =10
095 0
. . . . . . . Matlab Program: Jacobian_screw_stanford.m
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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%a Screw-Based Jacobians
v' Example 3: Stanford Arm (2RP3R)

+ Denote g = [6;,...,66] and j = [wg, vp]”

ROBOT

ANALYSIS

(- . : .
Find the 39, 2"d and 15t axes details. For i = 2:
0 0
S3 = 3F\’z 222 =10 » 83 =854 — 3R3 3?’3 = 0 ,
1 —ds
0 0 -1
3R] = 3R22R1 = | cth s6, 0
Fori=1: 6 —c6 0
~1 d;
s ="R 'z = 0, spo=s,3—"R’ra=| 0 |,
0 —d3
891 —C91 0
3R(} = 3R| IRO = C91C92 891C92 —S92
091 892 S@[ 392 C92
. . . . . . . Matlab Program: Jacobian_screw_stanford.m
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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sﬁ‘ﬁa Screw-Based Jacobians

v' Example 3: Stanford Arm (2RP3R) 2
T . T . T 2
;o Denote g = [6;, ...,06]" and ¥ = [wg, vp] Y
[~ Fori = 0:
0 da
S = 3R0 OZO = —892 s So.l =Sp2 — 3R1 lrl = 0
092 _d3 Xs
Hence y =J q in reference frame {3} is given by: %
-0 —1 0 0 —sOi cOss0s
—s6, 0O O O cOs s64565
3 _ co; 0 0 1 0 cOs
| =dsB, 0 0 0 O 0
—dgcgg d3 0 0 0 0
| —ds6, 0 1 0 0 0 |

Observe that the Jacobian is greatly simplified for the wrist point P.

. . . . . . . Matlab Program: Jacobian_screw_stanford.m
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021
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In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is
defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation
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‘?33 Static Wrench o

«  Applied Wrench to the Environment

v" How much actuator effort is needed to apply such forces/Moments
= Define the actuator torque/force

t; forarevolute joint

_ - o
T =[r1, 7, .., 7a]" in which 7 {fi for a prismatic joint

= Define the applied wrench to the environment: (6 x 1) tuple

Fp=[F FE E]’ The applied force

F = [Fg,nz]T in which
[Fi, mel {nE=[nx ny Nz]T  The applied torque

Wrench is a screw-based coordinate as twist
= Jacobian transpose maps the joint space variables to task space by:

4 N

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021




%ﬁ Static Wrench

*  Principle of Virtual Work
v" Virtual Displacement

= Infinitesimal change in the position and orientation §q or 5y
Which does not really change the posture and force distribution in the robot.
5q = [6q4,8q,, ...5q,]": The virtual displacement of the joint variables

8x = |6x,8y,62,66,,50,, 602]T: The virtual displacement of the end effector, where [56,, §6,, SGZ]T = 663
is the orientation variable in screw representation.

v' System Under Static Balance
= The total virtual work, §W, done by all the actuators and external forces is equal to zero.
SW =1"6q —FT'5y = 0.
where, —FT is used in here, to include the wrench applied to the robot by environment.
= Jacobian maps: y = J(q)q therefore, 6y = J(q) dq.
- Substitute sW = (z —FTJ(q))56q =0
= This holds for any arbitrary virtual displacement §q; Hence
T —FJ(q) =0 or |[t=]"()F

This means JT(g) maps the wrenches F applied to the environment into the actuator torques ©

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021
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%ﬁ Static Wrench

v' Example 1: Planar RRR Manipulator
= Denote T = [t4, 7y, 73]7: The actuator forces in the joints, and fy oo Fy

ROBOT

ANALYSIS

¥ - and F = |fy. f; nZ]T the planar force Fg = [f,, fy]T and n, the torque
exerted to the environment
» The Jacobian map t = JT(q)F may be used
In which,
—aq1S1 — A2S12 — A3S123  —A2S12 — A3S5123 _‘135123]

J(q) =| aicq +azciy +ascipz Ay +ascyns a3C123
1 1 1

= This means:

Ty = —(a151 + az512 + a3S123) fx + (a1¢1 + aycyp + azcypz)fy +
Ty = —(az812 + a35123) fyy + (2012 + A3¢123)0, + 1,
T3 = —(a3s123)fx + (azc123)fy + 1, O?_-.__-,
= This may be verified by Newton-Euler free body diagram method.
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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eg?f Jacobian Characteristics

« Singularity
v' Jacobian reveals the forward differential kinematic map ¥ = J(q)q

Forward Map
Given q find

Inverse Map
Given y find q

Consider the inverse map

For square Jacobians if J=1(q) exists then g = J~1(q)x

This is used to find the required joint speeds to achieve a desired velocity in task space.

At singular configurations of J(q), this matrix is not invertible (det(J) = 0).

@ singular configuration, with finite joint speeds all arbitrary task velocities are not achievable!
This will happen at the boundary of the workspace, and ...

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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%a Singularity

*  Motivating Example
v' Consider the planar 2R manipulator

Denote q = [6;,6,] and j = [z 5 1"

lis1 — l3s12  —13812

Jacobian in frame{0}: °J = [_1161 then Len

,and in frame {2}: 2J = [l lisz 0]
1

= Singular configurations
det( 0]) = det( 2]) = l1l252 =0 |f Sy = 0 or 92 =0orm

= Physically: Fully extended or retracted arms (We saw this when one double solution for IK occurs, on the
boundaries of the workspace)

« Let us find the inverse solution:

. L 1 lyc lps x
_ -1 1| _ 2€12 2512 E
4=J"@x > [92] s, [—1101 =l —lysy — 12512] [}"E]

To visualize, consider xz = 1 while y; = 0 (move in x direction), then

. 1
6, =
L7 Liysy

As the arms are fully extended s, — 0, and 6,60, — oo
At the boundary of the workspace s, = 0, no further out movement in x direction is possible.

-1
2 = ——(licg + lcq2)
l1lzs;

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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L9 Singularity e

* General Description
v" Consider a 6 x n Jacobian J(q) of a nDoF robot denoted by

Reaching high:
Fully extended neck

Prof. Hamid D. Taghirad

Robotics: Mechanics and Control

X=J1q1 +]2G2 + -+ JnGn Or ¥ = $1G1 + $2G2 + - + $,05
Where J; or $; are the columns of the Jacobian matrix

Fully extended arms to lift heavy loads

Robot EE can reach any arbitrary twist if rank(J(gq)) = 6.

rank(J(q)) = No. of independent J; or $, (Configuration Dependent)
For a 6DoF robot rank(J(q)) < 6 and @ g that < 6 singularity occurs
For a 2DoF robot rank(J(g)) < 2 and @ q that < 2 singularity occurs

At singular configurations:
Certain direction of motion is unattainable (undesired)
Bounded end-effector velocities — unbounded joint speeds
Bounded joint torques — unbounded end-effector forces (desired)

Often occurs @ boundary of workspace (where one double solution for
IK occurs)

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021




<3 Singularity

« Singular Configurations
v" For Square Jacobians: Find g such that det (J(q)) = 0.
v" Decoupling of Singularities

_ Ji1 T2
= Forthecaseofn=6:J(q) = Jarm | Jwrist]l =
21 J22
: : . 0 0 0 O
= If wrist axes are revolute and intersect at a point then J ;s = =|s ~ =
22 S4 S5 S5
. : i1 O
= The Jacobian is upper triangular J(q) =
21 J22
= Singularity occurs @ q, in which:
det (J(q)) = det (J11(q)) - det (]zz(CI)) =0
= Determine Singular configuration of arm and wrist separately.
Wrist singularity occurs @ g, in which: det (J;;(q)) = 0
Arm singularity occurs @ q, in which: det (J,1(q)) =0
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



%a Singularity

* Decoupling of Singularities Z
v Wrist Singularities i y6s=0
= Consider 3R intersecting wrist: -
9 (0: 00|05

A typical industrial design is like w — u — w Euler configuration.

det (J2(q)) =0
This happens when the z; axes are linearly dependent.
Singular configuration: when z; and zs are collinear.
Then: 6; =0 orm

v' Wrist Singularities
= Consider 3R Elbow manipulator like design

G4 s

—@281C2 — A351C23 —A252C1 — a35923C1 —a3C1S23
Jii = @2C1C2 + @3C1C23 —a28182 — A351S23 —A3S515923
0 a9Co + a3C23 a3ca3

» The determinant is:

det J11 = —a2a383(a262 + agcgg)

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021




%a Singularity

« Decoupling of Singularities
v" Wrist Singularities
= Consider 3R Elbow manipulator like design
= Singular configurations: If s;=0 or 6;=0or =«

Fully extended or retracted.

C g,
\ ‘

= Orwhen aycy, +azcy;3=0
The wrist point intersect the base axis
This case occurs @ infinitely many configurations
Where infinitely many solution exist for IK.

If the elbow manipulator has an offset this singular configuration vanishes.

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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%a Singularity

* Decoupling of Singularities
v' Wrist Singularities

Robotics: Mechanics and Control
Prof. Hamid D. Taghirad

Consider 2RP Spherical Manipulator with no off set
By inspection singular configuration exists if:
The wrist point intersect the base axis:

Consider SCARA Manipulator
The Jacobian is derived before, in which

] = —ai81 — 42512
<1 (g 0
J 0 h Q2 = @1C1 + ascC12
= a9« where
H 02 04 1 a3 = —a1812
o a4 = aici2

det(]ll) == 0 |f a1a4 - a2a3 == 0

This occurs if s, = 0, which implies 8, =0 or .
This is similar to Elbow manipulator for fully extended or retracted arm.

K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Department of Systems and Control, Advanced Robotics and Automated Systems
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¢ Dexterity

* Motivation Example:
v' Cobra Attack: Optimal Posture

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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¢ Dexterity

« Definition:
v SKkill in performing tasks, especially with the hands. “quickness”

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
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ef&"? Dexterity

*  “Quickness” in Multi Dimensional Space?
v Consider norm bound joint velocities (unit sphere)
1g117 = qf + 43+ +d4r <1
v" What happens to the task space velocities?
i T AT 4o el or . T,
113 =q"q =[x TTx=x"1"TTx =%"") %
For all fat, square or tall Jacobians: JJT is a 6 x 6 matrix, hence
. : -1,
g3 =x"(I") x
= This result into Dexterity or Manipulability Ellipsoid
for a uniform input ||¢||3 = 1, the output task velocities shall have a weighted norm along this ellipsoid

lql13 11113

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021




eﬁa Isotropy

» Eigenvalues and Eigenvectors

v" The ellipsoid is characterized by its eigen parameters
det(JJT) = A, - A, -+ Ay
v Two extreme cases:
= Singularity: Singularity
34,=0->detJJ))=2,-4,1,=0
The ellipsoid is changed to a cylinder in v; (eigenvector) direction.

There exist no finite joint velocities to reach to task velocities in v;
direction

= [sotropy:
Vv ;=1 = JJT = Iunit matrix - det(JJ7) =1
The ellipsoid is changed to a sphere
Dexterity in all task space direction with finite joint velocities
Isotropy in applying equal velocities in all directions

Isotropy
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£% Manipulability e

« Gain of the Velocity Map

v Applying a uniform and unit norm input ||g||5 = 1
= Gain of the output is given by
det(JJT) = A1 - 4z - Ay

Where A; denote the eigenvalue of JJ7
= Singular value of J ?

For a general even non-square matrix J

o;(D =v4UJ")

Where g; denotes the singular value of matrix J

= Manipulability Measure u of (J(q))

u=+/detJJT) = /A, - A, - A, = 0y - 0, -+ 7, Singular values of (J)
The measure is configuration dependent.
If u — 0 the configuration of the robot tends to singularity.
If u — 1 the configuration of the robot tends to isotropy.
u =0, if and only if rank(J) < n, the DoF’s of the robot.
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£ Manipulability

« Gain of the Velocity Map

v" Manipulability Measure u of (J(q))
= If the robot is under actuated it is deficient and u = 0.

= If the robot is redundantly actuated, there are extra o;’s than Dof’s
This could be used to increase u (Biological designs!)
Reconsider Cobra attack, the snake uses redundant posture for the attack.

= Ingeneral
: : -1, 1 . 1. : :
Iqllz =x"0J") k< T X115 = 2 1113 = 1lxll = pliqll

max|| x|l = omaxllqll in direction of vy,
min|| || = o, llqll in direction of v,y;,

u denotes the gain required to generate a specific task space velocity
If u = 0 some velocity directions are not attainable.
If u = 1 the uniform input is projected uniformly in all directions of the outputs.
The shape of the ellipsoid is also very informative on the attainable directions.
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£ Manipulability

« Other Measures
v" Reciprocal of Condition number of (J(q))

Imax()
Imin(J)
In which a,,,,(J), and a,,;,(J) denotes the largest and smallest singular value of J, respectively.

= The measure: rcond(J) = 1/x(J) = _Zmin(cfl))

= Ifrcond = 0: at least one of the singular values are zero: singular configuration

= If rcond = 1: All singular values are one: isotropic configuration
u considers all the singular values by rcond only extreme values
The analysis are similar but the ellipsoids are not analyzed in rcond.

v Global Measures

= All measures are configuration dependent
There could be good at a pose and bad at another.
Integrate the measure in the whole space to get an averaged global measure

= Definition: Condition number of a matrix J is «(J) =
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£% Manipulability e

« Examples:
v' Example 1: Isotropy Analysis of 2R Robot T
X = 1Xe)Ye
= In 2R manipulator:
¥ =J q,inwhich J in frame {2} is 2J = [l Clls_il ZO]
1%2 2 2
= Inspired by human arm, consider [; =2, and [, = 1. X
an

Use symbolic manipulator to find JJT and its eigenvalues:
252 2¢,5, +V2s,
2
2c,5, +/2s, (2\/§C2 + 1) +1
1/2
11,2 = i(4‘C22 +4\/§C2 + 2) / +\/§C2 + 2

. det(JJT) = 2s2, y

JJ" =

In Isotropic configurations A; = 4, = 1.

Only for this bio-inspired design isotropy happens @ 6, = +3 vo,. oL =X
4 B,
The locus of isotropic configurations are shown in figure.
While singularity happens at fully-extended or retracted arm! Locus of
isotropic points
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Cd? Manipulability

v' Example 1: (Cont.)

= Now consider 6, = %; for this configuration:
2 V2| ™1 _
ﬁ.zl(n)
Calculate the velocity map gains

A = 3414 : 111 1 [—1
T 1 . _ _
For JJ A, = 0.586" while v; = ﬁ[1]’v2 - ﬁ[ 1 ]

N0, =) =

1 —1/\/71
—1/\2

n-1 1, =0.292
then for (JJT) = - 2 = 1707
Gmax = Omax = 1.847 g o 111 - -1
FON TS i = Oy, = 0.734 W1 Vmax = [y min = 7]

The gains are singular values of J.
Directions are found by eigenvalues of JJT
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<3 Manipulability

v' Example 1: (Cont.)

Proof of the mapping gains for 8, = % configuration:

From gl = " (IT) "k = 62 + 63 = v2 — V2 vewy + v

2 2
U
91+92—0292< + 2 paz07 (X
V2 2 \/_ V2
For vy =[], v = v, = 6 + 67 = 0292(v2w,)" > (VZw,)" = 3414(67 + 63)
= Ymax = 1.848||q]l In Vpppy = [ﬂ direction
Forvy =[], ve = —vy 6 + 63 = 1707(VZ )" - (VZw,) = 0.586 (67 + 63)
. N —17 .. .
= Xmin = 0.734 {|q]l In Uy, = [ 1 ]dlrectlon

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021



£ Manipulability

v Example 1: (Cont.)

- Foro, =§ configuration:

= Xmax = 1.848 ||¢I|| = Omax IIqII in ﬁmax direction

= Xmin = 0.734|lq|| = omin gl in ¥,,,;,, direction

1
/ \ . g2 = x" (") x —
\/1 i
e

- Dexterity Measures: u = /det(JJT) = /4, - 1, =2, rcond = 2min = 279% _ 0.414

Omax  1.848
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defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation
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eﬁ? Inverse Solutions

« Definition:
v’ Jacobian Forward Map ¥ =J(q)g or t=]J'(q)F

v Inverse Solution for Fully Actuated Robot (m = n = 6)
= Jacobian matrix is square:
In non-singular configurations q, where J~1(q) exists:
q=J""@x o F=]T(@r
= Near singular configurations:
To achieve a finite velocity y very large joint velocities is required g — oo.
Very large forces could be applied to the environment with low actuator torques
v Inverse Solution for Under Actuated Robot (m < 6)

= Jacobian matrix is tall rectangular (6 X m):
Solution exist only if ¥ lies in the range space of J(q) or  lies in the range space of JT(q)
This is satisfied if rank J(q) = rank [J(q) | ¥]
= The solution is found by left pseudo inverse of J(q)
qg=J"(@x where JT= (]T])_le Note: (JT]) is m x m:
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{2 Redundancy in Nature

1%

Human Arm: 7 Joints Mammal’'s Neck: 7 Vertebra

Skeleton: Giraffes vs Humans

7 vertebrae HumanS and

[ —— ;: 7 vertebrae
Y - giraffes have /
o — the same
' number of
Human Shoulder: 4 Muscles bones in their

Supraspinatous muscle X I necks.

x Giraffe’s
5\ vertebrae are

just bigger!

Subscapularis 484 £ Infraspinatous Teres minor

muscle muscle muscle
Anterior shoulder Posterior shoulder
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€3 Redundancy in Nature

Human wrist: 8 Bones Bird’s Neck: 14 Vertebra!

JOINTS
istal interphalangeal
} (DIP)
BONES Proximal
interphalangeal
Distal (PIP)
halanges
i < Metacarpophalangeal
Middle (MCP)
phalanges -
Proximal
phalanges
Interphalangeal
(IP)
METACARPALS
Metacarpophalangeal
(MCP)
Carpometacarpal
Hamate (CMC)
Pisiform :
CARPAL ) Trapezium
BONES Trlquetrum Trapezoid
Lunate :
Capitate S
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eﬁ?’ Inverse Solution

v Inverse Solution for Redundantly Actuated Robot (m > 6)

= Jacobian matrix is fat rectangular (6 X m):
Infinitely many solution exists for the inverse problem
Basic solution is found by min-norm or least-squares solution:
Find g suchthat j =J(q)g while ||q||y is minimized

= The solution is found by right pseudo inverse of J(q)
qis =JT(@Qx where J* =]T(]]T)_1 Note: (JT))is 6 x 6

= Right pseudo inverse properties:
o=t =1
= Set of all solutions:
q=J"(@x+-J)b
In which, b € R™ is any arbitrary vector, and (I —JtJ) # 0.
All vectors in the form of g, = (I — JtJ)b lie in the null space of J: ¥(J)
g, # 0 but the corresponding task space velocity x, = J(q)q, = 0 (self -motion)
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6533 Inverse Solution

v" Inverse Solution for Redundantly Actuated Robot (m > 6)
= LS solution is always a suitable alternative;
= Redundancy Resolution

Finding suitable ¢,, to accomplish some other objectives

Limited Actuator
Torques

Obstacle Singularity Increasing Maximizing
Avoidance Circumvention Dexterity Manipulability

A combined objective
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eﬁ?’ Inverse Solution

v Inverse Solution for Redundantly Actuated Robot (m > 6)

= Optimization Problem
Define a cost function to be minimized by redundancy resolution: V(q,q) or V(x,x) (e.g. llqll2)
Consider Jacobian mapping as an equality constraint: ¥ = J(q)q
Consider Forward kinematics as a nonlinear equality constraint: y = frx(q)
Consider joint limits as inequality constraints: qnmin < 9 < Qmax aANAOr qmin < 4 < Qmax

minV(q,q)
q.9
([ x=J(@q
X = frk(q)

Subject to { gmin < 4 < Gmax
qmin < q < qmax

\ :
= Analytical Solutions: Lagrange and KKT Multipliers
= Numerical Solutions : Interior Point Method “fmincon” in Matlab
Genetic Algorithms , ...
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<% Inverse Solution

v Inverse Solution for Redundantly Actuated Robot (m > 6)
= Numerical Solution: fmincon function in Matlab
Nonlinear Programming Solver

Syntax
x = fmincon(fun,xe,A,b)
x = fmincon{fun,x8,A,b,Aeq,beq)
x = fmincon{(fun,xe,A,b,Aeq,beq,1b,ub)
c(x)‘< 0 x = fmincon{fun,xe,A,b,Aeq,beq,lb,ub,nonlcon)
- x = fmincon(fun,x®,A,b,Aeq,beq,1lb,ub,nonlcon,options)
ceq(x) =0 } LT
min f(x) suchthaty A-x<b All Algorithms
X
Aeq X = beq Algorithm Choose the optimization algorithm:
b < x<ub +  ‘'interior-point' (default)
- - 'trust-region-reflective’
‘sqp’
'sqp-legacy' (optimoptions only)
‘active-set’
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eﬁ‘ja Inverse Acceleration

v" Differentiate Jacobian Forward Map ¥ =J(q)q
¥ =J@d+](@q
= Inverse Solution for Fully Actuated Robot (m = n = 6)
J@d=x-J(@q
= Jacobian matrix is square:
In non-singular configurations q, where J~1(q) exists:
q=]""(@x
This results in:
q=J"@lx-J@q] OR
q=J""@lx-J @I (@x]
For non-square Jacobians such manipulation is not possible.
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sﬁ? Obstacle Avoidance

« Example 2:

v" Redundancy Resolution for 3R Robot:

= Consider a desired vertical motion (2D)
From qo = [20°,30°,20°]" - Qo = [x0,%0l7 To Qf = [x,,0]"
Avoiding obstacle shown in the figure:

= In task space:
Move x, = [xo,¥0]" = [1.7,1.4]" To xf = [x,,0]" in one seconds.
Use cubic trajectory planning:

xa(t) =xo,  ya(t) =yo(1— (3 —26)t?)
= In velocity space given:

Xq(t) =0,  yq(t) = yo(6t* — 61)
Find q(t) = [q41, 92, q3]" to traverse this path while avoiding obstacle.

Obstacle

= Robot has 3Dof, and for this task has one degree of redundancy
To move along y,«1(t) there exist infinite number of joint space solutions g3y (t)
Find the one to avoid interfering with the obstacle.
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sﬁ? Obstacle Avoidance

« Example 2: (Cont.)

v" Redundancy Resolution for 3R Robot:

= The Jacobinis (2 x 3), the LS solution is not good
Robot shall go to elbow-up posture to avoid the obstacle
= Formulate an optimization problem
minV(q, q)
q.q
- x=J(q@)q
Subject to
: {x = frx(@)
Robot desired posture (elbow up) q,; = [45°%,—70°2, —10°]T
Performance index: minimize V(q) = |lq — qll
Robot Jacobian y(t) = Jq(t), where
J= [—a151 — A2S12 — A3S123  —A2S12 — A35123 —a35123]
a1€1 + azC12 +a3Cip3 012 + A3C123 a3C123
Robot Forward Kinematics y = frk(q):
X1 = Q1€ +aC12 +a3Cy23
X2 = 4181+ a81; + a3z S123

Obstacle
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eﬁa Obstacle Avoidance

 Example 2: (Cont.)

v' Redundancy Resolution for 3R
Robot:

= Consider the base Solution:

qis = I (@x where Jt=JT(y7)"
= This solution minimizes

Jal
qll,
= But It is not good for obstacle
avoidance:
-10 o.|2 0!4 0!6 o.ls 1| 1!2 1.I4 1.|6
Matlab Program: Obstacle_3R.m
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eﬁa Obstacle Avoidance

 Example 2: (Cont.)
v' Redundancy Resolution for 3R
Robot:
= Solve optimization problem
r{{l,ig.lnllq —qqll;

x=J@q

Subject to
J {X = frk(q)

For Robot desired posture (elbow up)
qq = [45°,—70°,—10°]7

012 op 0.‘6 o.ls 1| 1?2 1!4 1?6 1.8
Obstacle
The trajectory is traversed without
interfering with the obstacle.
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N Obstacle Avoidance

1.4 ‘
« Example 2: (Cont.) o ;
. ’,f‘ ----- 9
v" Redundancy Resolution for 3R 121 L ; <::|
-7 !
Robot: 1 P i
i - v
= Solve optimization problem - 1
........... !
min||q — qqll> I R A4 - NG !
a.q T TN !
¥ =J@q st F /S LS T i
Subjectto  x = frx(q) ?
. . . 1
Amin = q = Amax 0.4 1 i
1
i
. . 02+ :
Wwith -12<gq; <12 -
0 1 L il L 1 1 I‘\i
] 0 0.2 ] 0:6 0:8 1 1.2 1.4 1.6 1.8
At some instances, the robot needs to Obstacle
exceed the velocity bound, and therefore,
the trajectory is not traversed perfectly.
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%ﬁ Singularity Circumvention

« Example 3:
v" Redundancy Resolution for 3R Robot:
= Consider a desired vertical motion (2D) near singular
configuration
From g, = [-180°2,—179°,10°]" - Q, = [x0, ¥ol”
To Qf = [x,—0.1]"
= Intask space:
Move xo = [xg, yol" = [1.7,0.07]" To x; = [x,,0]" in one seconds.
Use cubic trajectory planning:
xg(t) =xo,  ya(t) =yo — (3 —2t)t* (yo + 0.1)
= In velocity space given:

() =0,  y4() = (yo + 0.1)(18t? — 6t)
Find q(t) = [q1, 92, q3]" to traverse this path while circumventing
singularities.

= Consider the base Solution:

0.1

0.4

. . -1
qis = ]Jr (Q)X where ]1_ = ]T(]]T) Matlab Program: Singularity_3R.m
= But this solution is close to singular configurations.
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%ﬁ Singularity Circumvention @

« Example 2: (Cont.)

v" Redundancy Resolution for 3R 0.2 | | | | | |
Robot: 0.15
= Solve optimization problem 0.1
0.05
min —u(q) = —/det(J]) o
: x=Jq -0.05
Subject t
HhIeetio {x = frr(@)

In which, J in u is considered to be the 015
Jacobian of the first two links, in orderto . . | | . .

traverse he trajectory while getting away ! 08 06 04 020 02
from fu”y retracted arms. Matlab Program: Singularity_3R.m
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021




"?33 Contents

~J

Preliminaries Jacobian Chacteristics
Angular velocity, rotation matrix and Euler angle rates, Linear Singularity, twist and wrench map, singular configurations,
1 velocity, golden rule in differentiation, twist, screw 4 singularity decoupling, dexterity, dexterity ellipsoid, isotropy,
representation. manipulability, condition number,
Jacobian Inverse Solutions
Definition, motivating example, direct approach, general and Inverse map, fully- and under-actuated robots, redundancy,
2 iterative methods, case studies, screw based Jacobian, general 5 redundancy resolution, optimization problem, inverse
and iterative methods, case studies. acceleration, obstacle avoidance, singularity circumvention.
Static Wrench Stiffness Analysis

3 Wrench definition, principle of virtual work, Jacobian transpose 6 Sources of compliance, Compliance and stiffness matrix, force
mapping, examples. ellipsoid, case studies.

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is
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Ly Stiffness Analysis

Consider a robot in contact to the environment

Applying wrench to the environment
Focus on the deflections resulting by the applied wrench

Actuators and Transmissions

The main source of compliance in the robots, the flexible
elements in the transmission and force transducers

N
Links -~ @ = . Joints
The size and material of the links r Flexible versus rigid joints contribute
contribute greatly in the stiffness in the compliance of the robot

<« Control Structure

Robot Structure
@) Through suitable control schemes, the stiffness of
the robot might be shaped to the desired value

Closed Kinematic chains cause | @
higher stiffness to the robot
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Ly Stiffness Analysis

« Sources of Stiffness
v' Consider just the actuators and transmissions

v" As the main source of compliance

= Harmonic Drive Systems
Transmission is performed through a flexible element (Flexspline)

Circular spline
Flexspline

Wave generator
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Ly Stiffness Analysis

« Compliance and Stiffness Matrix

v Note the stiffness relation in the it" robot joint
7; = kiAg;
= Joint stiffness constant: k;
7; denotes the transmitted torque through the actuator
Agq; denotes the resulting deflection at the joint
= Use vector notation
T=%XK Aq
T =[14,7y, ..,Tn]" denotes the vector of transmitted torques

Aq = [q1,95, -, qm]T denotes the vector of resulting deflections at the joints and
:}C - dlag [kli kz, ey km]

= Use Jacobian relation
Ay=JAq and t=J'F

This results in Ay=JAq=] XK t=]J K YT'F =CF for a squared Jacobian.
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Ly Stiffness Analysis

« Compliance and Stiffness Matrix
v" Manipulator Compliance Matrix C :
Ay = CF where Cpupm =] K YT
v Manipulator Stiffness Matrix K = C~1; the inverse map:
F=KAy where K, ,, =] TK ]!
Both € and K are configuration dependent.
For uniform joint stiffness k; = k, = - = k,,, = k:
C=k=(JJ7) while K=k (T)"
Interesting to reach to the same manipulability matrix JJT

Scaled Ellipsoid for Force — Deflection relation

For a uniform and unit end effector deflection ||Ayx||, = 1.
AxTAy =1 - FIcTCcF = 1.
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¢ Stiffness Analysis

v' Example: Stiffness Analysis of 2R Manipulator

- Inspired by human arm, consider [; =+/2,and [, = 1.

- Consider 6, = %,and k; = k, = 1N - m, then for this
configuration:

T 2 2 6 42
c=J]"6,=-)= ;cTczl ]
0 =32= 1z 2] W2 6

Calculate the compliance map gains

A, = 11.657 . 11 1 [—1
T - 1 b = — = —
For C'C 1, = 03431 while vl—ﬁ[l],vz [1],

. Gmax = Omax = 3.414 TP _[17 5 _[-1
For € g e 0586 ¢ Wi Tmax = 4| Fmin = [ 7]

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021




< Stiffness Analysis

v Example 1:
= Proof of the obtained gains for 6, = g configuration:

From [|Ax|l3 = FTCTCF - Ax? + Ay? = 6f2 + 8V2fo f, + 12

S fe f_y>2 <£_f_y>2
Ax“ + Ay —11.657<\/§+\/§ + 0.343 \/7 \/7

2 2
For v, = [ﬂ e =f, = Mx% + Ay? = 11.657(V2f,) — (V2f,)" = 0.085 (Ax? + Ay?)
1 N 1 ) )
= fin = 0292]1Ax1l = —— 1A% ]| in Bty = [ 1] direction

For v, = [‘11] o= —f, > Mx? +Ay? = 0343(VZ£)" > (V2£,)” = 2.914 (Ax? + Ay?)

1

N —-11 .. )
= £ =1.707||Ax] = AxIl in By = [ ) ]dlrectlon

Omin
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¢ Stiffness Analysis

v' Example: (Cont.)

- For 6, =§ configuration:

= Fae = 1.707||Ax]| = |Ax|| in ¥,,,, direction

min

= Foin = 0.292||Ax|| = |Ax|| in ¥,,;,, direction

max

xAy

A
1
5 1
/‘\ ® i |1
1 Zx g fx
’\9%
laxll = FTcTcF

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021

_ _1] A fy




HI-TECH
ROBOTIC

wARAS [

ADVANCED ROBOTICS & AUTOMATED SYSTEMS

About Hamid D. Taghirad

Hamid D. Taghirad has received his B.Sc. degree in mechanical engineering
from Sharif University of Technology, Tehran, Iran, in 1989, his M.Sc. in mechanical
engineering in 1993, and his Ph.D. in electrical engineering in 1997, both
S from McGill University, Montreal, Canada. He is currently the University Vice-
g Chancellor for Global strategies and International Affairs, Professor and the Director
y \R\“ q‘ of the_Advanced Robotics and Automated System (ARAS)_, Dgpartr_nent of Systems
¢ LENUL T and Control, Faculty of Electrical Engineering, K. N. Toosi University of Technology,
. . Tehran, Iran. He is a senior member of IEEE, and Editorial board of International
HEE——"=lirad Journal of Robotics: Theory and Application, and International Journal of Advanced

Professor Robotic Systems. His research interest is robust and nonlinear contro/ applied to
robotic systems. His publications include five books, and more than 250 papers in
international Journals and conference proceedings.
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems April 27, 2021


http://www.sharif.ir/
http://www.mcgill.ca/
http://en.kntu.ac.ir/international
http://aras.kntu.ac.ir/
https://en.kntu.ac.ir/faculties/electrical-engineering/
http://en.kntu.ac.ir/
http://ijr.kntu.ac.ir/
https://us.sagepub.com/en-us/nam/international-journal-of-advanced-robotic-systems/journal202567
https://aras.kntu.ac.ir/publications/

HI-TECH
ROBOTIC

wARAS [

ADVANCED ROBOTICS & AUTOMATED SYSTEMS

Robotics: Mechanics & Control

@ Chapter 4: Differential Kinematics

To read more and see the course videos
visit our course website:
http://aras.kntu.ac.ir/arascourses/robotics/
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