Robotics: Mechanics \& Control

Chapter 4: Differential Kinematics

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of robotic manipulators is reviewed in detail.

Welcome

To Your Prospect Skills On Robotics :

Mechanics and Control

01

About ARAS

ARAS Research group originated in 1997 and is proud of its $22+$ years of brilliant background, and its contributions to the advancement of academic education and research in the field of Dynamical System Analysis and Control in the robotics application. $A R A S$ are well represented by the industrial engineers, researchers, and scientific figures graduated from this group, and numerous industrial and R\&D projects being conducted in this group. The main asset of our research group is its human resources devoted all their time and effort to the advancement of science and technology. One of our main objectives is to use these potentials to extend our educational and industrial collaborations at both national and international levels. In order to accomplish that, our mission is to enhance the breadth and enrich the quality of our education and research in a dynamic environment.

Robotics: Mechanics and Control

 Prof. Hamid D. TaghiradK. N. Toosi University of Technology, Faculty of Electrical Engineering, Department of Systems and Control, Advanced Robotics and Automated Systems

Preliminaries

1

Angular velocity, rotation matrix and Euler angle rates, Linear velocity, golden rule in differentiation, twist, screw representation.

Jacobian

Definition, motivating example, direct approach, general and iterative methods, case studies, screw based Jacobian, general and iterative methods, case studies.

Static Wrench

Wrench definition, principle of virtual work, Jacobian transpose mapping, examples.

Jacobian Chacteristics

Singularity, twist and wrench map, singular configurations, singularity decoupling, dexterity, dexterity ellipsoid, isotropy, manipulability, condition number,

Inverse Solutions

Inverse map, fully- and under-actuated robots, redundancy, redundancy resolution, optimization problem, inverse acceleration, obstacle avoidance, singularity circumvention.

Stiffness Analysis

Sources of compliance, Compliance and stiffness matrix, force ellipsoid, case studies.

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of robotic manipulators is reviewed in detail.

Introduction

- Preliminaries

\checkmark Angular Velocity of a Rigid Body

- Attribute of the whole rigid body
- The rate of instantaneous rotation of frame $\{B\}$ attached to the rigid body with respect to a fixed frame $\{B\}$.
A vector denoted by $\boldsymbol{\Omega}$ along the screw axis With the value equal to the rate of rotation $\dot{\theta}$.

$$
\boldsymbol{\Omega} \doteq \dot{\theta} \hat{s}
$$

- Angular velocity vector can be expressed in any frame:

$$
\begin{aligned}
{ }^{A} \boldsymbol{\Omega} & =\Omega_{x} \hat{\boldsymbol{x}}+\Omega_{y} \hat{\boldsymbol{y}}+\Omega_{z} \hat{z} \\
& =\dot{\theta}\left(s_{x} \hat{\boldsymbol{x}}+s_{y} \hat{\boldsymbol{y}}+s_{z} \hat{z}\right)
\end{aligned}
$$

In which, $\Omega_{x}, \Omega_{y}, \Omega_{z}$ are the components of this vector.

Preliminaries

\checkmark Angular Velocity \& Rotation Matrix Rate

- Angular velocity is defined based-on screw representation
- What is its relation to the rotation matrix representation?

Note that

$$
{ }^{A} \boldsymbol{R}_{B}{ }^{A} \boldsymbol{R}_{B}^{T}=\boldsymbol{I},
$$

Differentiate both side with respect to time

$$
{ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{A} \boldsymbol{R}_{B}^{T}+{ }^{A} \boldsymbol{R}_{B}{ }^{A} \dot{\boldsymbol{R}}_{B}^{T}=\mathbf{0}
$$

Substitute: ${ }^{A} \boldsymbol{R}_{B}^{T}={ }^{A} \boldsymbol{R}_{B}^{-1}$ and ${ }^{A} \boldsymbol{R}_{B}=\left({ }^{A} \boldsymbol{R}_{B}^{-1}\right)^{T}$

$$
\left({ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{A} \boldsymbol{R}_{B}^{-1}\right)+\left({ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{A} \boldsymbol{R}_{B}^{-1}\right)^{T}=\mathbf{0}
$$

This means that ${ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{A} \boldsymbol{R}_{B}^{-1}$ is a 3×3 skew symmetric matrix $\boldsymbol{\Omega}^{\times}$:

$$
\boldsymbol{\Omega}^{\times} \equiv{ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{A} \boldsymbol{R}_{B}^{-1}=\left[\begin{array}{ccc}
0 & -\Omega_{z} & \Omega_{y} \\
\Omega_{z} & 0 & -\Omega_{x} \\
-\Omega_{y} & \Omega_{x} & 0
\end{array}\right]
$$

It can be shown that the three parameters $\Omega_{x}, \Omega_{y}, \Omega_{z}$ are the components of angular velocity vector.
K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Preliminaries

\checkmark Angular Velocity \& Euler Angles Rate

- Angular velocity is a vector but Euler angels are not.
- Angular velocity is not equal to the rate of Euler Anaels

$$
\boldsymbol{\Omega} \neq\left[\begin{array}{c}
\dot{\alpha} \\
\dot{\beta} \\
\dot{\gamma}
\end{array}\right] \quad \text { But } \quad \boldsymbol{\Omega}=E(\alpha, \beta, \gamma)\left[\begin{array}{c}
\dot{\alpha} \\
\dot{\beta} \\
\dot{\gamma}
\end{array}\right]
$$

Use

$$
\boldsymbol{\Omega}^{\times} \equiv{ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{A} \boldsymbol{R}_{B}^{-1}
$$

Or equivalently

$$
\begin{aligned}
& \Omega_{x}=\dot{r}_{31} r_{21}+\dot{r}_{32} r_{22}+\dot{r}_{33} r_{23}, \\
& \Omega_{y}=\dot{r}_{11} r_{31}+\dot{r}_{12} r_{32}+\dot{r}_{13} r_{33}, \\
& \Omega_{z}=\dot{r}_{21} r_{11}+\dot{r}_{22} r_{12}+\dot{r}_{23} r_{13},
\end{aligned}
$$

To derive $E(\alpha, \beta, \gamma)$. For example for $w-v-w$ Euler angles we have:

$$
\begin{aligned}
\boldsymbol{R}_{w v w}(\alpha, \beta, \gamma) & =\boldsymbol{R}_{w}(\alpha) \boldsymbol{R}_{v}(\beta) \boldsymbol{R}_{w}(\gamma) \\
& =\left[\begin{array}{ccc}
c \alpha c \beta c \gamma-s \alpha s \gamma & -c \alpha c \beta s \gamma-s \alpha c \gamma & c \alpha s \beta \\
s \alpha c \beta c \gamma+c \alpha s \gamma & -s \alpha c \beta s \gamma+c \alpha c \gamma & s \alpha s \beta \\
-s \beta c \gamma & s \beta s \gamma & c \beta
\end{array}\right] \text { and } E_{w v w}=\left[\begin{array}{ccc}
0 & -s \alpha & c \alpha s \beta \\
0 & c \alpha & s \alpha s \beta \\
1 & 0 & c \beta
\end{array}\right] .
\end{aligned}
$$

Preliminaries

\checkmark Linear Velocity of a Point

- Linear velocity of a point \boldsymbol{P} is the time derivative of the position vector \boldsymbol{p} with respect to a fixed frame.

$$
v_{p}=\dot{p}=\left(\frac{\mathrm{d} p}{\mathrm{~d} t}\right)_{f x}
$$

- Relative velocity with respect to a moving frame is denoted by

$$
v_{r e l}=\left(\frac{\partial p}{\partial t}\right)_{m o v}
$$

In which the partial derivative notation is used to denote relativeness

- Golden Rule

$$
\left(\frac{\mathrm{d}(\cdot)}{\mathrm{d} t}\right)_{f i x}=\left(\frac{\partial(\cdot)}{\partial t}\right)_{m o v}+\boldsymbol{\Omega} \times(\cdot), \quad \text { OR } \quad\left(\frac{\mathrm{d}(\cdot)}{\mathrm{d} t}\right)_{f i x}=\left(\frac{\partial(\cdot)}{\partial t}\right)_{m 00}+\boldsymbol{\Omega}^{\times}(\cdot)
$$

In which Ω denotes the angular velocity of the moving frame with respect to the fixed frame, and Ω^{\times}denotes its skew-symmetric matrix representation

Preliminaries

\checkmark Linear Velocity of a Point

- Verify the derivative of the rotation matrix

$$
\left(\frac{\mathrm{d}\left({ }^{A} \boldsymbol{R}_{B}\right)}{\mathrm{d} t}\right)_{f i x}=\left(\frac{\partial\left({ }^{A} \boldsymbol{R}_{B}\right)}{\partial t}\right)_{m o v}+\boldsymbol{\Omega}^{\times}\left({ }^{A} \boldsymbol{R}_{B}\right)
$$

While

$$
\left(\frac{\partial\left({ }^{A} \boldsymbol{R}_{B}\right)}{\partial t}\right)_{\text {mov }}=0 .
$$

Hence,

$$
{ }^{A} \dot{\boldsymbol{R}}_{B}=\boldsymbol{\Omega}^{\times}{ }^{A} \boldsymbol{R}_{B} .
$$

This verifies the relation of angular velocity vector with the rate of rotation matrix

$$
\boldsymbol{\Omega}^{\times} \equiv{ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{A} \boldsymbol{R}_{B}^{-1}
$$

Preliminaries

\checkmark Linear Velocity of a Point

- Consider the position vector \boldsymbol{P}

$$
{ }^{A} \boldsymbol{P}={ }^{A} \boldsymbol{P}_{O_{B}}+{ }^{A} \boldsymbol{R}_{B}{ }^{B} \boldsymbol{P},
$$

Differentiate with respect to time

$$
\begin{aligned}
{ }^{A} \dot{\boldsymbol{P}} & ={ }^{A} \dot{\boldsymbol{P}}_{O_{B}}+{ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{B} \boldsymbol{P}+{ }^{A} \boldsymbol{R}_{B}{ }^{B} \dot{\boldsymbol{P}} \\
{ }^{A} \boldsymbol{v}_{p} & ={ }^{A} \boldsymbol{v}_{O_{B}}+{ }^{A} \dot{\boldsymbol{R}}_{B}{ }^{B} \boldsymbol{P}+{ }^{A} \boldsymbol{R}_{B}{ }^{B} \boldsymbol{v}_{p},
\end{aligned}
$$

where ${ }^{B} v_{p}=v_{r e l}$

Hence,

$$
{ }^{A} \boldsymbol{v}_{p}={ }^{A} \boldsymbol{v}_{O_{B}}+{ }^{A} \boldsymbol{R}_{B}{ }^{B} \boldsymbol{v}_{p}+{ }^{A} \boldsymbol{\Omega}^{\times}{ }^{A} \boldsymbol{R}_{B}{ }^{B} \boldsymbol{P} .
$$

If \boldsymbol{P} is embedded in the rigid body, the relative velocity is ${ }^{B} v_{p}$ zero. Then

$$
{ }^{A} \boldsymbol{v}_{p}={ }^{A} \boldsymbol{v}_{O_{B}}+{ }^{A} \boldsymbol{\Omega}^{\times}{ }^{A} \boldsymbol{R}_{B}{ }^{B} \boldsymbol{P}
$$

Preliminaries

- Twist: Screw Coordinates
\checkmark General Motion: Screw Representation
- General Motion =

Rotation about $\hat{\boldsymbol{s}}+$ Translation along \hat{s}

$$
\{\hat{\boldsymbol{s}}, \theta\} \quad+\quad\left\{\boldsymbol{s}_{\mathbf{0}}, d\right\}
$$

Assume the ratio of d to θ is denoted by pitch λ

$$
\lambda=\frac{d}{\theta} \text { or } \lambda=\frac{\dot{d}}{\dot{\theta}} \text { in }(\mathrm{m} / \mathrm{rad}) \text { unit }
$$

- Define Screw Coordinate (6×1)

Unit Screw coordinate $\widehat{\$}$ by pair of two vectors:

$$
\hat{\$}=\left[\begin{array}{c}
\hat{s} \\
s_{0} \times \hat{s}+\lambda \hat{s}
\end{array}\right]=\left[\begin{array}{l}
\$_{1} \\
\$_{2} \\
\$_{3} \\
\$_{4} \\
\$_{5} \\
\$_{6}
\end{array}\right]
$$

In which s_{0} could be selected on any arbitrary point on the axis $\hat{\boldsymbol{s}}$.

Preliminaries

- Twist: Screw Coordinates

\checkmark General motion of a point \boldsymbol{P} on the rigid body

- Twist: A (6×1) Tuple

Twist $=\left[\begin{array}{c}\text { Angular velocity of the rigid body } \\ \text { Linear velocity of the point } \boldsymbol{P}\end{array}\right]=\left[\begin{array}{l}\Omega \\ \dot{\boldsymbol{P}}\end{array}\right]$
To find the screw for point \boldsymbol{P}, attach an instantaneous fixed frame On point P aligned with the reference frame $\{0\}$ then
Twist:

$$
\$=\dot{q} \widehat{\$}
$$

In which, the first vector reads:

$$
\hat{\boldsymbol{s}} \dot{\theta}={ }^{A} \boldsymbol{\Omega} .
$$

and the second vector is: $\left(s_{0} \times \hat{\boldsymbol{s}}+\lambda \hat{\boldsymbol{s}}\right) \dot{\theta}=s_{o} \times \dot{\theta} \hat{\boldsymbol{s}}+\lambda \dot{\theta} \hat{\boldsymbol{s}}$

$$
\begin{aligned}
& =s_{0} \times \boldsymbol{\Omega}+\lambda \dot{\theta} \hat{\boldsymbol{s}} \\
& =\boldsymbol{\Omega} \times\left(-s_{o}\right)+\dot{d} \hat{s} \\
& =\boldsymbol{\Omega} \times{ }^{B} \boldsymbol{P}_{O_{A}}+\dot{d} \hat{s} .
\end{aligned}
$$

This gives the linear velocity of the interested embedded point \boldsymbol{P} on the rigid body

Preliminaries

- Twist: Screw Coordinates

\checkmark General motion of a point \boldsymbol{P} on the rigid body

- To find the screw for point \boldsymbol{P}, attach an instantaneous fixed frame On point \boldsymbol{P} aligned with the reference frame $\{0\}$ then

Twist $=\left[\begin{array}{c}\text { Angular velocity of the rigid body } \\ \text { Linear velocity of the point } \boldsymbol{P}\end{array}\right]=\left[\begin{array}{l}\Omega \\ \dot{\boldsymbol{P}}\end{array}\right]$

Both vectors with respect to the fixed frame $\{0\}$

- Screw coordinate

Twist: $\quad \$=\dot{q} \hat{\$}=\dot{q}\left[\begin{array}{c}\hat{s} \\ s_{0} \times \hat{s}+\lambda \hat{s}\end{array}\right]$

Preliminaries

- Twist: Screw Representation
\checkmark Twist for Revolute joint (R)
- For pure rotational joint $\lambda=0$ and $\dot{q}=\dot{\theta}$

The twist is represented by

$$
\boldsymbol{\$}=\left[\begin{array}{c}
\hat{\boldsymbol{s}} \\
s_{0} \times \hat{s}
\end{array}\right] \dot{\theta}
$$

where, instantaneous frame $\{0\}$ is attached on point \boldsymbol{P}
\checkmark Twist for Prismatic joint (P)

- For pure translational joint $\lambda=\infty$ and $\dot{q}=\dot{d}$

The twist is represented by

$$
\$=\left[\begin{array}{l}
0 \\
\hat{s}
\end{array}\right] \dot{d} .
$$

- Since we use the primary joint in serial manipulators these two screw representations are used in the differential kinematics.

Consider a point \boldsymbol{P} on a moving piston:

$$
\$=\left[\begin{array}{l}
0 \\
\hat{s}
\end{array}\right] \dot{d} \rightarrow \begin{gathered}
\omega_{p}=\mathbf{0} \\
v_{p}=\dot{d} \hat{s}
\end{gathered}
$$

Preliminaries

1

Angular velocity, rotation matrix and Euler angle rates, Linear velocity, golden rule in differentiation, twist, screw representation.

Jacobian

Definition, motivating example, direct approach, general and iterative methods, case studies, screw based Jacobian, general and iterative methods, case studies.

Static Wrench

Wrench definition, principle of virtual work, Jacobian transpose mapping, examples.

Jacobian Chacteristics

Singularity, twist and wrench map, singular configurations, singularity decoupling, dexterity, dexterity ellipsoid, isotropy, manipulability, condition number,

Inverse Solutions

Inverse map, fully- and under-actuated robots, redundancy, redundancy resolution, optimization problem, inverse acceleration, obstacle avoidance, singularity circumvention.

Stiffness Analysis

Sources of compliance, Compliance and stiffness matrix, force ellipsoid, case studies.

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of robotic manipulators is reviewed in detail.

Jacobian

- Definition
\checkmark Differential Kinematic Map
- Forward Map

Given $\dot{\boldsymbol{q}}$ find $\dot{\chi}$

Inverse Map
Given $\dot{\chi}$ find $\dot{\boldsymbol{q}}$

- Forward kinematics is a nonlinear map

$$
\chi_{i}=f_{i}\left(q_{1}, q_{2}, \ldots, q_{n}\right) \text { for } i=1,2, \ldots, n
$$

- Take time derivative:

$$
\dot{\boldsymbol{\chi}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}, \quad \text { in which, } \quad \boldsymbol{J}(\boldsymbol{q})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial q_{1}} & \frac{\partial f_{1}}{\partial q_{2}} & \cdots & \frac{\partial f_{1}}{\partial q_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial q_{1}} & \frac{\partial f_{n}}{\partial q_{2}} & \cdots & \frac{\partial f_{n}}{\partial q_{n}}
\end{array}\right] \text { is called the Jacobian matrix }
$$

Jacobian

- Motivating Example
\checkmark Direct approach
- Consider 2R manipulator

Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}\right]^{T}$ and $\dot{\chi}=\left[\dot{x}_{E}, \dot{y}_{E}\right]^{T}$
Forward Kinematics:

$$
\begin{aligned}
& x_{e}=l_{1} c_{1}+l_{2} c_{12} \\
& y_{e}=l_{1} s_{1}+l_{2} s_{12}
\end{aligned}
$$

Take time derivative:

$$
\begin{aligned}
& \dot{x}_{e}=-l_{1} s_{1} \dot{\theta}_{1}-l_{2} s_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& \dot{y}_{e}=l_{1} c_{1} \dot{\theta}_{1}+l_{2} c_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{aligned}
$$

Determine Jacobian:

$$
\dot{\chi}=\boldsymbol{J} \dot{\boldsymbol{q}}, \quad \text { in which, } \quad \boldsymbol{J}=\left[\begin{array}{cc}
-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}
\end{array}\right]
$$

Jacobian

- Definition
\checkmark In General
$\dot{\boldsymbol{q}}=\left[\dot{q}_{1}, \dot{q}_{2}, \ldots, \dot{\mathrm{q}}_{n}\right]^{T}$ in which $\dot{q}_{i}= \begin{cases}\dot{\theta}_{i} & \text { for a revolute joint } \\ \dot{d}_{i} & \text { for a prismatic joint }\end{cases}$
- While for the task space variable

$$
\begin{array}{ll}
\dot{\chi}=\dot{\boldsymbol{v}}=\left[\begin{array}{l}
v_{E} \\
\boldsymbol{\omega}_{E}
\end{array}\right] \quad \text { For Conventional Jacobian and } \\
\dot{\chi}=\dot{\boldsymbol{v}}=\left[\begin{array}{c}
\omega_{E} \\
\boldsymbol{v}_{E}
\end{array}\right] \quad \text { For Screw-based Jacobian }
\end{array}
$$

In which \boldsymbol{v}_{E} is the velocity of the end effector, $\boldsymbol{\omega}_{E}$ denotes the angular velocity of the end effector link.

- Linear velocity and angular velocity sub-Jacobians

$$
\dot{\chi}=\left[\begin{array}{c}
v_{E} \\
\omega_{E}
\end{array}\right]=J(\boldsymbol{q}) \dot{\boldsymbol{q}}=\left[\begin{array}{l}
J_{v} \\
J_{\omega}
\end{array}\right] \dot{q}
$$

In which J_{v} corresponds to the linear velocity Jacobian, While ω_{ω} corresponds to the angular velocity Jacobian.

Jacobian

- Definition
\checkmark In General

$$
\dot{\boldsymbol{q}}=\left[\dot{q}_{1}, \dot{q}_{2}, \ldots, \dot{\mathrm{q}}_{n}\right]^{T} \text { and } \dot{\chi}=\dot{\boldsymbol{v}}=\left[\begin{array}{c}
\boldsymbol{v}_{E} \\
\boldsymbol{\omega}_{E}
\end{array}\right]
$$

The joint and task variable can be given with reference to any frame Hence,

$$
{ }^{0} \dot{\boldsymbol{q}}={ }^{0} \boldsymbol{J}{ }^{0} \dot{\chi} \quad \text { or } \quad{ }^{n} \dot{\boldsymbol{q}}={ }^{n} \boldsymbol{J}{ }^{n} \dot{\chi}
$$

In which
From

$$
\left[\begin{array}{l}
{ }^{A} v \\
A_{\omega}
\end{array}\right]=\left[\begin{array}{c|c}
{ }_{B}^{A} R & 0 \\
\hline 0 & { }_{B}^{A} R
\end{array}\right]\left[\begin{array}{l}
{ }^{B} v \\
B^{B} \omega
\end{array}\right] .
$$

We may conclude :

$$
{ }^{A} \boldsymbol{J}(\boldsymbol{q})=\left[\begin{array}{cc}
{ }_{B}^{A} R & \mathbf{0} \\
\mathbf{0} & { }_{B}^{A} R
\end{array}\right]{ }^{B} \boldsymbol{J}(\boldsymbol{q}) .
$$

Jacobian

- Motivating Example
\checkmark Different Frames
- Consider task variables in end - effector frame \{2\}

Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}\right]^{T}$ and $\dot{\chi}=\left[\dot{x}_{E}, \dot{y}_{E}\right]^{T}$
While in base frame: ${ }^{0} \boldsymbol{J}=\left[\begin{array}{cc}-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\ l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}\end{array}\right]$

In frame $\{2\}:{ }^{2} \boldsymbol{J}={ }_{2}^{0} \boldsymbol{R}^{0} \boldsymbol{J}=\left[\begin{array}{cc}c_{12} & -s_{12} \\ s_{12} & c_{12}\end{array}\right]\left[\begin{array}{cc}-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\ l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}\end{array}\right]$

$$
{ }^{2} \boldsymbol{J}=\cdots=\left[\begin{array}{cc}
l_{1} s_{2} & 0 \\
l_{1} c_{2}+l_{2} & l_{2}
\end{array}\right]
$$

- Note: Although the appearance is different, the invariant properties of the Jacobians are the same, i.e.

$$
\begin{aligned}
\operatorname{det}\left({ }^{0} \boldsymbol{J}\right) & =-l_{1} l_{2} s_{1} c_{12}-l_{2}^{2} s_{12} c_{12}+l_{1} l_{2} c_{1} s_{12}+l_{2}^{2} c_{12} s_{12}=l_{1} l_{2} s_{2} \\
\operatorname{det}\left({ }^{2} J\right) & =l_{1} l_{2} s_{2}=\operatorname{det}\left({ }^{0} \boldsymbol{J}\right)
\end{aligned}
$$

Jacobian

- Conventional Jacobian:
\checkmark General Derivation Method

$$
\dot{\chi}=J(q) \dot{q}=\left[\begin{array}{l}
J_{v} \\
J_{\omega}
\end{array}\right] \dot{q}
$$

In which
$J=\left[J_{1}, J_{2}, \ldots, J_{n}\right]$,
$J_{i}=\left[\begin{array}{c}\mathbf{z}_{i-1} \times{ }^{i-1} \mathbf{p}_{n}^{*} \\ \mathbf{z}_{i-1}\end{array}\right] \quad$ for a revolute joint,

$J_{i}=\left[\begin{array}{c}\mathbf{z}_{i-1} \\ \mathbf{0}\end{array}\right] \quad$ for a prismatic joint.

Where as shown in the figure ${ }^{i-1} \boldsymbol{p}_{n}^{*}$ is defined as a vector from origin of the $(i-1)$ link frame to the origin of the end effector frame (n)
All the vectors shall be expressed in the frame of interest.

Jacobian

- Conventional Jacobian:
\checkmark General Derivation Method
- To derive the Jacobian

The direction and location of each joint shall be determined.

$$
\begin{aligned}
\mathbf{z}_{i-1} & ={ }^{0} R_{i-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \\
{ }^{i-1} \mathbf{p}_{n}^{*} & ={ }^{0} R_{i-1}{ }^{i-1} \mathbf{r}_{i}+{ }^{i} \mathbf{p}_{n}^{*},
\end{aligned}
$$

Where,

$$
{ }^{i-1} \mathbf{r}_{i}=\left[\begin{array}{c}
a_{i} \mathrm{c} \theta_{i} \\
a_{i} \theta_{i} \\
d_{i}
\end{array}\right]
$$

Denotes the vector $\overrightarrow{O_{i-1} O_{i}}$ expressed in frame $\{i-1\}$.

Conventional Jacobians

- Examples:

\checkmark Example 1: Planar RRR Manipulator

4-…

- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{\theta}_{3}\right]^{T}$ and $\dot{\chi}=\left[\dot{x}_{E}, \dot{y}_{E}, \dot{\phi}\right]^{T}$

First compute the vectors \mathbf{z}_{i-1} and ${ }^{i-1} \mathbf{p}_{3}^{*}$, for $i=1,2,3$

$$
\begin{aligned}
\mathbf{z}_{0}=\mathbf{z}_{1}=\mathbf{z}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], & { }^{1} \mathbf{p}_{3}^{*}=\left[\begin{array}{c}
a_{2} \mathrm{c} \mathrm{c} \theta_{12}+a_{3} \mathrm{c} \theta_{123} \\
a_{2} \mathrm{~s} \theta_{12}+a_{3} \mathrm{~s} \theta_{123} \\
0
\end{array}\right], \\
{ }^{2} \mathbf{p}_{3}^{*}=\left[\begin{array}{c}
a_{3} \mathrm{c} \theta_{123} \\
a_{3} \mathrm{~s} \theta_{123} \\
0
\end{array}\right], & { }^{0} \mathbf{p}_{3}^{*}=\left[\begin{array}{c}
a_{1} \mathrm{c} \theta_{1}+a_{2} \mathrm{c} \theta_{12}+a_{3} \mathrm{c} \theta_{123} \\
a_{1} \mathrm{~s} \theta_{1}+a_{2} \mathrm{~s} \theta_{12}+a_{3} \mathrm{~s} \theta_{123} \\
0
\end{array}\right],
\end{aligned}
$$

Hence $\dot{\chi}=J \dot{q}$ where,

$$
J=\left[\begin{array}{ccc}
-\left(a_{1} \mathrm{~s} \theta_{1}+a_{2} \mathrm{~s} \theta_{12}+a_{3} \mathrm{~s} \theta_{123}\right) & -\left(a_{2} \mathrm{~s} \theta_{12}+a_{3} \mathrm{~s} \theta_{123}\right) & -a_{3} \mathrm{~s} \theta_{123} \\
\left(a_{1} \mathrm{c} \theta_{1}+a_{2} \mathrm{c} \theta_{12}+a_{3} \mathrm{c} \theta_{123}\right) & \left(a_{2} \mathrm{c} \theta_{12}+a_{3} \mathrm{c} \theta_{123}\right) & a_{3} \mathrm{c} \theta_{123} \\
1 & 1 & 1
\end{array}\right] .
$$

Note Jacobian of the wrist position \boldsymbol{P} will be: $\quad J=\left[\begin{array}{ccc}-\left(a_{1} \mathrm{~s} \theta_{1}+a_{2} \mathrm{~s} \theta_{12}\right) & -\left(a_{2} \mathrm{~s} \theta_{12}\right) & 0 \\ \left(a_{1} \mathrm{c} \theta_{1}+a_{2} \mathrm{c} \theta_{12}\right) & \left(a_{2} \mathrm{c} \theta_{12}\right) & 0 \\ 1 & 1 & 1\end{array}\right]$

Conventional Jacobians

- Examples:
\checkmark Example 2: SCARA Manipulator
- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{d}_{3}, \dot{\theta}_{4}\right]^{T}$ and $\dot{\chi}=\left[\dot{x}_{E}, \dot{y}_{E}, \dot{z}_{E}, \omega_{E}\right]^{T}$ Recall DH-parameters and homogeneous transformations:

$$
{ }_{1}^{0} T=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{2}^{1} T=\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & a_{2} c_{2} \\
s_{2} & -c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
{ }_{3}^{2} T=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right],{ }_{4}^{3} T=\left[\begin{array}{cccc}
c_{4} & -s_{4} & 0 & 0 \\
s_{4} & c_{4} & 0 & 0 \\
0 & 0 & 1 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

First compute the vectors \boldsymbol{z}_{i-1}

$$
z_{0}=z_{1}=[0,0,1]^{T}, \quad z_{2}=z_{3}=[0,0,-1]^{T}
$$

Now compute: ${ }^{i-1} \boldsymbol{p}_{4}^{*}$, for $i=3,4$ by inspection (red/purple vectors):

$$
{ }^{3} \boldsymbol{p}_{4}^{*}=\left[\begin{array}{c}
0 \\
0 \\
-d_{4}
\end{array}\right],{ }^{2} \boldsymbol{p}_{4}^{*}=\left[\begin{array}{c}
0 \\
0 \\
-d_{3}-d_{4}
\end{array}\right] .
$$

i	α_{i}	a_{i}	d_{i}	$\boldsymbol{\theta}_{i}$
1	0	a_{1}	d_{1}	θ_{1}
2	π	a_{2}	0	θ_{2}
3	0	0	d_{3}	0
4	0	0	d_{4}	θ_{4}

Conventional Jacobians

- Examples:
\checkmark Example 2: SCARA Manipulator
- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{d}_{3}, \dot{\theta}_{4}\right]^{T}$ and $\dot{\chi}=\left[\dot{x}_{E}, \dot{y}_{E}, \dot{z}_{E}, \omega_{E}\right]^{T}$ Furthermore, calculate ${ }^{i-1} \boldsymbol{p}_{4}^{*}$, for $i=1,2$ iteratively:

$$
\begin{aligned}
& { }^{1} \boldsymbol{p}_{4}^{*}={ }_{2}^{0} \boldsymbol{R}\left[\begin{array}{c}
a_{2} \\
0 \\
0
\end{array}\right]+{ }^{2} \boldsymbol{p}_{4}^{*}=\left[\begin{array}{c}
a_{2} c_{12} \\
a_{2} s_{12} \\
-d_{3}-d_{4}
\end{array}\right], \\
& { }^{0} \boldsymbol{p}_{4}^{*}={ }_{1}^{0} \boldsymbol{R}\left[\begin{array}{c}
a_{1} \\
0 \\
d_{1}
\end{array}\right]+{ }^{1} \boldsymbol{p}_{4}^{*}=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12} \\
d_{1}-d_{3}-d_{4}
\end{array}\right] .
\end{aligned}
$$

Hence $\dot{\chi}=J \dot{\boldsymbol{q}}$ where, J is a 6×4 matrix as:

$$
\boldsymbol{J}=\left[\begin{array}{cccc}
\boldsymbol{z}_{0} \times{ }^{0} \boldsymbol{p}_{4}^{*} & \mathbf{z}_{\mathbf{1}} \times{ }^{1} \boldsymbol{p}_{4}^{*} & \mathbf{z}_{3} & \mathbf{z}_{4} \times{ }^{3} \boldsymbol{p}_{4}^{*} \\
\boldsymbol{z}_{0} & \mathbf{z}_{\mathbf{1}} & \mathbf{0} & \mathbf{z}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-a_{1} s_{1}-a_{2} s_{12} & a_{2} s_{12} & 0 & 0 \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & -1
\end{array}\right]
$$

Note: The angular velocity is found as $\omega_{E}=\dot{\theta}_{1}+\dot{\theta}_{2}-\dot{\theta}_{4}$ in z direction.

Conventional Jacobians

\checkmark Example 3: Stanford Manipulator

- For wrist \boldsymbol{P} position $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{d}_{3}, \dot{\theta}_{4}, \dot{\theta}_{5}, \dot{\theta}_{6}\right]^{T}$ and $\dot{\chi}=\left[\dot{x}_{p}, \omega_{p}\right]^{T}$

Recall DH parameters, and homogeneous transformations

Robotics: Mechanics and Control

Conventional Jacobians

\checkmark Example 3: Stanford Manipulator

- For wrist \boldsymbol{P} position $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{d}_{3}, \dot{\theta}_{4}, \dot{\theta}_{5}, \dot{\theta}_{6}\right]^{T}$ and $\dot{\chi}=\left[\dot{\boldsymbol{x}}_{p}, \boldsymbol{\omega}_{p}\right]^{T}$

First compute the vectors \boldsymbol{z}_{i-1}

Robotics: Mechanics and Control

Conventional Jacobians

\checkmark Example 3: Stanford Manipulator

- For wrist \boldsymbol{P} position $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{d}_{3}, \dot{\theta}_{4}, \dot{\theta}_{5}, \dot{\theta}_{6}\right]^{T}$ and $\dot{\boldsymbol{\chi}}=\left[\dot{\boldsymbol{x}}_{p}, \boldsymbol{\omega}_{p}\right]^{T}$

Hence $\dot{\chi}=J \dot{\boldsymbol{q}}$ in reference frame $\{0\}$ is given by:

$$
J=\left[\begin{array}{cccccc}
-d_{3} \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{2}-d_{2} \mathrm{c} \theta_{1} & d_{3} \mathrm{c} \theta_{1} \mathrm{c} \theta_{2} & \mathrm{c} \theta_{1} \mathrm{~s} \theta_{2} & 0 & 0 & 0 \\
d_{3} \mathrm{c} \theta_{1} \mathrm{~s} \theta_{2}-d_{2} \mathrm{~s} \theta_{1} & d_{3} \mathrm{~s} \theta_{1} \mathrm{c} \theta_{2} & \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{2} & 0 & 0 & 0 \\
0 & -d_{3} \mathrm{~s} \theta_{2} & \mathrm{c} \theta_{2} & 0 & 0 & 0 \\
0 & -\mathrm{s} \theta_{1} & 0 & \mathrm{c} \theta_{1} \mathrm{~s} \theta_{2} & & \\
0 & \mathrm{c} \theta_{1} & 0 & \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{2} & \mathbf{z}_{4} & \mathbf{z}_{5} \\
1 & 0 & 0 & \mathrm{c} \theta_{2} & &
\end{array}\right]
$$

Where z_{4}, \mathbf{z}_{5} are joint axis unit vectors given before.
Note 1: Since the wrist position is considered for the manipulations, the Jacobian matrix is upper triangular.
Note 2: The Jacobian matrix will be much simplified if it is given w.r.t frame $\{2\}$.

Jacobian

- Screw-based Jacobian:
\checkmark General Derivation Method

$$
\begin{aligned}
& \dot{\boldsymbol{\chi}}=\left[\begin{array}{c}
\boldsymbol{\omega}_{E} \\
\boldsymbol{v}_{P}
\end{array}\right]=J(\boldsymbol{q}) \dot{\boldsymbol{q}}=\left[\begin{array}{c}
J_{\omega} \\
J_{v}
\end{array}\right] \dot{\boldsymbol{q}} \\
& \dot{\chi}=\sum_{i=1}^{n} \hat{\$}_{i} \dot{q}_{i}
\end{aligned}
$$

Where the unit twist is defined in slide 15 as:

- For rotary joint (R)

$$
\$=\left[\begin{array}{c}
\hat{\boldsymbol{s}} \\
\boldsymbol{s}_{0} \times \hat{\boldsymbol{s}}
\end{array}\right] \dot{\theta}
$$

- For prismatic joint (P)

$$
\$=\left[\begin{array}{l}
\mathbf{0} \\
\hat{\mathbf{s}}
\end{array}\right] \dot{d}
$$

Therefore, the Jacobian matrix consists of the unit screws:

$$
\boldsymbol{J}=\left[\hat{\$}_{1}, \hat{\$}_{2}, \ldots, \hat{\$}_{n}\right]
$$

Jacobian

- Screw-based Jacobian:
\checkmark General Derivation Method

$$
\begin{gathered}
\dot{\chi}=\left[\begin{array}{c}
\omega_{E} \\
\boldsymbol{v}_{P}
\end{array}\right]=J(\boldsymbol{q}) \dot{\boldsymbol{q}}=\left[\begin{array}{l}
\boldsymbol{J}_{\omega} \\
\boldsymbol{J}_{v}
\end{array}\right] \dot{\boldsymbol{q}} \\
J=\left[\hat{\$}_{1}, \hat{\$}_{2}, \ldots, \hat{\$}_{n}\right]
\end{gathered}
$$

- Note that the task space variable

$$
\dot{\chi}=\left[\begin{array}{l}
\omega_{E} \\
v_{P}
\end{array}\right]
$$

Consist of the angular velocity of the end effector But linear velocity of any point \boldsymbol{P} (including the end effector \boldsymbol{E})

- To assign the screw parameters

Consider an instantaneous fixed frame on the point of interest \boldsymbol{P}.

- The direction of the joint axes can be determined by inspection or by the third column of ${ }_{i-1}^{0} \mathrm{~A}$.
- The distance of the screw axes from this instantaneous frame is denoted by $\boldsymbol{s}_{o, i}$ represented in this instantaneous frame
- If the origin of intermediate frames (3 or 4) is used as the point of interest, the Jacobian is much simpler. Notice the notation of $\boldsymbol{s}_{o, i}$ denotes the origin of frame i w.r.t the instantaneous frame on point \boldsymbol{P}.

Jacobian

- Screw-based Jacobian:
\checkmark Iterative Recipe:
- Initial Conditions

Consider frame $\{j\}$ to represent the Jacobian
Begin with $s_{j+1}=[0,0,1]^{T}, s_{o, j+1}=[0,0,0]^{T}$

- Forward Computation

For $i=j+1, \ldots, n-1$ compute

$$
\begin{aligned}
\mathbf{s}_{i+1} & =\left({ }^{j} R_{i}\right)\left({ }^{i} \mathbf{z}_{i}\right), \\
\mathbf{s}_{o, i+1} & =\mathbf{s}_{o, i}+\left({ }^{j} R_{i}\right)\left({ }^{i} \mathbf{r}_{i}\right), \\
{ }^{j} R_{i+1} & =\left({ }^{j} R_{i}\right)\left({ }^{i} R_{i+1}\right) .
\end{aligned}
$$

Jacobian

- Screw-based Jacobian:

\checkmark Iterative Recipe:

- Backward Computation

For $i=j-1, \ldots, 0$ compute

$$
\begin{aligned}
\mathbf{s}_{i+1} & =\left({ }^{j} R_{i}\right)\left({ }^{i} \mathbf{z}_{i}\right), \\
\mathbf{s}_{o, i+1} & =\mathbf{s}_{o, i+2}-\left({ }^{j} R_{i+1}\right)\left({ }^{i+1} \mathbf{r}_{i+1}\right), \\
{ }^{j} R_{i-1} & =\left({ }^{j} R_{i}\right)\left({ }^{i} R_{i-1}\right),
\end{aligned}
$$

Where ${ }^{i} R_{i-1}=\left({ }^{i-1} R_{i}\right)^{\mathrm{T}}$
Furthermore,

$$
{ }^{i} \mathbf{z}_{i}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad{ }^{i} \mathbf{r}_{i}=\left[\begin{array}{c}
a_{i} \\
d_{i} \mathrm{~s} \alpha_{i} \\
d_{i} \mathrm{c} \alpha_{i}
\end{array}\right]
$$

Is the position vector from O_{i-1} to O_{i} expressed in $i^{\text {th }}$ frame.
Assembling the unit screws derived above, yields to the Jacobian of the point \boldsymbol{P} as:

$$
\left[\begin{array}{c}
{ }^{0} \boldsymbol{\omega}_{\boldsymbol{E}} \\
{ }^{0} \boldsymbol{v}_{\boldsymbol{p}}
\end{array}\right]=\boldsymbol{J} \dot{\boldsymbol{q}} \rightarrow \boldsymbol{J}=\left[J_{n}, J_{2}, \ldots, J_{n}\right] \quad \text { and } J_{i}=\left[\begin{array}{c}
\boldsymbol{s}_{i} \\
\boldsymbol{s}_{\boldsymbol{o}, i} \times \boldsymbol{s}_{i}
\end{array}\right] \text { for (R) joint or } J_{i}=\left[\begin{array}{c}
\mathbf{0} \\
s_{i}
\end{array}\right] \text { for (P) joints. }
$$

Screw-Based Jacobians

- Examples:

\checkmark Example 1: Planar RRR Manipulator

- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{\theta}_{3}\right]^{T}$ and $\dot{\chi}=\left[\boldsymbol{\omega}_{E}, \boldsymbol{v}_{Q}\right]^{T}$
- Put an instantaneous frame $\{0\}$ on point \boldsymbol{Q}.
- Find the screw details by inspection:

For $\$_{3}$:
$\boldsymbol{s}_{3}=[0,0,1]^{T}, \quad \boldsymbol{s}_{o, 3}={ }_{3}^{0} \boldsymbol{R}\left[\begin{array}{c}-a_{3} \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}-a_{3} c_{123} \\ -a_{3} s_{123} \\ 0\end{array}\right]$.
For $\$_{2}$:
$\boldsymbol{s}_{2}=[0,0,1]^{T}, \boldsymbol{s}_{o, 2}=\boldsymbol{s}_{0,3}+{ }_{2}^{0} \boldsymbol{R}\left[\begin{array}{c}-a_{2} \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}-a_{2} c_{12}-a_{3} c_{123} \\ -a_{2} s_{12}-a_{3} s_{123} \\ 0\end{array}\right]$
For $\$_{1}$:

Matlab Program: Jacobian_screw_RRR_inspection.m
$\boldsymbol{s}_{1}=[0,0,1]^{T}, \quad \boldsymbol{s}_{o, 1}=\boldsymbol{s}_{o, 2}+{ }_{1} \boldsymbol{R}\left[\begin{array}{c}-a_{1} \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}-a_{1} c_{1}-a_{2} c_{12}-a_{3} c_{123} \\ -a_{1} s_{1}-a_{2} s_{12}-a_{3} s_{123} \\ 0\end{array}\right]$

Screw-Based Jacobians

\checkmark Example 1: Planar RRR Manipulator

- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{\theta}_{3}\right]^{T}$ and $\dot{\chi}=\left[\boldsymbol{\omega}_{E}, \boldsymbol{v}_{Q}\right]^{T}$
- The Jacobian $\dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}$ is found by $\boldsymbol{J}=\left[\$_{1}, \$_{2}, \$_{3}\right]$,
- In which, $\$_{i}=\left[\begin{array}{c}\boldsymbol{s}_{i} \\ s_{o, i} \times s_{i}\end{array}\right]$, hence:

$$
\boldsymbol{J}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 \\
-a_{1} s_{1}-a_{2} s_{12}-a_{3} s_{123} & -a_{2} s_{12}-a_{3} s_{123} & -a_{3} s_{123} \\
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} & a_{2} c_{12}+a_{3} c_{123} & a_{3} c_{123} \\
0 & 0 & 0
\end{array}\right]
$$

- In planar coordinates, this means:

$$
\begin{aligned}
& \omega_{z}=\dot{\phi}=\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3} \\
& \dot{x}_{Q}=-\left(a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123}\right) \dot{\theta}_{1}-\left(a_{2} s_{12}+a_{3} s_{123}\right) \dot{\theta}_{2}-\left(a_{3} s_{123}\right) \dot{\theta}_{3} \\
& \dot{y}_{Q}=\left(a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123}\right) \dot{\theta}_{1}-\left(a_{2} c_{12}+a_{3} c_{123}\right) \dot{\theta}_{2}-\left(a_{3} c_{123}\right) \dot{\theta}_{3}
\end{aligned}
$$

Which is exactly as found before (see slide 23).

Screw-Based Jacobians

\checkmark Example 1: Planar RRR Manipulator

- Jacobian for wrist Point $\boldsymbol{P}: \dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{\theta}_{3}\right]^{T}$ and $\dot{\chi}=\left[\boldsymbol{\omega}_{E}, \boldsymbol{v}_{\boldsymbol{p}}\right]^{T}$
- Put an instantaneous frame $\{0\}$ on point \boldsymbol{P}.
- Find the screw details by inspection:

$$
\begin{aligned}
& \boldsymbol{s}_{3}=\boldsymbol{s}_{2}=\boldsymbol{s}_{1}=[0,0,1]^{T}, \boldsymbol{s}_{o, 3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \boldsymbol{s}_{o, 2}={ }_{2}^{0} \boldsymbol{R}\left[\begin{array}{c}
-a_{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-a_{2} c_{12} \\
-a_{2} s_{12} \\
0
\end{array}\right] . \\
& \boldsymbol{s}_{o, 1}=\boldsymbol{s}_{o, 2}+{ }_{1}^{0} \boldsymbol{R}\left[\begin{array}{c}
-a_{1} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-a_{1} c_{1}-a_{2} c_{12} \\
-a_{1} s_{1}-a_{2} s_{12} \\
0
\end{array}\right]
\end{aligned}
$$

- Hence,
$\boldsymbol{J}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ -a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} & 0 \\ a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{gathered}
\omega_{z}=\dot{\phi}=\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3} \\
\text { or component-wise: } \quad \dot{x}_{p}=-\left(a_{1} s_{1}+a_{2} s_{12}\right) \dot{\theta}_{1}-\left(a_{2} s_{12}\right) \dot{\theta}_{2} \\
\dot{y}_{p}=\left(a_{1} c_{1}+a_{2} c_{12}\right) \dot{\theta}_{1}+\left(a_{2} c_{12}\right) \dot{\theta}_{2}
\end{gathered}
$$

Which is exactly as found before (see slide 23).

Screw-Based Jacobians

- Examples:

\checkmark Example 1: Planar RRR Manipulator

- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}, \dot{\theta}_{3}\right]^{T}$ and $\dot{\chi}=\left[\boldsymbol{\omega}_{E}, \boldsymbol{v}_{Q}\right]^{T}$
- Put an instantaneous frame $\{0\}$ on point \boldsymbol{Q}.
$4=$
- Find the screw details by iteration:
- Initial Conditions:

$$
\text { For } j=3, \boldsymbol{s}_{4}=[0,0,1]^{T}, \boldsymbol{s}_{o, 4}=[0,0,0]^{T} \text {. }
$$

- (BI) Now look backward, for $i=2$:

$$
\begin{aligned}
& \boldsymbol{s}_{3}={ }_{2}^{3} \boldsymbol{R} \boldsymbol{z}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \boldsymbol{s}_{o, 3}={ }^{0} \boldsymbol{s}_{o, 4}-{ }_{3}^{0} \boldsymbol{R}_{3}^{3} \boldsymbol{R}\left[\begin{array}{c}
a_{3} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-a_{3} c_{123} \\
-a_{3} s_{123} \\
0
\end{array}\right] \\
& \boldsymbol{s}_{2}={ }_{1}^{3} \boldsymbol{R} \boldsymbol{z}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \boldsymbol{s}_{o, 2}=\boldsymbol{s}_{o 3}-{ }_{2}^{0} \boldsymbol{R}\left[\begin{array}{c}
a_{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
-a_{2} c_{12}-a_{3} c_{123} \\
-a_{2} s_{12}-a_{3} s_{123} \\
0
\end{array}\right] \\
& \boldsymbol{s}_{1}={ }_{0}^{3} \boldsymbol{R} \boldsymbol{z}_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \boldsymbol{s}_{o, 1}=\boldsymbol{s}_{o, 2}-{ }_{1}^{0} \boldsymbol{R}\left[\begin{array}{c}
a_{1} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-a_{1} c_{1}-a_{2} c_{12}-a_{3} c_{123} \\
-a_{1} s_{1}-a_{2} s_{12}-a_{3} s_{123} \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
{ }^{\mathbf{0}} \boldsymbol{\omega}_{\boldsymbol{E}} \\
{ }^{\mathbf{0}} \boldsymbol{v}_{\boldsymbol{Q}}
\end{array}\right]=\boldsymbol{J} \dot{\boldsymbol{q}} \rightarrow \boldsymbol{J}=\left[J_{1}, J_{2}, \ldots, J_{3}\right], \text { and } J_{i}=\left[\begin{array}{c}
\boldsymbol{s}_{i} \\
\boldsymbol{s}_{\boldsymbol{o}, i} \times \boldsymbol{s}_{i}
\end{array}\right]} \\
& \boldsymbol{J}=\left[\begin{array}{cc}
0 & 0 \\
0 & 1 \\
1 & 0 \\
-a_{1} s_{1}-a_{2} s_{12}-a_{3} s_{123} & -a_{2} s_{12}-a_{3} s_{123} \\
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} & a_{2} c_{12}+a_{3} c_{123} \\
0 & 0
\end{array}\right.
\end{aligned}
$$

Screw-Based Jacobians

\checkmark Example 2: Elbow Manipulator

- Consider the point of Interest \boldsymbol{O}^{\prime} the origin of frame $\{4\}$
- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \ldots, \dot{\theta}_{6}\right]^{T}$ and $\dot{\chi}=\left[\boldsymbol{\omega}_{E}, \boldsymbol{v}_{O^{\prime}}\right]^{T}$
- Initial Conditions:

$$
\text { For } j=4, s_{5}=[0,0,1]^{T}, s_{o, 5}=[0,0,0]^{T} .
$$

- (FI) Find the $6^{\text {th }}$ axes details. For $i=5$:

$$
\mathbf{s}_{6}={ }^{4} R_{5}{ }^{5} \mathbf{z}_{5}=\left[\begin{array}{c}
\mathrm{s} \theta_{5} \\
-\mathrm{c} \theta_{5} \\
0
\end{array}\right], \quad \mathbf{s}_{o, 6}=\mathbf{s}_{o, 5}+{ }^{4} R_{5}{ }^{5} r_{5}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

- (BI) Now look backward, For $i=3$:

$$
\mathbf{s}_{4}={ }^{4} R_{3}{ }^{3} \mathbf{z}_{3}=\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right], \quad \mathbf{s}_{o, 4}=\mathbf{s}_{o, 5}-{ }^{4} R_{4}{ }^{4} r_{4}=\left[\begin{array}{c}
-a_{4} \\
0 \\
0
\end{array}\right], \quad{ }^{4} R_{2}={ }^{4} R_{3}{ }^{3} R_{2}=\left[\begin{array}{ccc}
\mathrm{c} \theta_{34} & \mathrm{~s} \theta_{34} & 0 \\
0 & 0 & -1 \\
-\mathrm{s} \theta_{34} & \mathrm{c} \theta_{34} & 0
\end{array}\right] .
$$

Screw-Based Jacobians

\checkmark Example 2: Elbow Manipulator

- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \ldots, \dot{\theta}_{6}\right]^{T}$ and $\dot{\chi}=\left[\boldsymbol{\omega}_{E}, \boldsymbol{v}_{O^{\prime}}\right]^{T}$
- For $i=2$

$$
\begin{aligned}
\mathbf{s}_{3}={ }^{4} R_{2}{ }^{2} \mathbf{z}_{2} & =\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right], \mathbf{s}_{o, 3}=\mathbf{s}_{o, 4}-{ }^{4} R_{3}{ }^{3} r_{3}=\left[\begin{array}{c}
-a_{3} \mathrm{c} \theta_{4}-a_{4} \\
0 \\
a_{3} \mathrm{~s} \theta_{4}
\end{array}\right] \\
{ }^{4} R_{1} & ={ }^{4} R_{2}{ }^{2} R_{1}=\left[\begin{array}{ccc}
\mathrm{c} \theta_{234} & \mathrm{~s} \theta_{234} & 0 \\
0 & 0 & -1 \\
-\mathrm{s} \theta_{234} & \mathrm{c} \theta_{234} & 0
\end{array}\right] .
\end{aligned}
$$

- For $i=1$:
$\mathbf{s}_{2}={ }^{4} R_{1}{ }^{1} \mathbf{z}_{1}=\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right], \quad \mathbf{s}_{o, 2}=\mathbf{s}_{o, 3}-{ }^{4} R_{2}{ }^{2} r_{2}=\left[\begin{array}{c}-a_{2} \mathrm{c} \theta_{34}-a_{3} \mathrm{c} \theta_{4}-a_{4} \\ 0 \\ a_{2} \mathrm{~s} \theta_{34}+a_{3} \mathrm{~s} \theta_{4}\end{array}\right], \quad{ }^{4} R_{0}={ }^{4} R_{1}{ }^{1} R_{0}=\left[\begin{array}{ccc}\mathrm{c} \theta_{1} \mathrm{c} \theta_{234} & \mathrm{~s} \theta_{1} \mathrm{c} \theta_{234} & \mathrm{~s} \theta_{234} \\ -\mathrm{s} \theta_{1} & \mathrm{c} \theta_{1} & 0 \\ -\mathrm{c} \theta_{1} \mathrm{~s} \theta_{234} & -\mathrm{s} \theta_{1} \mathrm{~s} \theta_{234} & \mathrm{c} \theta_{234}\end{array}\right]$
- For $i=0$:

$$
\mathbf{s}_{1}={ }^{4} R_{0}{ }^{0} \mathbf{z}_{0}=\left[\begin{array}{c}
\mathrm{s} \theta_{234} \\
0 \\
\mathrm{c} \theta_{234}
\end{array}\right], \quad \mathbf{s}_{o, 1}=\mathbf{s}_{o, 2}-{ }^{4} R_{1}{ }^{1} r_{1}=\left[\begin{array}{c}
-a_{2} \mathrm{c} \theta_{34}-a_{3} \mathrm{c} \theta_{4}-a_{4} \\
0 \\
a_{2} \mathrm{~s} \theta_{34}+a_{3} \mathrm{~s} \theta_{4}
\end{array}\right] .
$$

Screw-Based Jacobians

\checkmark Example 2: Elbow Manipulator

Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \ldots, \dot{\theta}_{6}\right]^{T}$ and $\dot{\chi}=\left[\boldsymbol{\omega}_{E}, \boldsymbol{v}_{O^{\prime}}\right]^{T}$
Hence $\dot{\chi}=J \dot{\boldsymbol{q}}$ in reference frame $\{4\}$ is given by:

$$
{ }^{4} \boldsymbol{J}=\left[\begin{array}{cccccc}
\mathrm{s} \theta_{234} & 0 & 0 & 0 & 0 & \mathrm{~s} \theta_{5} \\
0 & -1 & -1 & -1 & 0 & -\mathrm{c} \theta_{5} \\
\mathrm{c} \theta_{234} & 0 & 0 & 0 & 1 & 0 \\
0 & a_{2} \mathrm{~s} \theta_{34}+a_{3} \mathrm{~s} \theta_{4} & a_{3} \mathrm{~s} \theta_{4} & 0 & 0 & 0 \\
x_{51} & 0 & 0 & 0 & 0 & 0 \\
0 & a_{2} \mathrm{c} \theta_{34}+a_{3} \mathrm{c} \theta_{4}+a_{4} & a_{3} \mathrm{c} \theta_{4}+a_{4} & a_{4} & 0 & 0
\end{array}\right]
$$

In which,

$$
x_{51}=a_{2} \mathrm{c} \theta_{2}+a_{3} \mathrm{c} \theta_{23}+a_{4} \mathrm{c} \theta_{234}
$$

Screw-Based Jacobians

\checkmark Example 3: Stanford Arm (2RP3R)

Rof
Rosor
RuHys
4

- Consider the wrist point \boldsymbol{P} the origin of frame $\{3\}$
- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \ldots, \dot{\theta}_{6}\right]^{T}$ and $\dot{\chi}=\left[\omega_{E}, \boldsymbol{v}_{P}\right]^{T}$
- Initial Conditions:

$$
\text { For } j=3, s_{4}=[0,0,1]^{T}, s_{o, 4}=[0,0,0]^{T} .
$$

- Find the $5^{\text {th }}$ and $6^{\text {th }}$ axes details. For $i=4$:

$$
\mathbf{s}_{5}={ }^{3} R_{4}{ }^{4} \mathbf{z}_{4}=\left[\begin{array}{c}
-\mathrm{s} \theta_{4} \\
\mathrm{c} \theta_{4} \\
0
\end{array}\right], \quad \mathbf{s}_{o, 5}=\mathbf{s}_{0,4}+{ }^{3} R_{4}{ }^{4} r_{4}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
$$

For $i=5$:

$$
\mathbf{s}_{6}={ }^{3} R_{5}{ }^{5} \mathbf{z}_{5}=\left[\begin{array}{c}
\mathrm{c} \theta_{4} \mathrm{~s} \theta_{5} \\
\mathrm{~s} \theta_{4} \mathrm{~s} \theta_{5} \\
\mathrm{c} \theta_{5}
\end{array}\right], \quad \mathbf{s}_{o, 6}=\mathbf{s}_{o, 5}+{ }^{3} R_{5}{ }^{5} r_{5}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

z_{0}^{\prime}

$x_{0}^{\prime} x_{6}$

$$
{ }^{3} R_{5}={ }^{3} R_{4}{ }^{4} R_{5}=\left[\begin{array}{ccc}
\mathrm{c} \theta_{4} \mathrm{c} \theta_{5} & -\mathrm{s} \theta_{4} & \mathrm{c} \theta_{4} \mathrm{~s} \theta_{5} \\
\mathrm{~s} \theta_{4} \mathrm{c} \theta_{5} & \mathrm{c} \theta_{4} & \mathrm{~s} \theta_{4} \mathrm{~s} \theta_{5} \\
-\mathrm{s} \theta_{5} & 0 & \mathrm{c} \theta_{5}
\end{array}\right] .
$$

Screw-Based Jacobians

\checkmark Example 3: Stanford Arm (2RP3R)

- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \ldots, \dot{\theta}_{6}\right]^{T}$ and $\dot{\chi}=\left[\boldsymbol{\omega}_{E}, \boldsymbol{v}_{P}\right]^{T}$

Find the $3^{\text {rd }}, 2^{\text {nd }}$ and $1^{\text {st }}$ axes details. For $i=2$:

$$
\begin{aligned}
& \mathbf{s}_{3}={ }^{3} R_{2}{ }^{2} \mathbf{z}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \mathbf{s}_{o, 3}=\mathbf{s}_{o, 4}-{ }^{3} R_{3}{ }^{3} r_{3}=\left[\begin{array}{c}
0 \\
0 \\
-d_{3}
\end{array}\right], \\
& { }^{3} R_{1}={ }^{3} R_{2}{ }^{2} R_{1}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
\mathrm{c} \theta_{2} & \mathrm{~s} \theta_{2} & 0 \\
\mathrm{~s} \theta_{2} & -\mathrm{c} \theta_{2} & 0
\end{array}\right] .
\end{aligned}
$$

For $i=1$:

$$
\begin{gathered}
\mathbf{s}_{2}={ }^{3} R_{1}{ }^{1} \mathbf{z}_{1}=\left[\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right], \quad \mathbf{s}_{o, 2}=\mathbf{s}_{o, 3}-{ }^{3} R_{2}{ }^{2} r_{2}=\left[\begin{array}{c}
d_{2} \\
0 \\
-d_{3}
\end{array}\right] \\
{ }^{3} R_{0}={ }^{3} R_{1}{ }^{1} R_{0}=\left[\begin{array}{ccc}
\mathrm{s} \theta_{1} & -\mathrm{c} \theta_{1} & 0 \\
\mathrm{c} \theta_{1} \mathrm{c} \theta_{2} & \mathrm{~s} \theta_{1} \mathrm{c} \theta_{2} & -\mathrm{s} \theta_{2} \\
\mathrm{c} \theta_{1} \mathrm{~s} \theta_{2} & \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{2} & \mathrm{c} \theta_{2}
\end{array}\right] .
\end{gathered}
$$

Screw-Based Jacobians

\checkmark Example 3: Stanford Arm (2RP3R)

- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \ldots, \dot{\theta}_{6}\right]^{T}$ and $\dot{\chi}=\left[\omega_{E}, \boldsymbol{v}_{P}\right]^{T}$

For $i=0$:

$$
\mathbf{s}_{1}={ }^{3} R_{0}{ }^{0} \mathbf{z}_{0}=\left[\begin{array}{c}
0 \\
-\mathrm{s} \theta_{2} \\
\mathrm{c} \theta_{2}
\end{array}\right], \quad \mathbf{s}_{o, 1}=\mathbf{s}_{o, 2}-{ }^{3} R_{1}{ }^{1} r_{1}=\left[\begin{array}{c}
d_{2} \\
0 \\
-d_{3}
\end{array}\right] .
$$

Hence $\dot{\chi}=J \dot{\boldsymbol{q}}$ in reference frame $\{3\}$ is given by:

$$
{ }^{3} J=\left[\begin{array}{cccccc}
0 & -1 & 0 & 0 & -\mathrm{s} \theta_{4} & \mathrm{c} \theta_{4} \mathrm{~s} \theta_{5} \\
-\mathrm{s} \theta_{2} & 0 & 0 & 0 & \mathrm{c} \theta_{4} & \mathrm{~s} \theta_{4} \mathrm{~s} \theta_{5} \\
\mathrm{c} \theta_{2} & 0 & 0 & 1 & 0 & \mathrm{c} \theta_{5} \\
-d_{3} \mathrm{~s} \theta_{2} & 0 & 0 & 0 & 0 & 0 \\
-d_{2} \mathrm{c} \theta_{2} & d_{3} & 0 & 0 & 0 & 0 \\
-d_{2} \mathrm{~s} \theta_{2} & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Observe that the Jacobian is greatly simplified for the wrist point \boldsymbol{P}.

Preliminaries

1

Angular velocity, rotation matrix and Euler angle rates, Linear velocity, golden rule in differentiation, twist, screw representation.

Jacobian

Definition, motivating example, direct approach, general and iterative methods, case studies, screw based Jacobian, general and iterative methods, case studies.

Static Wrench

Wrench definition, principle of virtual work, Jacobian transpose mapping, examples.

Jacobian Chacteristics

Singularity, twist and wrench map, singular configurations, singularity decoupling, dexterity, dexterity ellipsoid, isotropy, manipulability, condition number,

Inverse Solutions

Inverse map, fully- and under-actuated robots, redundancy, redundancy resolution, optimization problem, inverse acceleration, obstacle avoidance, singularity circumvention.

Stiffness Analysis

Sources of compliance, Compliance and stiffness matrix, force ellipsoid, case studies.

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of robotic manipulators is reviewed in detail.

Static Wrench

- Applied Wrench to the Environment

\checkmark How much actuator effort is needed to apply such forces/Moments

- Define the actuator torque/force

$$
\boldsymbol{\tau}=\left[\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right]^{T} \text { in which } \tau_{i}=\left\{\begin{array}{lr}
\tau_{i} & \text { for a revolute joint } \\
f_{i} & \text { for a prismatic joint }
\end{array}\right.
$$

- Define the applied wrench to the environment: (6×1) tuple

$$
\mathcal{F}=\left[\boldsymbol{F}_{E}, \boldsymbol{n}_{E}\right]^{T} \text { in which } \begin{cases}\boldsymbol{F}_{E}=\left[\begin{array}{lll}
F_{x} & F_{y} & F_{z}
\end{array}\right]^{T} & \text { The applied force } \\
\boldsymbol{n}_{E}=\left[\begin{array}{lll}
n_{x} & n_{y} & n_{z}
\end{array}\right]^{T} \quad \text { The applied torque }\end{cases}
$$

Wrench is a screw-based coordinate as twist

- Jacobian transpose maps the joint space variables to task space by:

Static Wrench

- Principle of Virtual Work

\checkmark Virtual Displacement

- Infinitesimal change in the position and orientation $\delta \boldsymbol{q}$ or $\delta \chi$

Which does not really change the posture and force distribution in the robot.
$\delta \boldsymbol{q}=\left[\delta q_{1}, \delta q_{2}, \ldots \delta q_{n}\right]^{T}$: The virtual displacement of the joint variables
$\delta \chi=\left[\delta x, \delta y, \delta z, \delta \theta_{x}, \delta \theta_{y}, \delta \theta_{z}\right]^{T}$: The virtual displacement of the end effector, where $\left[\delta \theta_{x}, \delta \theta_{y}, \delta \theta_{z}\right]^{T}=\delta \theta \hat{\boldsymbol{s}}$
is the orientation variable in screw representation.

\checkmark System Under Static Balance

- The total virtual work, δW, done by all the actuators and external forces is equal to zero.

$$
\delta W=\boldsymbol{\tau}^{T} \delta \boldsymbol{q}-\mathcal{F}^{T} \delta \chi=0
$$

where, $-\mathcal{F}^{T}$ is used in here, to include the wrench applied to the robot by environment.

- Jacobian maps: $\dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}$ therefore, $\delta \boldsymbol{\chi}=\boldsymbol{J}(\boldsymbol{q}) \delta \boldsymbol{q}$.
- Substitute

$$
\delta W=\left(\boldsymbol{\tau}^{T}-\boldsymbol{\mathcal { F }}^{T} \boldsymbol{J}(\boldsymbol{q})\right) \delta \boldsymbol{q}=0
$$

- This holds for any arbitrary virtual displacement $\delta \boldsymbol{q}$; Hence

$$
\boldsymbol{\tau}^{T}-\mathcal{F}^{T} \boldsymbol{J}(\boldsymbol{q})=0 \quad \text { or } \boldsymbol{\tau}=\boldsymbol{J}^{\boldsymbol{T}}(\boldsymbol{q}) \mathcal{F}
$$

This means $\boldsymbol{J}^{\boldsymbol{T}}(\boldsymbol{q})$ maps the wrenches \mathcal{F} applied to the environment into the actuator torques $\boldsymbol{\tau}$

Static Wrench

\checkmark Example 1: Planar RRR Manipulator

- Denote $\boldsymbol{\tau}=\left[\tau_{1}, \tau_{2}, \tau_{3}\right]^{T}$: The actuator forces in the joints, and
- and $\mathcal{F}=\left[f_{x}, f_{y}, n_{z}\right]^{T}$ the planar force $\boldsymbol{F}_{E}=\left[f_{x}, f_{y}\right]^{T}$ and n_{z} the torque exerted to the environment
- The Jacobian map $\boldsymbol{\tau}=\boldsymbol{J}^{\boldsymbol{T}}(\boldsymbol{q}) \mathcal{F}$ may be used In which,

$$
J(\boldsymbol{q})=\left[\begin{array}{ccc}
-a_{1} s_{1}-a_{2} s_{12}-a_{3} s_{123} & -a_{2} s_{12}-a_{3} s_{123} & -a_{3} s_{123} \\
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} & a_{2} c_{12}+a_{3} c_{123} & a_{3} c_{123} \\
1 & 1 & 1
\end{array}\right]
$$

- This means:

$$
\begin{aligned}
& \tau_{1}=-\left(a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123}\right) f_{x}+\left(a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123}\right) f_{y}+ \\
& \tau_{2}=-\left(a_{2} s_{12}+a_{3} s_{123}\right) f_{x}+\left(a_{2} c_{12}+a_{3} c_{123}\right) \dot{\theta}_{2}+n_{z} \\
& \tau_{3}=-\left(a_{3} s_{123}\right) f_{x}+\left(a_{3} c_{123}\right) f_{y}+n_{z}
\end{aligned}
$$

- This may be verified by Newton-Euler free body diagram method.

Preliminaries

1

Angular velocity, rotation matrix and Euler angle rates, Linear velocity, golden rule in differentiation, twist, screw representation.

Jacobian

Definition, motivating example, direct approach, general and iterative methods, case studies, screw based Jacobian, general and iterative methods, case studies.

Static Wrench

Wrench definition, principle of virtual work, Jacobian transpose mapping, examples.

Jacobian Characteristics

Singularity, twist and wrench map, singular configurations, singularity decoupling, dexterity, dexterity ellipsoid, isotropy, manipulability, condition number,

Inverse Solutions

Inverse map, fully- and under-actuated robots, redundancy, redundancy resolution, optimization problem, inverse acceleration, obstacle avoidance, singularity circumvention.

Stiffness Analysis

Sources of compliance, Compliance and stiffness matrix, force ellipsoid, case studies.

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of robotic manipulators is reviewed in detail.

Jacobian Characteristics

- Singularity
\checkmark Jacobian reveals the forward differential kinematic map $\dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}$
- Forward Map

Given $\dot{\boldsymbol{q}}$ find $\dot{\chi}$

Inverse Map
Given $\dot{\chi}$ find $\dot{\boldsymbol{q}}$

- Consider the inverse map

For square Jacobians if $\boldsymbol{J}^{-\mathbf{1}}(\boldsymbol{q})$ exists then $\dot{\boldsymbol{q}}=\boldsymbol{J}^{-1}(\boldsymbol{q}) \dot{\chi}$
This is used to find the required joint speeds to achieve a desired velocity in task space.

- At singular configurations of $\boldsymbol{J}(\boldsymbol{q})$, this matrix is not invertible $(\operatorname{det}(\boldsymbol{J})=0)$.
@ singular configuration, with finite joint speeds all arbitrary task velocities are not achievable!
- This will happen at the boundary of the workspace, and ...

Singularity

- Motivating Example
\checkmark Consider the planar 2R manipulator
- Denote $\dot{\boldsymbol{q}}=\left[\dot{\theta}_{1}, \dot{\theta}_{2}\right]^{T}$ and $\dot{\chi}=\left[\dot{x}_{E}, \dot{y}_{E}\right]^{T}$

Jacobian in frame $\{0\}:{ }^{0} \boldsymbol{J}=\left[\begin{array}{cc}-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} \\ l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12}\end{array}\right]$, and in frame $\{2\}:{ }^{2} \boldsymbol{J}=\left[\begin{array}{cc}l_{1} s_{2} & 0 \\ l_{1} c_{2}+l_{2} & l_{2}\end{array}\right]$.

- Singular configurations

$$
\operatorname{det}\left({ }^{0} \boldsymbol{J}\right)=\operatorname{det}\left({ }^{2} \boldsymbol{J}\right)=l_{1} l_{2} s_{2}=0 \text { if } s_{2}=0 \text { or } \theta_{2}=0 \text { or } \pi
$$

- Physically: Fully extended or retracted arms (We saw this when one double solution for IK occurs, on the boundaries of the workspace)
- Let us find the inverse solution:

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}^{\boldsymbol{- 1}}(\boldsymbol{q}) \dot{\chi} \rightarrow\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\frac{1}{l_{1} l_{2} s_{2}}\left[\begin{array}{cc}
l_{2} c_{12} & l_{2} s_{12} \\
-l_{1} c_{1}-l_{2} c_{12} & -l_{1} s_{1}-l_{2} s_{12}
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{E} \\
\dot{y}_{E}
\end{array}\right]
$$

Robotics: Mechanics and Control Prof. Hamid D. Taghirad
K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Department of Systems and Control, Advanced Robotics and Automated Systems

As the arms are fully extended $s_{2} \rightarrow 0$, and $\dot{\theta}_{1}, \dot{\theta}_{2} \rightarrow \infty$
At the boundary of the workspace $s_{2}=0$, no further out movement in x direction is possible.
To visualize, consider $\dot{x}_{E}=1$ while $\dot{y}_{E}=0$ (move in x direction), then

$$
\dot{\theta}_{1}=\frac{1}{l_{1} l_{2} s_{2}}, \quad \dot{\theta}_{2}=\frac{-1}{l_{1} l_{2} s_{2}}\left(l_{1} c_{1}+l_{2} c_{12}\right)
$$

Singularity

- General Description
\checkmark Consider a $6 \times n$ Jacobian $J(q)$ of a nDoF robot denoted by $\dot{\chi}=J_{1} \dot{q}_{1}+J_{2} \dot{q}_{2}+\cdots+J_{n} \dot{q}_{n}$ or $\dot{\chi}=\$_{1} \dot{q}_{1}+\$_{2} \dot{q}_{2}+\cdots+\$_{n} \dot{q}_{n}$

Reaching high: Fully extended neck

Fully extended arms to lift heavy loads

- Robot EE can reach any arbitrary twist if $\operatorname{rank}(J(q))=6$. $\operatorname{rank}(J(q))=$ No. of independent J_{i} or $\$_{1}$ (Configuration Dependent) For a 6DoF robot $\operatorname{rank}(J(q)) \leq 6$ and $@ q$ that <6 singularity occurs For a 2 DoF robot $\operatorname{rank}(J(q)) \leq 2$ and @ q that <2 singularity occurs
- At singular configurations:

Certain direction of motion is unattainable (undesired)
Bounded end-effector velocities \rightarrow unbounded joint speeds
Bounded joint torques \rightarrow unbounded end-effector forces (desired) Often occurs @ boundary of workspace (where one double solution for IK occurs)
K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Singularity

- Singular Configurations
\checkmark For Square Jacobians: Find q such that $\operatorname{det}(J(q))=0$.
\checkmark Decoupling of Singularities
- For the case of $n=6: \boldsymbol{J}(q)=\left[\begin{array}{lll}J_{\text {arm }} & \mid & J_{\text {wrist }}\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{J}_{11} & \boldsymbol{J}_{12} \\ \boldsymbol{J}_{21} & \boldsymbol{J}_{22}\end{array}\right]$
- If wrist axes are revolute and intersect at a point then $\boldsymbol{J}_{\text {wrist }}=\left[\begin{array}{c}\mathbf{0} \\ J_{22}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ \hat{s}_{4} & \hat{\boldsymbol{s}}_{5} & \hat{\boldsymbol{s}}_{5}\end{array}\right]$
- The Jacobian is upper triangular $\boldsymbol{J}(q)=\left[\begin{array}{cc}\boldsymbol{J}_{11} & \mathbf{0} \\ \boldsymbol{J}_{21} & \boldsymbol{J}_{22}\end{array}\right]$
- Singularity occurs @ q, in which:

$$
\operatorname{det}(\boldsymbol{J}(q))=\operatorname{det}\left(\boldsymbol{J}_{11}(q)\right) \cdot \operatorname{det}\left(\boldsymbol{J}_{22}(q)\right)=0
$$

- Determine Singular configuration of arm and wrist separately.

Wrist singularity occurs @ q, in which: $\operatorname{det}\left(J_{22}(q)\right)=0$
Arm singularity occurs @ q, in which: $\operatorname{det}\left(J_{11}(q)\right)=0$

Singularity

- Decoupling of Singularities

\checkmark Wrist Singularities

- Consider 3R intersecting wrist:

A typical industrial design is like $w-u-w$ Euler configuration.

$$
\operatorname{det}\left(J_{22}(q)\right)=0
$$

This happens when the z_{i} axes are linearly dependent.
Singular configuration: when z_{3} and z_{5} are collinear.
Then:
$\theta_{5}=0$ or π

\checkmark Wrist Singularities

- Consider 3R Elbow manipulator like design

$$
J_{11}=\left[\begin{array}{ccc}
-a_{2} s_{1} c_{2}-a_{3} s_{1} c_{23} & -a_{2} s_{2} c_{1}-a_{3} s_{23} c_{1} & -a_{3} c_{1} s_{23} \\
a_{2} c_{1} c_{2}+a_{3} c_{1} c_{23} & -a_{2} s_{1} s_{2}-a_{3} s_{1} s_{23} & -a_{3} s_{1} s_{23} \\
0 & a_{2} c_{2}+a_{3} c_{23} & a_{3} c_{23}
\end{array}\right]
$$

- The determinant is:

$$
\operatorname{det} J_{11}=-a_{2} a_{3} s_{3}\left(a_{2} c_{2}+a_{3} c_{23}\right)
$$

Singularity

- Decoupling of Singularities

\checkmark Wrist Singularities

- Consider 3R Elbow manipulator like design
- Singular configurations: If $s_{3}=0$ or $\theta_{3}=0$ or π

Fully extended or retracted.

- Or when $a_{2} c_{2}+a_{3} c_{23}=0$

The wrist point intersect the base axis This case occurs @ infinitely many configurations Where infinitely many solution exist for IK.

If the elbow manipulator has an offset this singular configuration vanishes.

Singularity

- Decoupling of Singularities

\checkmark Wrist Singularities

- Consider 2RP Spherical Manipulator with no off set

By inspection singular configuration exists if:
The wrist point intersect the base axis:

- Consider SCARA Manipulator

The Jacobian is derived before, in which

$$
\begin{array}{r}
\left.J_{11}=\begin{array}{ccc}
\alpha_{1} & \alpha_{3} & 0 \\
\alpha_{2} & \alpha_{4} & 0 \\
0 & 0 & -1
\end{array}\right] \quad \text { where } \begin{array}{l}
\alpha_{1}=-a_{1} s_{1}-a_{2} s_{12} \\
\alpha_{2}=a_{1} c_{1}+a_{2} c_{12} \\
\alpha_{3}=-a_{1} s_{12} \\
\alpha_{4}=a_{1} c_{12}
\end{array} \\
\operatorname{det}\left(J_{11}\right)=0 \quad \text { if } \quad \alpha_{1} \alpha_{4}-\alpha_{2} \alpha_{3}=0
\end{array}
$$

This occurs if $s_{2}=0$, which implies $\theta_{2}=0$ or π.
This is similar to Elbow manipulator for fully extended or retracted arm.

- Motivation Example:
\checkmark Cobra Attack: Optimal Posture
B|BC
K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Dexterity

- Definition:
\checkmark Skill in performing tasks, especially with the hands. "quickness"

Dexterity

- "Quickness" in Multi Dimensional Space?
\checkmark Consider norm bound joint velocities (unit sphere)

$$
\|\dot{\boldsymbol{q}}\|_{2}^{2}=\dot{q}_{1}^{2}+\dot{q}_{2}^{2}+\cdots+\dot{q}_{n}^{2} \leq 1
$$

\checkmark What happens to the task space velocities?

$$
\|\dot{\boldsymbol{q}}\|_{2}^{2}=\dot{\boldsymbol{q}}^{T} \dot{\boldsymbol{q}}=\left[\boldsymbol{J}^{\dagger} \dot{\chi}\right]^{T} \boldsymbol{J}^{\dagger} \dot{\chi}=\dot{\chi}^{T} \boldsymbol{J}^{\boldsymbol{J}^{T}} \boldsymbol{J}^{\dagger} \dot{\chi}=\dot{\chi}^{T}\left(\boldsymbol{J} \boldsymbol{J}^{T}\right)^{\dagger} \dot{\chi}
$$

For all fat, square or tall Jacobians: $J J^{T}$ is a 6×6 matrix, hence

$$
\|\dot{\boldsymbol{q}}\|_{2}^{2}=\dot{\chi}^{T}\left(J J^{T}\right)^{-1} \dot{\chi}
$$

- This result into Dexterity or Manipulability Ellipsoid for a uniform input $\|\dot{\boldsymbol{q}}\|_{2}^{2}=1$, the output task velocities shall have a weighted norm along this ellipsoid

K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Isotropy

- Eigenvalues and Eigenvectors

\checkmark The ellipsoid is characterized by its eigen parameters

$$
\operatorname{det}\left(J \boldsymbol{J}^{T}\right)=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

\checkmark Two extreme cases:

- Singularity:
$\exists \lambda_{i}=0 \rightarrow \operatorname{det}\left(J^{T}\right)=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}=0$
The ellipsoid is changed to a cylinder in v_{i} (eigenvector) direction.
There exist no finite joint velocities to reach to task velocities in v_{i} direction
- Isotropy:

Singularity

$$
\forall \lambda_{i}=1 \rightarrow \boldsymbol{J} \boldsymbol{J}^{T}=\boldsymbol{I} \text { unit matrix } \rightarrow \operatorname{det}\left(\boldsymbol{J} \boldsymbol{J}^{T}\right)=1
$$

The ellipsoid is changed to a sphere
Dexterity in all task space direction with finite joint velocities Isotropy in applying equal velocities in all directions

Manipulability

- Gain of the Velocity Map
\checkmark Applying a uniform and unit norm input $\|\dot{\boldsymbol{q}}\|_{2}^{2}=1$
- Gain of the output is given by

$$
\operatorname{det}\left(\boldsymbol{J} \boldsymbol{J}^{T}\right)=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

Where λ_{i} denote the eigenvalue of $\boldsymbol{J} \boldsymbol{J}^{T}$

- Singular value of J ?

For a general even non-square matrix J

$$
\sigma_{i}(J)=\sqrt{\lambda_{i}\left(J J^{T}\right)}
$$

Where σ_{i} denotes the singular value of matrix J

- Manipulability Measure μ of $(J(q))$

$$
\mu=\sqrt{\operatorname{det}\left(J J^{T}\right)}=\sqrt{\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}}=\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{n} \text { singular values of }(\boldsymbol{J})
$$

The measure is configuration dependent.
If $\mu \rightarrow 0$ the configuration of the robot tends to singularity.
If $\mu \rightarrow 1$ the configuration of the robot tends to isotropy.
$\mu=0$, if and only if $\operatorname{rank}(J)<n$, the DoF's of the robot.

Manipulability

- Gain of the Velocity Map
\checkmark Manipulability Measure μ of $(J(q))$
- If the robot is under actuated it is deficient and $\mu=0$.
- If the robot is redundantly actuated, there are extra σ_{i} 's than Dof's This could be used to increase μ (Biological designs!)
Reconsider Cobra attack, the snake uses redundant posture for the attack.
- In general

$$
\begin{gathered}
\|\dot{\boldsymbol{q}}\|_{2}^{2}=\dot{\chi}^{T}\left(J J^{T}\right)^{-1} \dot{\chi} \leq \frac{1}{\left\|J J^{T}\right\|}\|\dot{\chi}\|_{2}^{2}=\frac{1}{\mu^{2}}\|\dot{\chi}\|_{2}^{2} \rightarrow\|\dot{\chi}\| \geq \mu\|\dot{\boldsymbol{q}}\| \\
\max \|\dot{\chi}\|=\sigma_{\max }\|\dot{\boldsymbol{q}}\| \text { in direction of } v_{\max } \\
\min \|\dot{\chi}\|=\sigma_{\min }\|\dot{\boldsymbol{q}}\| \text { in direction of } v_{\min }
\end{gathered}
$$

μ denotes the gain required to generate a specific task space velocity If $\mu=0$ some velocity directions are not attainable.
If $\mu=1$ the uniform input is projected uniformly in all directions of the outputs.
The shape of the ellipsoid is also very informative on the attainable directions.

Manipulability

- Other Measures

\checkmark Reciprocal of Condition number of $(J(q))$

- Definition: Condition number of a matrix J is $\kappa(J)=\frac{\sigma_{\max }(J)}{\sigma_{\min }(J)}$

In which $\sigma_{\max }(J)$, and $\sigma_{\min }(J)$ denotes the largest and smallest singular value of J, respectively.

- The measure: $\operatorname{rcond}(\mathrm{J})=1 / \kappa(J)=\frac{\sigma_{\min }(J)}{\sigma_{\max }(J)}$
- If rcond $=0$: at least one of the singular values are zero: singular configuration
- If rcond $=1$: All singular values are one: isotropic configuration μ considers all the singular values by rcond only extreme values The analysis are similar but the ellipsoids are not analyzed in rcond.

\checkmark Global Measures

- All measures are configuration dependent

There could be good at a pose and bad at another.
Integrate the measure in the whole space to get an averaged global measure

- Examples:

\checkmark Example 1: Isotropy Analysis of 2R Robot

- In 2R manipulator:

$$
\dot{\boldsymbol{\chi}}=\boldsymbol{J} \dot{\boldsymbol{q}} \text {, in which } \boldsymbol{J} \text { in frame }\{2\} \text { is }{ }^{2} \boldsymbol{J}=\left[\begin{array}{cc}
l_{1} s_{2} & 0 \\
l_{1} c_{2}+l_{2} & l_{2}
\end{array}\right]
$$

- Inspired by human arm, consider $l_{1}=\sqrt{2}$, and $l_{2}=1$.

Use symbolic manipulator to find $J J^{T}$ and its eigenvalues:

$$
\begin{aligned}
& \boldsymbol{J} \boldsymbol{J}^{T}=\left[\begin{array}{cc}
2 s_{2}^{2} & 2 c_{2} s_{2}+\sqrt{2} s_{2} \\
2 c_{2} s_{2}+\sqrt{2} s_{2} & \left(2 \sqrt{2} c_{2}+1\right)^{2}+1
\end{array}\right] ; \quad \operatorname{det}\left(\boldsymbol{J} \boldsymbol{J}^{T}\right)=2 s_{2}^{2}, \\
& \lambda_{1,2}= \pm\left(4 c_{2}^{2}+4 \sqrt{2} c_{2}+2\right)^{1 / 2}+\sqrt{2} c_{2}+2
\end{aligned}
$$

In Isotropic configurations $\lambda_{1}=\lambda_{2}=1$.
Only for this bio-inspired design isotropy happens @ $\theta_{2}= \pm \frac{3 \pi}{4} \forall \theta_{1}$.
The locus of isotropic configurations are shown in figure.
While singularity happens at fully-extended or retracted arm!

Manipulability

\checkmark Example 1: (Cont.)

- Now consider $\theta_{2}=\frac{\pi}{2}$; for this configuration:

$$
\boldsymbol{J} \boldsymbol{J}^{T}\left(\theta_{2}=\frac{\pi}{2}\right)=\left[\begin{array}{cc}
2 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] ; \quad\left(\boldsymbol{J}^{T}\right)^{-\mathbf{1}}=\left[\begin{array}{cc}
1 & -1 / \sqrt{2} \\
-1 / \sqrt{2} & 1
\end{array}\right]
$$

Calculate the velocity map gains

$$
\begin{aligned}
& \text { For } \boldsymbol{J} \boldsymbol{J}^{T} \rightarrow \begin{array}{l}
\lambda_{1}=3.414 ; \\
\lambda_{2}=0.586
\end{array} ; \text { while } v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \\
& \text { then for }\left(J J^{T}\right)^{-1} \rightarrow \begin{array}{l}
\lambda_{1}=0.292 \\
\lambda_{2}=1.707
\end{array} \\
& \text { For } \boldsymbol{J} ; \begin{array}{r}
G_{\max }=\sigma_{\max }=1.847 \\
G_{\min }=\sigma_{\min }=0.734
\end{array} ; \text { while } \vec{v}_{\max }=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \vec{v}_{\text {min }}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

The gains are singular values of J.
Directions are found by eigenvalues of $\boldsymbol{J} \boldsymbol{J}^{T}$

Manipulability

\checkmark Example 1: (Cont.)

- Proof of the mapping gains for $\theta_{2}=\frac{\pi}{2}$ configuration:

$$
\begin{aligned}
& \text { From }\|\dot{\boldsymbol{q}}\|_{2}^{2}=\dot{\chi}^{T}\left(\boldsymbol{J} \boldsymbol{J}^{\boldsymbol{T}}\right)^{-1} \dot{\chi} \rightarrow \dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}=v_{x}^{2}-\sqrt{2} v_{x} v_{y}+v_{y}^{2} \\
& \qquad \begin{array}{l}
\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}=0.292\left(\frac{v_{x}}{\sqrt{2}}+\frac{v_{y}}{\sqrt{2}}\right)^{2}+1.707\left(\frac{v_{x}}{\sqrt{2}}-\frac{v_{y}}{\sqrt{2}}\right)^{2} \\
\text { For } v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], v_{x}=v_{y} \rightarrow \dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}=0.292\left(\sqrt{2} v_{x}\right)^{2} \rightarrow\left(\sqrt{2} v_{x}\right)^{2}=3.414\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right) \\
\qquad \Rightarrow \dot{\chi}_{\max }=1.848\|\dot{\boldsymbol{q}}\| \text { in } \vec{v}_{\max }=\left[\begin{array}{c}
1 \\
1
\end{array}\right] \text { direction } \\
\text { For } v_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], v_{x}=-v_{y} \rightarrow \dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}=1.707\left(\sqrt{2} v_{x}\right)^{2} \rightarrow\left(\sqrt{2} v_{x}\right)^{2}=0.586\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right) \\
\qquad \Rightarrow \dot{\chi}_{\min }=0.734\|\dot{\boldsymbol{q}}\| \text { in } \vec{v}_{\min }=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \text { direction }
\end{array}
\end{aligned}
$$

Manipulability

\checkmark Example 1: (Cont.)

- For $\theta_{2}=\frac{\pi}{2}$ configuration:

$$
\begin{aligned}
& \Rightarrow \dot{\chi}_{\text {max }}=1.848\|\dot{\boldsymbol{q}}\|=\sigma_{\text {max }}\|\dot{\boldsymbol{q}}\| \text { in } \vec{v}_{\text {max }} \text { direction } \\
& \Rightarrow \dot{\chi}_{\text {min }}=0.734\|\dot{\boldsymbol{q}}\|=\sigma_{\text {min }}\|\dot{\boldsymbol{q}}\| \text { in } \vec{v}_{\text {min }} \text { direction }
\end{aligned}
$$

- Dexterity Measures: $\mu=\sqrt{\operatorname{det}\left(J J^{T}\right)}=\sqrt{\lambda_{1} \cdot \lambda_{2}}=\sqrt{2}$, rcond $=\frac{\sigma_{\min }}{\sigma_{\max }}=\frac{0.764}{1.848}=0.414$

Preliminaries

1

Angular velocity, rotation matrix and Euler angle rates, Linear velocity, golden rule in differentiation, twist, screw representation.

Jacobian

Definition, motivating example, direct approach, general and iterative methods, case studies, screw based Jacobian, general and iterative methods, case studies.

Static Wrench

Wrench definition, principle of virtual work, Jacobian transpose mapping, examples.

Jacobian Characteristics

Singularity, twist and wrench map, singular configurations, singularity decoupling, dexterity, dexterity ellipsoid, isotropy, manipulability, condition number,

Inverse Solutions

Inverse map, fully- and under-actuated robots, redundancy, redundancy resolution, optimization problem, inverse acceleration, obstacle avoidance, singularity circumvention.

Stiffness Analysis

Sources of compliance, Compliance and stiffness matrix, force ellipsoid, case studies.

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of robotic manipulators is reviewed in detail.

Inverse Solutions

- Definition:
\checkmark Jacobian Forward Map $\dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} \quad$ or $\quad \boldsymbol{\tau}=\boldsymbol{J}^{T}(\boldsymbol{q}) \mathcal{F}$
\checkmark Inverse Solution for Fully Actuated Robot $(m=n=6)$
- Jacobian matrix is square:

In non-singular configurations \boldsymbol{q}, where $\boldsymbol{J}^{\mathbf{- 1}}(\boldsymbol{q})$ exists:

$$
\dot{\boldsymbol{q}}=J^{-1}(\boldsymbol{q}) \dot{\chi} \quad \text { or } \quad \mathcal{F}=J^{-T}(\boldsymbol{q}) \tau
$$

- Near singular configurations:

To achieve a finite velocity $\dot{\chi}$ very large joint velocities is required $\dot{\boldsymbol{q}} \rightarrow \infty$.
Very large forces could be applied to the environment with low actuator torques
\checkmark Inverse Solution for Under Actuated Robot $(m<6)$

- Jacobian matrix is tall rectangular $(6 \times m)$:

Solution exist only if $\dot{\chi}$ lies in the range space of $\boldsymbol{J}(\boldsymbol{q})$ or $\boldsymbol{\tau}$ lies in the range space of $\boldsymbol{J}^{T}(\boldsymbol{q})$
This is satisfied if $\operatorname{rank} J(\boldsymbol{q})=\operatorname{rank}[J(\boldsymbol{q}) \mid \dot{\chi}]$

- The solution is found by left pseudo inverse of $J(\boldsymbol{q})$

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}^{\dagger}(\boldsymbol{q}) \dot{\chi} \quad \text { where } \quad \boldsymbol{J}^{\dagger}=\left(\boldsymbol{J}^{\boldsymbol{T}} \boldsymbol{J}\right)^{-\mathbf{1}} \boldsymbol{J}^{\boldsymbol{T}} \quad \text { Note: }\left(\boldsymbol{J}^{\boldsymbol{T}} \boldsymbol{J}\right) \text { is } m \times m:
$$

Redundancy in Nature

Human Arm: 7 Joints

Human Shoulder: 4 Muscles

Mammal's Neck: 7 Vertebra

Skeleton: Giraffes vs Humans

Humans and giraffes have the same number of bones in their necks.
Giraffe's vertebrae are just bigger!

Anterior shoulder

Posterior shoulder

Redundancy in Nature

Human wrist: 8 Bones

Bird's Neck: 14 Vertebra!

Inverse Solution

\checkmark Inverse Solution for Redundantly Actuated Robot ($m>6$)

- Jacobian matrix is fat rectangular $(6 \times m)$:

Infinitely many solution exists for the inverse problem
Basic solution is found by min-norm or least-squares solution:
Find $\dot{\boldsymbol{q}}$ such that $\quad \dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} \quad$ while $\|\dot{\boldsymbol{q}}\|_{2}$ is minimized

- The solution is found by right pseudo inverse of $J(\boldsymbol{q})$

$$
\dot{\boldsymbol{q}}_{L S}=\boldsymbol{J}^{\dagger}(\boldsymbol{q}) \dot{\chi} \text { where } \boldsymbol{J}^{\dagger}=\boldsymbol{J}^{T}\left(\boldsymbol{J}^{T}\right)^{-1} \text { Note: }\left(\boldsymbol{J}^{T} \boldsymbol{J}\right) \text { is } 6 \times 6
$$

- Right pseudo inverse properties:

$$
J J^{\dagger}=J J^{T}\left(J J^{T}\right)^{-1}=I
$$

- Set of all solutions:

$$
\dot{q}=J^{\dagger}(q) \dot{\chi}+\left(I-J^{\dagger} J\right) b
$$

In which, $\boldsymbol{b} \in \mathbb{R}^{n}$ is any arbitrary vector, and $\left(\boldsymbol{I}-\boldsymbol{J}^{\dagger} \boldsymbol{J}\right) \neq \mathbf{0}$.
All vectors in the form of $\dot{\boldsymbol{q}}_{n}=\left(\boldsymbol{I}-\boldsymbol{J}^{\dagger} \boldsymbol{J}\right) \boldsymbol{b}$ lie in the null space of $\boldsymbol{J}: \mathcal{N}(J)$
$\dot{\boldsymbol{q}}_{n} \neq \mathbf{0}$ but the corresponding task space velocity $\dot{\chi}_{n}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}_{n}=\mathbf{0}$ (self -motion)

Inverse Solution

\checkmark Inverse Solution for Redundantly Actuated Robot ($m>6$)

- LS solution is always a suitable alternative;
- Redundancy Resolution

Finding suitable $\dot{\boldsymbol{q}}_{n}$ to accomplish some other objectives

A combined objective

Inverse Solution

\checkmark Inverse Solution for Redundantly Actuated Robot ($m>6$)

- Optimization Problem

Define a cost function to be minimized by redundancy resolution: $V(\boldsymbol{q}, \dot{\boldsymbol{q}})$ or $V(\chi, \dot{\chi})$ (e.g. $\left.\|\dot{\boldsymbol{q}}\|_{2}\right)$
Consider Jacobian mapping as an equality constraint: $\dot{\chi}=J(\boldsymbol{q}) \dot{q}$
Consider Forward kinematics as a nonlinear equality constraint: $\chi=\boldsymbol{f}_{\boldsymbol{F K}}(\boldsymbol{q})$
Consider joint limits as inequality constraints: $\boldsymbol{q}_{\text {min }} \leq \boldsymbol{q} \leq \boldsymbol{q}_{\text {max }}$ and/or $\dot{\boldsymbol{q}}_{\text {min }} \leq \dot{\boldsymbol{q}} \leq \dot{\boldsymbol{q}}_{\text {max }}$

$$
\begin{gathered}
\min _{\boldsymbol{q}, \dot{\dot{q}}} V(\boldsymbol{q}, \dot{\boldsymbol{q}}) \\
\text { Subject to }\left\{\begin{array}{c}
\dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} \\
\chi=\boldsymbol{f}_{\boldsymbol{F K}}(\boldsymbol{q}) \\
\boldsymbol{q}_{\text {min }} \leq \boldsymbol{q} \leq \boldsymbol{q}_{\text {max }} \\
\dot{\boldsymbol{q}}_{\text {min }} \leq \dot{\boldsymbol{q}} \leq \dot{\boldsymbol{q}}_{\text {max }} \\
\vdots
\end{array}\right.
\end{gathered}
$$

- Analytical Solutions: Lagrange and KKT Multipliers
- Numerical Solutions : Interior Point Method "fmincon" in Matlab

Genetic Algorithms, ...

Inverse Solution

\checkmark Inverse Solution for Redundantly Actuated Robot ($m>6$)

- Numerical Solution: fmincon function in Matlab

Nonlinear Programming Solver

Syntax

```
\(x=\) fmincon (fun \(, x \theta, A, b)\)
\(x=\) fmincon (fun, \(x \theta, A, b, A e q, b e q)\)
\(x=\) fmincon(fun, \(x \theta, A, b, A e q, b e q, l b, u b)\)
\(x=\) fmincon(fun, \(x \theta, A, b, A e q, b e q, l b, u b\), nonlcon)
\(x=\) fmincon(fun, \(x \theta, A, b, A e q, b e q, l b, u b\), nonlcon, options)
All Algorithms
\begin{tabular}{|l|l} 
Algorithm & Choose the optimization algorithm:
\end{tabular}
- 'interior-point' (default)
- 'trust-region-reflective'
- 'sqp'
- 'sqp-legacy' (optimoptions only)
- 'active-set'
```

$\min _{x} f(x)$ such that $\left\{\begin{aligned} c(x) & \leq 0 \\ c e q(x) & =0 \\ A \cdot x & \leq b \\ A e q \cdot x & =b e q \\ l b & \leq x \leq u b,\end{aligned}\right.$

Inverse Acceleration

\checkmark Differentiate Jacobian Forward Map $\quad \dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}$

$$
\ddot{\chi}=J(q) \ddot{q}+\dot{J}(q) \dot{q}
$$

- Inverse Solution for Fully Actuated Robot ($m=n=6$)

$$
J(q) \ddot{q}=\ddot{\chi}-\dot{J}(q) \dot{q}
$$

- Jacobian matrix is square:

In non-singular configurations \boldsymbol{q}, where $\boldsymbol{J}^{\mathbf{- 1}}(\boldsymbol{q})$ exists:

$$
\dot{q}=J^{-1}(q) \dot{\chi}
$$

This results in:

$$
\begin{aligned}
\ddot{q} & =J^{-1}(q)[\ddot{\chi}-\dot{J}(q) \dot{q}] \quad \mathrm{OR} \\
\ddot{q} & =J^{-1}(q)\left[\ddot{\chi}-\dot{J}(q) J^{-1}(q) \dot{\chi}\right]
\end{aligned}
$$

For non-square Jacobians such manipulation is not possible.

Obstacle Avoidance

- Example 2:
\checkmark Redundancy Resolution for 3R Robot:
- Consider a desired vertical motion (2D)

From $\boldsymbol{q}_{0}=\left[20^{\circ}, 30^{\circ}, 20^{\circ}\right]^{T} \rightarrow Q_{0} \cong\left[x_{0}, y_{0}\right]^{T}$ To $Q_{f} \cong\left[x_{0}, 0\right]^{T}$
Avoiding obstacle shown in the figure:

- In task space:

Move $\chi_{0}=\left[x_{0}, y_{0}\right]^{T} \cong[1.7,1.4]^{T}$ To $\chi_{f}=\left[x_{0}, 0\right]^{T}$ in one seconds.
Use cubic trajectory planning:

$$
x_{d}(t)=x_{0}, \quad y_{d}(t)=y_{0}\left(1-(3-2 t) t^{2}\right)
$$

- In velocity space given:

$$
\dot{x}_{d}(t)=0, \quad \dot{y}_{d}(t)=y_{0}\left(6 t^{2}-6 t\right)
$$

Find $\boldsymbol{q}(t)=\left[q_{1}, q_{2}, q_{3}\right]^{T}$ to traverse this path while avoiding obstacle.

- Robot has 3Dof, and for this task has one degree of redundancy

To move along $\chi_{2 \times 1}(t)$ there exist infinite number of joint space solutions $\boldsymbol{q}_{3 \times 1}(t)$
Find the one to avoid interfering with the obstacle.

Obstacle Avoidance

- Example 2: (Cont.)
\checkmark Redundancy Resolution for 3R Robot:
- The Jacobin is (2×3), the LS solution is not good Robot shall go to elbow-up posture to avoid the obstacle
- Formulate an optimization problem

$$
\begin{gathered}
\min _{\boldsymbol{q}, \dot{\boldsymbol{q}}} V(\boldsymbol{q}, \dot{\boldsymbol{q}}) \\
\text { Subject to }\left\{\begin{array}{l}
\dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} \\
\chi=\boldsymbol{f}_{\boldsymbol{F} K}(\boldsymbol{q})
\end{array}\right.
\end{gathered}
$$

Robot desired posture (elbow up) $\boldsymbol{q}_{d}=\left[45^{\circ},-70^{\circ},-10^{\circ}\right]^{T}$
Performance index: minimize $V(\boldsymbol{q})=\left\|\boldsymbol{q}-\boldsymbol{q}_{\boldsymbol{d}}\right\|_{2}$

Robot Jacobian $\dot{\boldsymbol{\chi}}(t)=\boldsymbol{J} \dot{\boldsymbol{q}}(t)$, where

$$
\boldsymbol{J}=\left[\begin{array}{ccc}
-a_{1} s_{1}-a_{2} s_{12}-a_{3} s_{123} & -a_{2} s_{12}-a_{3} s_{123} & -a_{3} s_{123} \\
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} & a_{2} c_{12}+a_{3} c_{123} & a_{3} c_{123}
\end{array}\right]
$$

Robot Forward Kinematics $\chi=\boldsymbol{f}_{\boldsymbol{F K}}(\boldsymbol{q})$:

$$
\begin{aligned}
& \chi_{1}=a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} \\
& \chi_{2}=a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123}
\end{aligned}
$$

Obstacle Avoidance

- Example 2: (Cont.)
\checkmark Redundancy Resolution for 3R Robot:
- Consider the base Solution:

$$
\dot{q}_{L S}=J^{\dagger}(q) \dot{\chi} \quad \text { where } \quad J^{\dagger}=J^{T}\left(J J^{T}\right)^{-1}
$$

- This solution minimizes

$$
\|\stackrel{q}{q}\|_{\dot{q}} \|_{2}
$$

- But It is not good for obstacle avoidance:

Obstacle Avoidance

- Example 2: (Cont.)
\checkmark Redundancy Resolution for 3R Robot:
- Solve optimization problem
$\min _{\boldsymbol{q}, \dot{q}}\left\|\boldsymbol{q}-\boldsymbol{q}_{d}\right\|_{2}$
Subject to $\left\{\begin{array}{l}\boldsymbol{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} \\ \boldsymbol{\chi}=\boldsymbol{f}_{\boldsymbol{F} K}(\boldsymbol{q})\end{array}\right.$

The trajectory is traversed without interfering with the obstacle.

Obstacle Avoidance

- Example 2: (Cont.)
\checkmark Redundancy Resolution for 3R Robot:
- Solve optimization problem
$\min _{\boldsymbol{q}, \dot{\boldsymbol{q}}}\left\|\boldsymbol{q}-\boldsymbol{q}_{d}\right\|_{2}$
Subject to $\left\{\begin{array}{c}\dot{\chi}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} \\ \chi=\boldsymbol{f}_{\boldsymbol{F K}}(\boldsymbol{q}) \\ \dot{\boldsymbol{q}}_{\text {min }} \leq \dot{\boldsymbol{q}} \leq \dot{\boldsymbol{q}}_{\text {max }}\end{array}\right.$

With $\quad-1.2 \leq \dot{\boldsymbol{q}}_{i} \leq 1.2$

At some instances, the robot needs to exceed the velocity bound, and therefore,
 the trajectory is not traversed perfectly.

Singularity Circumvention

- Example 3:

\checkmark Redundancy Resolution for 3R Robot:

- Consider a desired vertical motion (2D) near singular configuration
From $\boldsymbol{q}_{0}=\left[-180^{\circ},-179^{\circ}, 10^{\circ}\right]^{T} \rightarrow Q_{0}=\left[x_{0}, y_{0}\right]^{T}$
To $Q_{f}=\left[x_{0},-0.1\right]^{T}$
- In task space:

Move $\chi_{0}=\left[x_{0}, y_{0}\right]^{T} \cong[1.7,0.07]^{T}$ To $\chi_{f}=\left[x_{0}, 0\right]^{T}$ in one seconds.
Use cubic trajectory planning:

$$
x_{d}(t)=x_{0}, \quad y_{d}(t)=y_{0}-(3-2 t) t^{2}\left(y_{0}+0.1\right)
$$

- In velocity space given:

$$
\dot{x}_{d}(t)=0, \quad \dot{y}_{d}(t)=\left(y_{0}+0.1\right)\left(18 t^{2}-6 t\right)
$$

Find $\boldsymbol{q}(t)=\left[q_{1}, q_{2}, q_{3}\right]^{T}$ to traverse this path while circumventing singularities.

- Consider the base Solution:

$$
\dot{q}_{L S}=J^{\dagger}(\boldsymbol{q}) \dot{\chi} \text { where } J^{\dagger}=J^{T}\left(J^{T}\right)^{-1}
$$

Matlab Program: Singularity_3R.m

- But this solution is close to singular configurations.

Singularity Circumvention

- Example 2: (Cont.)
\checkmark Redundancy Resolution for 3R Robot:
- Solve optimization problem

$$
\begin{aligned}
& \min _{\boldsymbol{q}, \dot{q}}-\mu(q)=-\sqrt{\operatorname{det}\left(J J^{T}\right)} \\
& \text { Subject to }\left\{\begin{array}{l}
\dot{\chi}=J(\boldsymbol{q}) \dot{\boldsymbol{q}} \\
\chi=\boldsymbol{f}_{\boldsymbol{F K}}(\boldsymbol{q})
\end{array}\right.
\end{aligned}
$$

In which, J in μ is considered to be the Jacobian of the first two links, in order to traverse he trajectory while getting away from fully retracted arms.

Contents

Preliminaries

Angular velocity, rotation matrix and Euler angle rates, Linear velocity, golden rule in differentiation, twist, screw representation.

Jacobian

Definition, motivating example, direct approach, general and iterative methods, case studies, screw based Jacobian, general and iterative methods, case studies.

Static Wrench

Wrench definition, principle of virtual work, Jacobian transpose mapping, examples.

Jacobian Chacteristics

Singularity, twist and wrench map, singular configurations, singularity decoupling, dexterity, dexterity ellipsoid, isotropy, manipulability, condition number,

Inverse Solutions

Inverse map, fully- and under-actuated robots, redundancy, redundancy resolution, optimization problem, inverse acceleration, obstacle avoidance, singularity circumvention.

Stiffness Analysis

Sources of compliance, Compliance and stiffness matrix, force ellipsoid, case studies.

In this chapter we review the Jacobian analysis for serial robots. First the definition to angular and linear velocities are given, then the Jacobian matrix is defined in conventional and screw-based representation, while their general and iterative derivation methods are given. Next the static wrench and its relation to Jacobian transpose is introduced, and Jacobian characteristics such as singularity, isotropy, dexterity and manipulability are elaborated. Inverse Jacobian solution for fully-, under- and redundantly-actuator robots are formulated, and redundancy resolution schemes are detailed. Finally, Stiffness analysis of robotic manipulators is reviewed in detail.

Stiffness Analysis

Consider a robot in contact to the environment

 Applying wrench to the environmentFocus on the deflections resulting by the applied wrench

K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Stiffness Analysis

- Sources of Stiffness
\checkmark Consider just the actuators and transmissions
\checkmark As the main source of compliance
- Harmonic Drive Systems

Transmission is performed through a flexible element (Flexspline)
Circular spline

K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Stiffness Analysis

- Compliance and Stiffness Matrix
\checkmark Note the stiffness relation in the $i^{\text {th }}$ robot joint

$$
\tau_{i}=k_{i} \Delta q_{i}
$$

- Joint stiffness constant: k_{i}
τ_{i} denotes the transmitted torque through the actuator
Δq_{i} denotes the resulting deflection at the joint
- Use vector notation

$$
\boldsymbol{\tau}=\mathcal{K} \Delta \boldsymbol{q}
$$

$\boldsymbol{\tau}=\left[\tau_{1}, \tau_{2}, \ldots, \tau_{m}\right]^{T}$ denotes the vector of transmitted torques
$\boldsymbol{\Delta} \boldsymbol{q}=\left[q_{1}, q_{2}, \ldots, q_{m}\right]^{T}$ denotes the vector of resulting deflections at the joints and $\mathcal{K}=\operatorname{diag}\left[k_{1}, k_{2}, \ldots, k_{m}\right]$

- Use Jacobian relation

$$
\Delta \chi=J \Delta q \quad \text { and } \quad \tau=J^{T} \mathcal{F}
$$

This results in

$$
\Delta \chi=\boldsymbol{J} \Delta \boldsymbol{q}=\boldsymbol{J} \mathcal{K}^{-1} \boldsymbol{\tau}=\boldsymbol{J} \mathcal{K}^{-1} \boldsymbol{J}^{\boldsymbol{T}} \boldsymbol{\mathcal { F }}=\boldsymbol{C \mathcal { F }} \quad \text { for a squared Jacobian. }
$$

Stiffness Analysis

- Compliance and Stiffness Matrix
\checkmark Manipulator Compliance Matrix C :

$$
\Delta \chi=\boldsymbol{C} \mathcal{F} \text { where } \boldsymbol{C}_{m \times m}=\boldsymbol{J} \mathcal{K}^{-1} \boldsymbol{J}^{T}
$$

\checkmark Manipulator Stiffness Matrix $\boldsymbol{K}=\boldsymbol{C}^{-1}$; the inverse map:

$$
\mathcal{F}=\boldsymbol{K} \Delta \boldsymbol{\chi} \text { where } \boldsymbol{K}_{m \times m}=\boldsymbol{J}^{-T} \mathcal{K} \boldsymbol{J}^{-1}
$$

- Both \boldsymbol{C} and \boldsymbol{K} are configuration dependent.
- For uniform joint stiffness $k_{1}=k_{2}=\cdots=k_{m}=k$:

$$
\boldsymbol{C}=k^{-1}\left(\boldsymbol{J}^{T}\right) \text { while } \boldsymbol{K}=k\left(\boldsymbol{J}^{T}\right)^{-1}
$$

- Interesting to reach to the same manipulability matrix $J J^{T}$
- Scaled Ellipsoid for Force - Deflection relation
- For a uniform and unit end effector deflection $\|\Delta \chi\|_{2}=1$.

$$
\Delta \chi^{T} \Delta \chi=1 \rightarrow \mathcal{F}^{T} \boldsymbol{C}^{T} \boldsymbol{C} \mathcal{F}=1
$$

Stiffness Analysis

\checkmark Example: Stiffness Analysis of 2R Manipulator

- Inspired by human arm, consider $l_{1}=\sqrt{2}$, and $l_{2}=1$.
- Consider $\theta_{2}=\frac{\pi}{2}$, and $k_{1}=k_{2}=1 N \cdot m$, then for this configuration:

$$
\boldsymbol{C}=\boldsymbol{J} \boldsymbol{J}^{\boldsymbol{T}}\left(\theta_{2}=\frac{\boldsymbol{\pi}}{2}\right)=\left[\begin{array}{cc}
2 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right] ; \quad \boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{C}=\left[\begin{array}{cc}
6 & 4 \sqrt{2} \\
4 \sqrt{2} & 6
\end{array}\right]
$$

Calculate the compliance map gains

$$
\begin{aligned}
& \text { For } \boldsymbol{C}^{T} \boldsymbol{C} \rightarrow \begin{array}{l}
\lambda_{1}=11.657 \\
\lambda_{2}=0.3431
\end{array} ; \text { while } v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \\
& \text { For } \boldsymbol{C} ; \begin{array}{l}
G_{\max }=\sigma_{\max }=3.414 \\
G_{\min }=\sigma_{\min }=0.586
\end{array} ; \text { while } \vec{v}_{\max }=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \vec{v}_{\min }=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Stiffness Analysis

\checkmark Example 1:

- Proof of the obtained gains for $\theta_{2}=\frac{\pi}{2}$ configuration:

From $\|\Delta \boldsymbol{\chi}\|_{2}^{2}=\boldsymbol{F}^{\boldsymbol{T}} \boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{C F} \rightarrow \Delta x^{2}+\Delta y^{2}=6 f_{x}^{2}+8 \sqrt{2} f_{x} f_{y}+f_{y}^{2}$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\Delta x^{2}+\Delta y^{2}=11.657\left(\frac{f_{x}}{\sqrt{2}}+\frac{f_{y}}{\sqrt{2}}\right)^{2}+0.343\left(\frac{f_{x}}{\sqrt{2}}-\frac{f_{y}}{\sqrt{2}}\right)^{2} \\
\text { For } v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], f_{x}=f_{y} \rightarrow \Delta x^{2}+\Delta y^{2}=11.657\left(\sqrt{2} f_{x}\right)^{2} \rightarrow\left(\sqrt{2} f_{x}\right)^{2}=0.085\left(\Delta x^{2}+\Delta y^{2}\right) \\
\Rightarrow f_{\min }=0.292\|\Delta \chi\|=\frac{1}{\sigma_{\max }}\|\Delta \chi\| \text { in } \vec{v}_{\min }=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { direction } \\
\text { For } v_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], f_{x}=-f_{y} \rightarrow \Delta x^{2}+\Delta y^{2}=0.343\left(\sqrt{2} f_{x}\right)^{2} \rightarrow\left(\sqrt{2} f_{x}\right)^{2}=2.914\left(\Delta x^{2}+\Delta y^{2}\right) \\
\Rightarrow \quad \Rightarrow f_{\max }=1.707\|\Delta \chi\|=\frac{1}{\sigma_{\min }}\|\Delta \chi\| \text { in } \vec{v}_{\max }=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \text { direction }
\end{array}
\end{aligned}
$$

Stiffness Analysis

\checkmark Example: (Cont.)

- For $\theta_{2}=\frac{\pi}{2}$ configuration:

$$
\begin{aligned}
& \Rightarrow \mathcal{F}_{\max }=1.707\|\Delta \chi\|=\frac{1}{\sigma_{\min }}\|\Delta \chi\| \text { in } \vec{v}_{\max } \text { direction } \\
& \Rightarrow \mathcal{F}_{\min }=0.292\|\Delta \chi\|=\frac{1}{\sigma_{\max }}\|\Delta \chi\| \text { in } \vec{v}_{\min } \text { direction }
\end{aligned}
$$

$$
\|\Delta \chi\|_{2}^{2}=\mathcal{F}^{T} \boldsymbol{C}^{T} \boldsymbol{C F}
$$

Hamid D. Taghirad Professor

About Hamid D. Taghirad

Hamid D. Taghirad has received his B.Sc. degree in mechanical engineering from Sharif University of Technology, Tehran, Iran, in 1989, his M.Sc. in mechanical engineering in 1993, and his Ph.D. in electrical engineering in 1997, both from McGill University, Montreal, Canada. He is currently the University ViceChancellor for Global strategies and International Affairs, Professor and the Director of the Advanced Robotics and Automated System (ARAS), Department of Systems and Control, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran. He is a senior member of IEEE, and Editorial board of International Journal of Robotics: Theory and Application, and International Journal of Advanced Robotic Systems. His research interest is robust and nonlinear contro/applied to robotic systems. His publications include five books, and more than 250 papers in international Journals and conference proceedings.

ADVANCED ROBOTICS \& AUTOMATED SYSTEMS

Robotics: Mechanics \& Control

K. N. Toosi University of Technology, Faculty of Electrical Engineering, Department of Systems and Control, Advanced Robotics and Automated Systems

