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Abstract

Underactuated systems (UaSs) are a type of mechanical systems that the number of ac-
tuators is fewer than the number of degrees of freedom. Due to this property, well-known
methods such as feedback linearization is not usable, and thus, control of UaSs is currently
a challenging problem. UaSs have broad applications such as unmanned aerial vehicles,
marine and submarine systems, cranes, etc. Recently, underactuated cable-driven robots
are the focus of attention of some researchers since they inherit the advantage of both
underactuated and cable-driven systems. This thesis is devoted to controller design for
3-DOF underactuated cable-driven robots. For this purpose, interconnection and damp-
ing assignment passivity-based control (IDA-PBC) is utilized to stabilize the system at a
desired equilibrium point. IDA-PBC is a general method to stabilize the port Hamiltonian
systems by assigning the desired interconnection and damping matrices together with de-
sired Hamiltonian to the closed-loop system. In the cases of underactuated systems, the
applicability of IDA-PBC is restricted to the analytical solution of two partial differential
equations (PDEs) related to shaping the potential and kinetic energy which are called
matching equations. One of the aims of this thesis is to solve the matching equations
arisen in controller design for 3-DOF underactuated cable-driven robots. The correspond-
ing PDEs are transformed to some Pfaffian differential equations, and their solution is
derived by some calculations. Since this method is general, the matching equations of
some benchmark systems are also solved. Furthermore, a systematic method to solve the
nonlinear PDE related to kinetic energy shaping for systems with underactuation degree
one and constant input mapping matrix is proposed. The potential energy shaping of a
general underactuated parallel robot is another contribution of this thesis. Another chal-
lenging problem is ensuring positive tension in cables since cables can only apply tensile
forces. Two different strategy is introduced to address this issue. A method is the analysis
of IDA-PBC’s control law term by term so that the bounds of the controller are derived.
Another method is based on optimization of control law with respect to the free part of
the interconnection matrix to minimize the bounds of the controller in the systems with at
least two actuators. Incorporation of both methods that results in a more robust controller
without conservative gains for a class of UaSs is also proposed. Some other develompents
of IDA-PBC such as adaptive IDA-PBC, IDA-PBC with desired gravity compensation,
etc. are also introduced in this thesis. The proposed methods are verified through some
simulations and experiments on different systems such as some underactuated cable-driven
robots, 2D SpiderCrane, etc.
Keywords: Underactuated mechanical systems, Cable-driven robot, Passivity-based con-
trol, Partial differential equations, Bounded input
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Chapter 1

Introduction

In this section, first, different types of cable-driven robots and their applications are pre-
sented. Then, underactuated mechanical systems and their properties, as the main topic
of this thesis, are introduced. Furthermore, underactuated cable-driven robots as a newly
introduced type of cable-driven robots are discussed. Finally, the aims and contributions
of this thesis are given.

1.1 Cable-Driven Robots

Parallel robots are a closed-loop mechanism that the end-effector is attached to the base
through some kinematic chains. Generally, parallel robots have some advantages com-
pared with serial robots such as high precision, stiffness, and fast speed. Furthermore,
since the end-effector is connected to the base by several limbs, they can carry heavy
loads. Due to these features, parallel robots have different applications such as simulators,
remote handling, medical robots, etc [1]. However, limited workspace is the most essential
disadvantage of parallel robots that restricts their application in industry [2]. Fig. 1.1
shows a typical parallel robot.

In order to rectify this issue, a new version of parallel robots has been introduced such
that the solid limbs are replaced by cables1. By this means, the robot’s workspace is
arbitrarily enlarged such that it is possible to set up the robot in a stadium. Additionally,
the movement of the end-effector is faster compared with parallel and serial robots. Due
to the fact that the robot’s arms are made of cable, the ability to carry a large load
compared to the low weight of the robot is another feature that can be enumerated for
such robots [3]. Fig. 1.2 illustrates a typical cable-driven robots.

The desirable features of cable-driven robots (CDRs) make it possible to use these
robots in various fields. However, CDRs have some stringent limitations such as the
cables can only pull and not push. Hence, the design of the robot should be accomplished
to ensure that tensile forces are applied on the cables for all maneuvers. To comply with
such constraint, most of the CDRs are redundantly actuated. Generally, one may argue
that for a n degree of freedom (DOF) CDR, n + 1 actuators or even more are required to
keep the cables in tension. Cable-driven robots are called fully constrained, if the position
of end-effector is fixed then the length of cables is constant. Under-constraint robots
are another type of CDRs that positive tension is ensured in the presence of an external
passive force such as gravity that can be interpreted as an imaginary cable. In these
robots, it is possible to change the position of the end-effector even though the length of

1Note that serial cable-driven robots are another type of cable-driven robots, but they are out of scope
of this thesis.

1



1.1. CABLE-DRIVEN ROBOTS 2

Figure 1.1: A typical parallel robot.

cables are fixed. Note that in contrast to fully-constraint robots, under-constraint robots
are not necessarily redundant. Fig. 1.3 illustrates a typical example of both types of
CDRs. In this thesis, we only concentrate on under-constraint CDRs. A special version
of under-constraint robots has been developed such that the number of cables is fewer
than the number of degrees of freedom which are called underactuated cable-driven robots
(UCDRs). As explained before, cables can only apply tensile forces. Thus, it is common
to use more actuators than the number of degrees of freedom. However, in UCDRs, not
only there are no additional actuators to ensure the cables are stretched, but also by using
fewer actuators, control of the robot is much more difficult. Although several papers have
been reported on the control of benchmark underactuated systems, less attention has been
paid to UCDRs due to the complexity and novelty of the problem.

Figure 1.2: A typical cable-driven robot [4].

It should be noted that some of the under-constraint CDRs used in industry are basi-
cally UCDRs. However, to reduce the complexity in kinematics and dynamics of the robot
and also no requirement to high accuracy, they are modeled as a fully actuated robot. For
example, in under-constraint suspended CDRs, it is common to only model the position
of end-effector and thus, orientation is neglected. On the other hand, implementation of
some tools such as gimbal stabilizer on the end-effector compensate the effects of unmod-
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(a) fully-constraint cable-driven robot
(b) under-constraint cable-driven robot

Figure 1.3: Typical fully-constraint and under-constrain CDRs [5].

eled terms and reduce the undesirable fluctuations. Since the main focus of this thesis is
underactuated cable-driven robots, in the following, some applications of these robots are
presented.

1.2 Applications of Underactuated Cable-Driven Robots

As explained before, UCDRs are a subset of under-constraint robots. Hence, alteration of
an UCDR to an under-constraint one and vise versa is quite easy by adding or removing
extra cables. For example, one of the most important applications of under-constraint
CDRs is transportation of heavy loads which are mostly used in ports and ships. The ratio
of the load to the moving weight of the robot makes them unrivaled in the transportation
of objects. Fig. 1.4 shows a 6-DOF CDR with six cables during transport of a load. It
is clear that it is possible to increase the number of cables to build a redundant robot.
Additionally, by reducing one, two, or three cables, it is possible to construct an UCDR.
The advantage of the resulted robot is fewer cost of creation with the expense of more
complex control. Hence, development of a new control strategy is a stringent requirement.

Another common application of under-constraint CDRs is aerial imaging. This mech-
anism is called spidercam, and is used in different stadiums. The end-effector of this robot
is equipped with a camera that can cover the whole stadium area due to its very large
workspace. Fig. 1.5 depicts a spidercam. The unique features of this robot have made it a
well-known tool in the aerial imaging industry. The end-effector of this robot is controlled
through four cables connected to actuators. Due to the fact that the cables in this robot
do not necessarily connect to a unique point; therefore, the spidercam has six degrees of
freedom from a theoretical point of view. But since the dimensions of the end-effector are
much smaller than that of the stadium, the spidercam is usually modeled as a three de-
grees of freedom robot. In other words, it is assumed that all the cables are connected to a
unique point and the end-effector has only a transient motion, and its rotational motion is
neglected. Therefore, it seems that control of the robot is simple. However, this simplifica-
tion in practice leads to slight oscillations, especially in fast motions. Researchers usually
ignore studying these oscillations, or try to reduce them by modification of the mechanism
by adding stabilizing gimbals such as reported in [7]. This problem provides the main
incentive of our research to focus on underactuated cable-driven robots. By this means,
by considering the full dynamic model of the robot, we will develop control algorithms in
the field of underactuated systems to reduce undesirable oscillations in the end-effector.
In the following, an introduction of underactuated systems and their control methods is
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Figure 1.4: A CDR during transportation of a load [6].

proposed. Then how to develop these methods and adapt them to the characteristics of
UCDRs will be discussed.

1.3 Underactuated Systems

Underactuated systems (UaSs) are an important and widespread class of mechanical sys-
tems such that the number of actuators is fewer than the number of degrees of freedom.
UaSs are found in a wide range of applications including robotics, aerospace systems, ma-
rine systems, flexible robots, mobile robots, etc [9]. The underactuation property of these
systems is due to four reasons. 1- The dynamics of the systems (e.g. aerial, marine, and
submarine systems). 2- Reduction of the cost (e.g. satellite). 3- Failure in actuator(s).
4- Intentionally designing a low-order UaS to obtain insights on how to control a high-
order UaS (e.g. Pendubot). Thus, research on efficient control methods for these systems,
which are found in many applications, has received much attention from researchers in
the last two decades. However, control of UaSs is a challenging problem since in contrast
to fully actuated systems, they have fewer actuators than degrees of freedom. Thus, it is
not possible to use the methods developed based on feedback linearization. Furthermore,
several elements such as parameter uncertainties, unmodeled dynamics, external distur-
bance, actuators saturation, etc. make controller design more challenging. Additionally,
UaSs can not track every desired trajectory. However, it is possible to stabilize them in
the equilibrium points [10]. Hence, the control formulation of these systems is mostly in
the form of regulation or point-to-point control.

Although UaSs cannot be linearized, it is possible to linearize only actuated or unactu-
ated configurations which are called collocated feedback linearization and non-collocated
feedback linearization [11]. By this means, the equations of the system are divided into a
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Figure 1.5: A spidercam during imaging [8].

linear and a nonlinear subsystem as follows

q̈1 = f(q, q̇) + g(q, q̇)u

q̈2 = u,

in which q = [q1,q2]
T denotes the configuration variables and u is the control input. The

problem that makes it challenging to design a controller is the presence of a control law in
both of the subsystems. Thus, using merely this method cannot control an UaS, and as a
result, most of the proposed controllers in the literature are innovative and system-based.

Based on the structure and physical nature of UaSs, one of the most common control
methods for such systems is passivity-based control [12]. Ortega et al. developed this
method and further modified to interconnection and damping assignment passivity-based
control (IDA-PBC) [13, 14]. The main goal of this method is to transform the dynamical
equations of a system in closed-loop to the following port Hamiltonian (PH) form

ẋ = [Jd(x) −Rd(x)]∇Hd,

in which Hd denotes total energy of closed-loop, Jd,Rd are desired interconnection and
damping matrices respectively, and ∇Hd ia a row vector representing the gradient of Hd.
For this means, the system is represented in PH form which is based on network modeling
of energy-conserving physical systems with lumped parameters and strictly contains the
systems represented by Euler-Lagrange model. The main advantage of the PH modeling
is its inherent passivity; thus, its stability is guaranteed. Furthermore, the PH structure
of the system is preserved, the storage function is exactly the total energy of the system,
and Jd,Rd are design matrices that may be assigned based on the nature of the system.
IDA-PBC is based on the solution of some partial differential equations (PDEs) without
boundary conditions which shall be solved analytically. For mechanical systems, two sets
of PDEs arise that are related to shaping of the kinetic and potential energy. In the next
chapters this method will be explained in details.
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Figure 1.6: An example of underactuated cable-driven robot.

1.4 Underactuated Cable-Driven Robots

As explained before, there exists a class of cable-driven robots that are basically under-
actuated. A 3-DOF UCDR with two actuators is shown in Fig. 1.6. For example, in
spidercam and similar applications, it is not recommended to use more actuators to con-
trol the robot, due to the high cost of construction and maintenance. So far, these robots
have been modeled as fully actuated ones to avoid computational complexity. These types
of suspended cable-driven robots are very useful because of their potential applications,
but the issue of underactuation is less taken into account. UCDRs have the positive fea-
tures of CDRs and UaSs include agility, high speed, simplicity of mechanism with fewer
actuators, and large workspace [15]. But the expense of these features is complexity of
controller design. On the other hand, the presence of a closed kinematic chain in CDRs
creates unique features that are different from what is seen in the literature of URs. The
combination of these two issues together leads to more complexity in the problem that
has been less addressed. However, recently a number of studies in this field have been
reported in the literature, see for example [16–18].

In this thesis, due to the complexity of the 6-DOF UCDR, we first focus on two 3-DOF
cases with two actuators, and then a simple general method to stabilize underactuated
parallel robots will be proposed. In these robots, since the number of actuators is less than
that of the the degrees of freedom of the robot, an arbitrary desired trajectory may not be
tracked, but instead, movement from any desired point to any other point inside the robot’s
controllable workspace, without determination of the trajectory is accessible. Therefore,
the regulation problem for the UCDRs will be investigated using the generalized passivity-
based method. As mentioned, the applications of UCDRs can be found in the ports
of loading and unloading, construction, warehousing, entertainment, and interaction of
human and robot where due to the ability of point-to-point movement, the most important
application of these robots is pick and place [15].

1.5 Contributions of This Thesis

The goals and achievements of this thesis are as follows:

• In this thesis, the formulation of underactuated cable-driven robots is done in order
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to solve the regulation problem. The main focus is, but not limited to; two 3-DOF
suspended UCDRs with two actuators. One of the robots is planar and can rotate in
a vertical plane while the other has out-of-plane oscillations. However, since some of
the proposed controllers are general, several UaSs such as spidercam will be analyzed.

• Design a controller based on IDA-PBC approach for UCDRs. Since IDA-PBC relies
on the solution of some PDEs, we will concentrate on deriving the solution of these
equations. For this purpose, some methods will be introduced. A systematic proce-
dure to solve the PDE of kinetic energy shaping for UaSs with underactuation degree
one is proposed. By this means, a particular structure for the desired inertia matrix
is considered that simplifies the kinetic energy PDE by also using a free sub-block of
desired interconnection matrix. Furthermore, invoking the method proposed in [19],
it is possible to transform a single PDE to a set of Pfaffian differential equations.
Although computing the solution of Pfaffian equations is not trivial, in some cases,
it is much easier than the corresponding PDE. Another method is related to the
potential energy shaping of underactuated parallel robots. It will be shown that
due to the special structure of parallel robots, the solution of potential energy PDE
is derived quite easy. The proposed methods will be applied to several benchmark
UaSs and UCDRs.

• Design a bounded input IDA-PBC. Since cable-driven robots can only apply tensile
forces, positiveness of control law should be taken into account in controller design.
Since actuator saturation is a common problem in all practical implementations, in
order to address this issue, two different general methods will be introduced. One
of the methods is based on the term by term analysis of IDA-PBC’s control law.
By suitable definition of desired potential energy and computing the upper bound
of velocity, the upper bound of the control law is derived. In the other method, it is
tried to minimize the control law by the free design matrices in IDA-PBC such that
the limitations of actuators are satisfied. For this purpose, UaSs with at least two
actuators are considered, and a minimization based on the free sub-block of desired
interconnection matrix is solved analytically.

• Design an adaptive IDA-PBC. Since the parameters of a system are uncertain, one
suitable approach is to design an adaptive controller to address this issue. However,
since IDA-PBC is based on satisfaction of some PDE, it is not trivial to derive a
general adaptation law to ensure the stability of the system without the assumption
that the parameters are converging. In this thesis, adaptive IDA-PBC for some case
studies is proposed.

• Design some developed versions of IDA-PBC. By this means, IDA-PBC with position
feedback, IDA-PBC without non-homogeneous solution of potential energy PDE,
and IDA-PBC with desired gravity compensation are introduced.

• Implementation of the controllers. In order to test the performance of the proposed
controllers in practice, they are implemented on some CDR. By this means, it is
shown that the proposed controllers are sufficiently robust to deal with various un-
avoidable challenges in practice such as external disturbance, measurement noise,
unmodeled dynamics, etc.



Chapter 2

Literature Review

Controller design has been a challenging issue for researchers in recent decades. In this
chapter, first, the literature about cable-driven robots and their control methods is re-
viewed. Then, underactuated systems are considered, and the proposed control strategies,
especially interconnection and damping assignment passivity-based control, are investi-
gated. Finally, the research gap in this field is presented.

2.1 Cable-Driven Robots

The published articles about CDRs cover various aspects such as robot design, workspace,
modeling and control. In the sequel, the related works to this thesis are reviewed.

2.1.1 Positive Tension in Cables

One of the most important features of CDRs is cables can only apply tensile forces. Ac-
cording to this constraint, researchers usually calculate the robot’s workspace so that if
the end-effector is placed inside it, all the cables are stretched. By this means, researchers
have proposed four types of workspace for CDRs.

1. Reachable workspace. This workspace is defined based on physical and practical
constraints. These constraints include the maximum and minimum applicable force
to the cables to exert the computed forces to the end-effector. Reachable workspace
is also named as wrench feasible workspace [20] and force feasible workspace [21].
Note that the applicability of this workspace is restricted due to high complexity.

2. Controllable workspace. One of the most common definitions of CDRs’ workspace
is controllable workspace which is also named wrench closure workspace [22] and
force closure workspace [23]. In this workspace, it is possible to apply force to the
end-effector in any direction with any magnitude, while the cables remain stretched.
The important point in examining this type of workspace is redundancy requirement
in the number of cables, so it cannot be defined for an underactuated cable-driven
robot.

3. Statically reachable workspace. To define this type of workspace, gravity is consid-
ered as a constant force. In other words, gravity plays the role of an extra artificial
cable. This type of workspace can be defined for all suspended robots such as UC-
DRs. [24] and [25] have analyzed statically reachable workspace for suspended CDRs.
In the aforementioned papers, static workspace refers to a set of points where, if the
robot is placed, the positive tension is ensured.

8
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4. Dynamic workspace. Linear and angular velocity are used to define this workspace.
In fact, this workspace is a subset of the static workspace that external force is
resulted from the applied accelerations. Researchers have defined this workspace for
planar CDRs in [26]. Furthermore, [27] has examined the robot’s dynamic workspace
for the amount of acceleration applied by the cables.

Therefore, it is clear that a method to ensure cables are stretched is to analyze the
robot’s workspace. The advantage of this method is that it can be performed offline;
thus, it is possible to compute the above workspace for a CDR. But these evaluations are
not sufficient, and the controller should be designed such that the robot stays within the
workspace.

In [28] force distribution in redundant cable-driven robots has been examined. In
redundant robots, infinite force distribution is possible, and thus, positive tension may be
ensured. [29] has proposed a similar approach for planar CDRs. It should be noted that
this method is only applicable for redundant CDRs.

Another method is online trajectory planning. [30] has focused on a 2-DOF suspended
CDR with two actuators. The constraint of cable tension is replaced by a restriction on
the speed and acceleration of the end-effector. The method to move the robot along a
line is to use the dynamic model of the robot and design a trajectory for the length of
the cables in the form of time polynomials. In [31] and [32] for the same robot and in a
similar way, the desired trajectory for the length of cables has been designed as a sum of
some sinusoidal terms by calculating the natural frequency of the system. The problem of
this method is numerical solution of equations of motion. Additionally, stability analysis
has not been reported in this method. It should be noted that this method is applicable
to UCDRs; see section 2.4 for more details. In the following, the proposed controllers for
CDRs are reviewed.

2.2 Control of Cable-Driven Robots

Some papers have proposed controller for CDRs by considering cables as a rigid body, e.g.
PD and adaptive controllers proposed in [33] and [34–36], respectively. By this means,
positive tension in cables has not been considered which may lead to poor performance or
malfunction of the system. In most papers, cables have not been modeled. As an example,
a robust PID for the same system has been proposed in [37]. Babaghassabha et al. in [38]
have proposed an adaptive robust controller for a fully-constraint CDR. Positive tension
in cables has been ensured in the two aforementioned papers simply since the system
is fully-constraint. A robust cascade controller for a deployable under-constraint CDR
has been introduced in [3]. By assigning a suitable value to the null space of the input
mapping matrix when one of the elements of the controller reaches zero, tensile forces
in cables have been considered. An adaptive controller with respect to kinematic and
dynamic uncertainties for parallel robots has been proposed in [39] and positive tension
for the case of CDRs has been considered by projection algorithm for adapted parameters.
Note that the last three mentioned papers are some of the representatives of sliding mode
controllers designed for CDRs. A controller by considering the elasticity of the cables has
been designed in [40].

Passivity-based control has also been utilized for the systems that are based on a
cable-driven part. [41,42] have used PBC to design a controller for a suspended mass from
some cables attached to quadrotors. Caverly et al. in [43–45] have concentrated on exact
modeling of CDRs. Each cable is modeled as a sum of masses, springs and dampers, and
then, using PBC, the desired trajectory is tracked, and the results are verified through
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simulation. In these studies, the robot is a planar CDR such that the gravity is not applied
to the end-effector. [46–49] are representatives of recent works on CDRs.

In most of the aforementioned papers, the robot is redundant, and by force distribu-
tion, the cables are stretched. For fully actuated non-redundant CDRs, the analysis of
robot’s workspace has been used. As a result, ensuring positive tension in UCDRs requires
innovations.

2.3 Control of Underactuated Systems

As explained before, UaSs have several applications in different aspects. On the other
hand, due to the fewer actuators compared to the degrees of freedom of the robot, control
of UaSs is a challenging problem. Due to this property, most of the proposed papers have
focused on the stabilization of the system. In the following, the existing works in this field
are reviewed.

One of the common methods to stabilize UaSs is using partial feedback linearization
to bring the states near the desired point and then apply a linear controller such as
linear quadratic regulator to stabilize the system. This idea has been applied to Acrobot
in [11]. Energy shaping is another method that is a suitable choice for underactuated
serial robots. In this method, which is based on the passive nature of the system, the
energy of the system at the desired point is firstly derived. Then, by adding energy to the
system, the energy level of the system reaches the energy level of the desired equilibrium
point. Finally, similar to the previous method, by applying a linear controller, the system
is stabilized, see for example [50] and [51]. Poor performance in transient response is the
disadvantage of the two mentioned methods. In general, hybrid control in [52,53] are used
to stabilize an underactuated system. The usual problem of hybrid controllers is that
there is no assurance of convergence to the desired point. In other words, the states of the
system are not necessarily closer to the equilibrium point after switching the control law.
Another method developed by Olfati-Saber in [9] is relied on the classification of systems
based on actuated configuration variables and also the inertia matrix. The variables that
appear in the inertia matrix are called shape variables, and other variables are called
external variables. Depending on which variables are actuated, eight classes are defined,
and a method is proposed for each class. The advantage of this method is the uniqueness
of control law and proof of stability, and its disadvantage is inefficiency in controlling
many robots such as UCDRs. Other methods which are mostly case study include sliding
mode control [54, 55], linear matrix inequality control [56], model predictive control [57],
etc. The general method developed by Ortega is a new version of passivity-based method.
Since this method is the basis of this thesis, invoking [58], in the following, it is explained
in details.

Passivity-based control is a general method firstly proposed in [59] to stabilize a sys-
tem. The basic of the method is to show that the system is passive with respect to a
desired storage function and an output. Generally, PBC is categorized into two classes.
In classical PBC, the storage function, which is mainly a quadratic function, is selected
priorly, and then, control law is designed such that the storage function would not in-
crease. This method is suitable to stabilize mechanical systems in which merely potential
energy shaping is required. By this means, the closed-loop system has an Euler-Lagrange
(EL) representation, and the storage function is equal to the difference between the stored
energy and the supplied energy to the system. This method is called energy balancing
in [60]. Furthermore, classical PBC, which is similar to Lyapunov method, has been
successfully applied to many EL systems including mechanical, electrical and electrome-
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chanical systems. The reader is referred to [61] to see several examples. Unfortunately,
for the applications that require total energy shaping, although the closed-loop system is
passive, it does not have an EL representation, and the storage function is not necessarily
equal to the total energy of the system.

The second type of passivity is more general than the classical one and it is applicable
to a larger class of systems through total energy shaping. In this method, the storage
function is not assigned priorly, but instead, the desired structure of the closed-loop system
is chosen and then all storage functions compatible with this structure are derived. These
functions are the solution of some partial differential equations. “Control Lagrangian”
[62, 63] and “interconnection and damping assignment” [13, 64] are the examples of this
method. Since PH modeling is more general than EL, and Control Lagrangian is a special
form of IDA [65], in this thesis, IDA-PBC is considered. As explained before, IDA-PBC is
designed based on the solution of some PDEs that consists of three parameters including
the interconnection between subsystems, damping matrix and null space of input mapping
matrix. Many interpretations may be presented for these matrices. From a computational
point of view, they can be assigned such that the resulting PDE is simplified. From a
theoretic viewpoint, they may be chosen to enforce the required passivity property, or
from a dynamic viewpoint that may lead to the propagation of dissipation. So far, the
concept and general characteristics of IDA-PBC methodology have been stated. The
reader is referred to [66–69] and references therein to see some of the applications of this
method. In the following, the mathematics of this method will be introduced in details.

2.3.1 IDA-PBC Methodology

IDA-PBC introduces a systematic method to control a system in PH form as follows [13]

ẋ = [J(x) −R(x)]∇H +G(x)u

y =GT
(x)∇H,

(2.1)

in which x ∈ Rn denotes the states, u ∈ Rm is the control input, H(x) ∈ R is the open-
loop storage function, ∇H denotes gradient of H, G(x) ∈ Rn×m is input mapping matrix,
J(x) = −JT (x) ∈ Rn×n and 0 ≤ R(x) = RT (x) ∈ Rn×n are interconnection and damping
matrices, respectively, and y ∈ Rm is the passive output. Although PH modeling includes
most of the physical systems, in some cases representation of a system in PH form is
difficult. In the following, a general form is considered and then IDA-PBC is applied to
it.

Proposition (Proposition 1 of [58]). Consider the following system

ẋ = f(x) + g(x)u. (2.2)

Assume that there exist the matrices g�(x),Jd(x) = −Jd(x),Rd(x) = Rd
T (x) ≥ 0 and

the function Hd(x) that satisfy the following PDE

g�f(x) = g�[Jd(x) −Rd(x)]∇Hd(x), (2.3)

where g� is the left annihilator of g (i.e. g�g = 0), and Hd satisfies

x∗ = arg min Hd(x), (2.4)

with x∗ as the desired equilibrium point. Then system (2.2) with the following control
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law

u = [gTg]−1gT {[Jd −Rd]∇Hd − f} (2.5)

takes the following form

ẋ = [Jd(x) −Rd(x)]∇Hd, (2.6)

such that x∗ is (locally) stable. If x∗ is a separated minimum of Hd and also the largest
invariant set of

{x ∈ Rn∣(∇Hd)
TRd(x)∇Hd] = 0}, (2.7)

is equal to x∗, then it is asymptotic stable. An estimate of region of attraction is the
largest bounded level set of x ∈ Rn∣Hd(x) ≤ c for an arbitrary positive c.

Note that by considering Hd as a Lyapunov candidate, its derivative is

Ḣd(x) = −(∇Hd)
TRd(x)∇Hd ≤ 0. (2.8)

Hence, x∗ is stable.
As it turns out, the advantage of this method is that the Lyapunov function is apparent,

so unlike Lyapunov method, there is no need to search to find a suitable candidate. Notice
that since PDE (2.3) equalize system (2.2) with (2.6), it is also called matching equation.
Note that if the open-loop system itself has a PH structure, it has been shown in [13] that
IDA-PBC generates all the stabilizing controllers.

In order to solve the PDE (2.3), three different methods may be utilized.

• Non-Parameterized IDA. In this method the matrices Jd,Rd and g� are priory
selected. Then PDE (2.3) is solved respect to Hd.

• Algebraic IDA. In this method Hd is priory selected and (2.3) is solved respect to
Jd,Rd and g�. An example of this method has been proposed in [70].

• Parameterized IDA. In some special cases, it is possible to consider a special form
for Hd. For example, in mechanical systems, it is equal to the summation of de-
sired kinetic and potential energies. Furthermore, the matrices Jd,Rd may also be
determined based on the structure of the system.

In the following, IDA-PBC for (simple) mechanical systems is reviewed.

2.3.2 IDA-PBC for Mechanical Systems

Here, stabilization of underactuated mechanical systems using parameterized IDA-PBC is
discussed [14]. The equations of an UaS without modeling natural damping terms in PH
form is as follows

[
q̇
ṗ
] = [

0 In
−In 0

] [
∇qH
∇pH

] + [
0

G(q)
]u, (2.9)

in which q,p ∈ Rn are generalized position and momentum, respectively, H(q,p) =
1
2p

TM−1(q)p+V (q) is the summation of kinetic and potential energy, M(q) =MT (q) > 0
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is inertia matrix, and rank G(q) ∈ Rn×m is equal to m. The desired Hamiltonian is con-
sidered in the following form

Hd(q,p) =
1

2
pTMd

−1
(q)p + Vd(q), (2.10)

in which Md(q) and Vd are desired inertia matrix and potential function, respectively and
Vd should satisfy

q∗ = arg minVd(q). (2.11)

By considering Hd in the form of (2.10), the desired interconnection matrix is in the
following form

Jd(q,p) = [
0 M−1(q)Md(q)

−Md(q)M
−1(q) J2(q,p)

] = −Jd
T
(q,p), (2.12)

where J2 is a skew-symmetric matrix. Additionally, the desired damping matrix is

Rd(q) = [
0 0

0 G(q)KvG
T (q)

] , (2.13)

with 0 <Kv ∈ Rm×m. Therefore, the desired structure of closed-loop system is

[
q̇
ṗ
] = [

0 M−1(q)Md(q)

−Md(q)M
−1(q) J2(q,p) −G(q)KvG

T (q)
] [
∇qHd

∇pHd
] (2.14)

By setting (2.9) equal to (2.14), and multiplying to GT , the control law is derived as
follows

u = ues(q,p) +udi(q,p)

ues = (GTG)
−1GT (∇qH −MdM

−1
∇qHd + J2Md

−1p)

udi = −KvG
T
∇pHd,

(2.15)

where ues and udi are energy shaping and damping injection parts, respectively. By
multiplying to G� and separating p dependent and independent equations, the following
PDEs are resulted

G�
{∇q(p

TM−1p) −MdM
−1
∇q(p

TMd
−1p) + 2J2Md

−1p} = 0, (2.16)

G�
{∇qV −MdM

−1
∇qVd} = 0. (2.17)

The PDE (2.16) and (2.17) are related to kinetic and potential energy shaping, respectively.
First the kinetic energy PDE shall be solved and then usingMd, the potential energy PDE
is solved. The following points are related to the matching equations (2.16) and (2.17).

• The dimensions of G�(q) is the most important point in the matching equations. If
n = m + 1 (i.e. the system is underactuation degree one), G�(q) is a vector results
in a nonlinear PDE in (2.16) and a linear PDE in (2.17). Otherwise, both equations
are a set of PDEs that they are very difficult to solve.

• Solving the equation (2.16) is very complicated in the general case, since it is a
set of nonlinear PDEs that its solution should be positive definite. However, if
G�(q)∇q(p

TM−1(q)p) = 0, then it is possible to solve (2.16) by a constant Md.
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• Md(q) = M(q) is a trivial solution of (2.16). By this means, the PDE (2.17) is
G�{∇qV −∇qVd} = 0. However, it has been shown in [71] and Remark 4.3.18 in [72]
that if q∗ is unstable equilibrium point, then total energy shaping is required (i.e.
Md ≠M).

• Unfortunately, it is not possible to solve them numerically because the numerical
solution requires a boundary condition, but there is no boundary condition here.
Furthermore, the condition q∗ = arg minVd(q) should be satisfied. Therefore, homo-
geneous and non-homogeneous solutions should be derived separately.

In the above formulation, IDA-PBC for mechanical systems without modeling natural
damping terms was proposed. However, in some applications, they should be considered.
In the following, invoking [73], IDA-PBC for mechanical systems with natural damping
terms is proposed. Note that in this thesis, unless indicated, the model (2.9) is used.

The equations of an UaS with natural damping such as friction is as follows

[
q̇
ṗ
] = [

0 In
−In −R(q)

] [
∇qH
∇pH

] + [
0

G(q)
]u, (2.18)

where R(q) ∈ Rn×n is positive semi-definite physical damping matrix. The structure of
closed-loop system is

[
q̇
ṗ
] = [

0 M−1Md

−MdM
−1 J2 −R2

] [
∇qHd

∇pHd
] (2.19)

with the closed-loop damping matrix

R2 =
1

2
(RM−1Md +MdM

−1R) +GKvG
T . (2.20)

The control law and matching equations are similar to previous case. However, R2 is
positive definite under the following constraint

G�
(RM−1Md +MdM

−1R)(G�
)
T
> 0. (2.21)

This property is useful in the boundedness of inputs that will be discussed in the next
chapters.

In the sequel, the previous works on IDA-PBC for UaSs are reviewed.

Solution of matching equations

In [74] an analytic solution of the matching equations is proposed for the systems with
underactuation degree one. Six assumptions are considered, and the matching equations
of systems that satisfy these assumptions are reformulated by ordinary differential equa-
tions (ODEs). Practically, only a few UaSs satisfy these assumptions. Since these PDEs
are challenging, a number of researchers have looked for an alternative method instead of
directly solve them. Astolfi et al. in [75] replaced the PDEs by the problem of finding an
appropriate Lyapunov candidate. Actually, it has been shown that the classical PBC is re-
lated to this formulation. Unfortunately, finding a suitable Lyapunov candidate is as hard
as solving a PDE. A similar method by replacing the PDEs with algebraic inequalities has
been introduced in [76]. Simplification of kinetic energy PDE via coordinate change has
been proposed in [77]. [78] has proposed a method for 2-DOF underactuated systems to
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solve potential energy PDE. References [79–82] have proposed a similar method to over-
come solving the matching equations under some restrictive assumptions on the dynamical
parameters of the system. [83–85] are other papers in this area, that focus on a specific
system.

Notice that simultaneous interconnection and damping assignment passivity-based con-
trol (SIDA-PBC) is another method proposed to simplify the matching equations. In the
general form of IDA-PBC proposed in section 2.3.1, it is common to select Rd in the
range space of G. This point is clearly verified in mechanical systems as indicated in
section 2.3.2. However, in [86] it has been shown that this procedure is not applicable to
induction machine since the PDEs are not involutive (i.e. they are not integrable). How-
ever, by simultaneously shaping the energy and damping injection, it is possible to design
an IDA-PBC for that system. This idea was considered in [87] for mechanical systems
and it has been shown that the kinetic energy PDE can be replaced by some algebraic
equations for large scale systems. However, this idea was argued in [88] and it is proved
that the number of PDEs of kinetic energy shaping that should be solved is s(s+1)(s+2)/6
for both IDA-PBC and SIDA-PBC with s = n − m being the degree of underactuation.
In [89] it has been asserted that although the number of PDEs are equal in both methods,
SIDA-PBC simplifies the resulted matching equations. A claim that has not been proven.

Based on the reviewed literature, the proposed methods may be categorized into two
classes. Some methods provide a general method to solve the matching equations. How-
ever, fining their solution is as hard as solving the corresponding PDE. Other methods
target a particular class of systems in which the matching equations can be easily solved.
Unfortunately, it seems that none of the reviewed methods are not capable to solve the
matching equations of UCDRs. This gap in the literature, is examined in detail, and
properly filled in this thesis.

Other challenging problems in IDA-PBC

Actuator saturation is a common limitation in all the practical systems that should be
taken into consideration during the controller design. Otherwise, poor performance or
even instability may be resulted [90]. For this purpose, several researchers have focused
on controller design with bounded inputs. For fully actuated serial robots, it has been
proved that if the actuators are capable to compensate for the gravity in the workspace,
see for example [91–93]. Furthermore, different controllers for stabilization of UaSs with
input constraints have been reported in literature. However, less attention has been paid
to design IDA-PBC for mechanical systems with bounded inputs. This is due to the
fact that the desired potential energy cannot be selected arbitrarily, and also the kinetic
energy shaping terms are quadratic with respect to velocity. To the best of authors knowl-
edge, [94] is the only bounded input IDA-PBC reported in literature, which is specifically
designing controller for Inertia wheel pendulum. This case study does not suffer from two
aforementioned problems since the solution of potential energy PDE (2.17) is sinusoid-
like functions and also M ,Md are constant matrices results in vanishing kinetic energy
shaping terms in the control law. On the other hand, in our specific application, namely
UCDRs, the robot can merely apply tensile forces, and therefore, designing bounded input
IDA-PBC for mechanical systems is the other aim in this thesis.

Robust IDA-PBC with respect to external disturbance is another topic of recent re-
search works. Invoking [95], in [96] a robust IDA-PBC for mechanical systems subject
to matched disturbance has been proposed. In these works, three different controllers
based on nontrivial change of coordinate has been designed such that the constant dis-
turbance is rejected. In [97] a general method for rejection of matched disturbance for
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a PH system with constant input mapping matrix has been introduced. The idea is to
design an adaptation law to estimate the external disturbance and add a nonlinear PI
term to the control law. The results of this paper are generalized in [98] to a PH system
with state-dependent input mapping matrix. Robust IDA-PBC with respect to matched
and unmatched disturbance has been given attention in [99]. However, the mathematical
proofs of the mentioned paper have been totally rejected in [100]. [101,102] are other robust
IDA-PBC papers that are based on [99] and thus, they are technically not correct. as it
can be seen, robust IDA-PBC with respect to matched disturbance is sufficiently studied
in the literature. However, as indicated in [100], it seems that unmatched disturbance
rejection is very complex and less worked out.

Parameter uncertainties is another common problem in applied mechanical systems.
Researchers mostly design adaptive controllers to tackle this problem. However, adaptive
IDA-PBC is not routine since the matching equations should be satisfied. To the best of
our knowledge, [103, 104] are the only published works that design adaptation law with
respect to friction coefficients in this field. Hence, adaptation of dynamical parameters
(i.e. the parameters in the inertia matrix and potential energy) is an open problem. Due
to the gap in the literature in this field and also difficulty of the subject, design of adaptive
IDA-PBC for some case studies of our interest, is another aim of this thesis.

Another practical problem in the implementation of controllers on mechanical systems
is inaccurate velocity measurement. Several observers have been designed in literature to
facilitate the implementation of a controller without requirement of velocity measurement.
Although asymptotic trajectory tracking of fully actuated robots has not been proved
in most cases, it is easy to ensure stability for the regulation problem. The positive
characteristics of some observers, such as the observer proposed in [105] which is called
dirty derivative of velocity, is its applicability in a class of UaSs. By this means, IDA-
PBC with position feedback has been designed for Inertia wheel pendulum using the
dirty derivative observer. Immersion and invariance (I&I) observer is an intense observer
designed by introducing an attractive invariant manifold [106]. In [74], IDA-PBC with
I&I observer has been designed for a class of mechanical systems with a constant inertia
matrix. Generalization of this method has been studied in [107] where two sets of PDEs
should be solved to design the observer. In this thesis, some of the proposed controllers
are designed with an observer in order to simplify its implementation process.

In the following, we will review the previous works on UCDRs and identify the gap of
research in this field.

2.4 Underactuated Cable-Driven Robots

Recently, a number of researchers have concentrated on the analysis and control of UCDRs.
In [108] point-to-point trajectory planning for a serial UCDR using natural frequency
analysis of the system by considering sinusoidal functions for the desired length of the
cables has been performed. Design and stabilization of another serial UCDR by feedback
linearization has been studied in [109]. Similar to [108], the method has been implemented
on a 3-DOF planar UCDR in [15]. Trajectory planning for the same robot has been studied
in [16] by considering time polynomial for the length of the cables. The results of the
mentioned paper have been generalized in [17] for a general UCDR shown in Fig. 2.1, and
rest to rest trajectory planning has been performed by numerical solving of a boundary
value problem. Other papers based on trajectory planning of UCDRs can be seen in
[110–114]. The advantage of controller design in joint space is that cables’ tension can
be verified simply. However, the common problem of the proposed works is that the
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Figure 2.1: The underactuated cable driven robot reported in [17].

controller is designed in the joint space. Since forward kinematic in UCDRs has infinite
solution, stability of desired equilibrium point is not ensured. Furthermore, generally,
design a controller for the length of the cables leads to the oscillatory performance of the
end-effector.

In [115], analysis, classification, and design of mechanisms that are designed by cables
have been studied. In [116], static and dynamic analysis of an UDCR has been performed.
The human’s leg in which the lower joint is unactuated has been modeled in [117] by cable
and pulley. In [18] design and optimal control of a micro-macro robot consisting of a fully
actuated CDR attached to an underactuated serial robot has been considered. Since the
underactuated part of the robot is in the serial structure, the main focus of the mentioned
paper is on the serial robot. Out-of-plane oscillation control of a fully-constraint CDR
has been considered in [118]. The studied robot generally has five degrees of freedom and
two actuators. However, it is assumed that the lengths of the cables are constant, and
only the out-of-plane motion of end-effector is controlled by two operators connected to it.
Hence, similar to the previous case, this case is not an underactuated cable-driven robot.
It should be noted that some papers have focused on other issues of UCDRs, for example
geometrico-static problem in [119,120], stability analysis in [121], self-calibration in [122],
etc.

As it was shown, some papers have analyzed, designed and controlled UCDRs. The
papers focused on the regulation problem of UCDRs are based on trajectory planning in
joint space which requires accurate system equations, powerful software, and numerical
forward solution of system’s equations. Furthermore, in these papers, only desired length of
cables are designed and control law is not proposed. Hence, in this thesis, some controllers
based on IDA-PBC method with bounded inputs will be designed and implemented to
cover the gap of research in the literature.

2.5 Conclusion

In this chapter, the literature on cable-driven robots, the types of workspace, and the
various control methods was reviewed. After this, the control methods provided for un-
deractuated systems and their disadvantages were discussed. Then, IDA-PBC method
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(a) Overall view of the robot

(b) The end-effector

Figure 2.2: Planar underactuated cable-driven robot with two actuators on the end-effector [118].
The length of cables are fixed and out-of-plane oscillations are controlled.

as a general version of classical PBC was introduced and its formulation together with
the open problems of this method, was proposed. Finally, the literature of underactuated
cable-driven robot was reviewed. Due to the gap in controller design for UCDRs, in the
next chapters, we will concentrate on this topic.



Chapter 3

Systems Models

In this chapter, the equations of UCDRs that are the subject of this thesis are given.
The systems include a 3-DOF planar UCDR with two actuators, a 3-DOF spatial UCDR
suspended from two cables, and a 6-DOF robot with four actuators. For each robot,
inverse kinematic, Jacobian matrix, and dynamic equations neglecting the cable dynamics
are given. Furthermore, the equilibrium points of the robots are also derived.

3.1 Planar Robot

This mechanism, which has been considered in [15, 16], consists of a payload suspended
from two cables. The schematic of the robot is depicted in Fig. 3.1. The mechanism has
two translational and one rotational motion in a vertical plane. The motion of the end-
effector is provided via the length of the cables controlled by the actuators. As indicated
in Fig. 3.1, the center of coordinate is located on one of the anchor points such that the
X axis is in the direction of the two anchor points with the distance b, while the Y axis
is upward (in the opposite direction of gravity). The position of the center of mass of the
end-effector is denoted by p = [x, y]T , and the angle of its rotation relative to the horizon
is denoted by θ. The length and the direction of the cables are denoted by l1, l2 and ŝ1, ŝ2,
respectively. α1 and α2 denote the angles of the cables with the horizon.

3.1.1 Kinematic Analysis

The loop-closure equation may be written in the following form

p = l1ŝ1 −E1 =B + l2ŝ2 −E2, (3.1)

in whichE1 andE2 are the vectors from the center of mass of end-effector to the connection
point of cables to the end-effector, and B = [b,0]T . Equation (3.1) may be rewritten in
the following form

x = l1 cos(α1) + a cos(θ) = b + l2 cos(α2) − a cos(θ)

y = l1 sin(α1) + a sin(θ) = l2 sin(α2) − a sin(θ),
(3.2)

with 2a as the length of the end-effector. From this equation, the inverse kinematics can
be easily solved. In other words, if x, y, θ are specified, the cables’ length can be easily

19
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Figure 3.1: The schematic of the planar UCDR. The mechanism has two translational and one
rotational motion. The center of mass is on the middle of the end-effector

calculated as follows

l1 =

√

(x − a cos(θ))
2
+ (y − a sin(θ))

2

l2 =

√

(x − b + a cos(θ))
2
+ (y + a sin(θ))

2
(3.3)

Furthermore, the other parameters are derived as follows

cos(α1) =
x − a cos(θ)

l1
, sin(α1) =

y − a sin(θ)

l1
, ŝ1 = [

cos(α1)

sin(α1)
] ,

cos(α2) =
x − b + a cos(θ)

l2
, sin(α2) =

y + a sin(θ)

l2
, ŝ2 = [

cos(α2)

sin(α2)
] .

(3.4)

In order to solve the forward kinematic problem, it is clear that two variables (l1, l2)
are known and three variables (x, y, θ) should be determined. This problem has infinite
solution since, as indicated in (3.3), the number of unknown variables is more than the
number of equations. Actually, the reason why the robot is underactuated is due to this
point, since it may seem that the robot has two actuators with two cables and thus, it is
possible to control the cables’ length and guide the end-effector to the desired position.
However, since forward kinematic has infinite solution, it is not possible to guarantee
convergence to the desired position, and an oscillating response may be achieved. This is
the fact reported in [121] and can be seen in the results of [17].

3.1.2 Jacobian and Dynamic Analysis

In CDRs, the relation between the velocity of end-effector and joints is expressed by
L̇ = Ja(X)Ẋ in which Ja(X) is the Jacobian matrix of the robot, and L = [l1, ..., lm]T

denotes the cables’ length. To compute the Jacobian matrix, we should differentiate the
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inverse kinematic with respect to time. Dynamic equations are simply derived via Newton-
Euler formula by this assumption that the cables are mass-less infinite stiff.

Time derivative of (3.1) is

ṗ = v = l1 ˙̂s1 + l̇1ŝ1 − Ė1 = l2 ˙̂s2 + l̇2ŝ2 − Ė2, (3.5)

in which ˙̂si is proportional to α̇i with the direction k̂ = [0,0,1]T . Similarly, ˙̂si is propor-
tional to θ̇ with the direction k̂ ×Ei. Thus, (3.5) is rewritten in the following form

l̇1ŝ1 = v − l1α̇1k̂ + θ̇(k̂ ×E1)

l̇2ŝ2 = v − l1α̇2k̂ + θ̇(k̂ ×E2)
(3.6)

Now dot product the above equations in ŝ1 and ŝ2, respectively. it yields

l̇1 = v ⋅ ŝ1 + θ̇k̂ ⋅ (E1 × ŝ1)

l̇2 = v ⋅ ŝ2 + θ̇k̂ ⋅ (E2 × ŝ2)
(3.7)

This equation can be represented in the following form

[
l̇1
l̇2
] = Ja(X)Ẋ, X =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x
y
θ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

Ja(X) =

⎡
⎢
⎢
⎢
⎢
⎣

x−a cos(θ)
l1

y−a sin(θ)
l1

− cos(θ)
y−a sin(θ)

l1
+ sin(θ)

x−a cos(θ)
l1

x−b+a cos(θ)
l2

y+a sin(θ)
l2

cos(θ)
y+a sin(θ)

l2
− sin(θ)

x−b+a cos(θ)
l2

⎤
⎥
⎥
⎥
⎥
⎦

(3.8)

Dynamic equations of parallel robots in Euler-Lagrange formulation are as follows [2]

M(X)Ẍ +C(X, Ẋ)Ẋ + G(X) = F = −JTa (X)τ (3.9)

Invoking [15], the dynamic parameters are

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m 0 0
0 m 0
0 0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, C = 0, G =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
mg
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.10)

in whichC denotes the Coriolis and Centrifugal terms, G = ∇qV is the gravity force/torque,
and m and I are mass and moment of inertia of the end-effector1. Furthermore, it is
possible to represent the dynamic equations in PH form (2.9) with the following parameters

H =
1

2
pTM−1p +mgy, G = −JTa , q =X, p =MẊ. (3.11)

3.1.3 Equilibrium Points

First, the method of calculating equilibrium points is explained. Then, the equilibrium
points of the system are calculated.

For a general system with the equations

ẋ = f(x) + g(x)u,

1Note that in this thesis the input mapping matrix and gravity force/torque are shown by G and G,
respectively.
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Figure 3.2: Feasible equilibrium points of the planar UCDR with a = 0.25, b = 8.

the equilibrium points are derived from g�(x)f(x) = 0 with g� as the left annihilator of
g. Note that f(x) = 0 denotes equilibrium points with u = 0. The other points required
a constant input.

In mechanical systems, f(x) includes position and velocity-dependent terms. Velocity
is equal to zero in equilibrium points. Based on this explanations, equilibrium points of a
mechanical system with dynamic equations (2.9) and (3.9) are derived from the following
equation

G�
∇qH =G�

∇qV =G�
G = 0 (3.12)

Since in CDRs the gravity force G is constant, they have not an equilibrium point with
u = 0. This is compatible with the nature of CDRs since the robot falls without the input
due to gravity.

Now the equilibrium points of the robot with dynamic parameters (3.11) are calculated.
Since the dimension of G is 3×2, G� is a vector computed by cross product of the columns
of G as follows

G⊥
T

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 cos(θ)y2 − 2 sin(θ)xy + by sin(θ) − ab sin2(θ)
−2xy cos(θ) + by cos(θ) + ab sin(θ) cos(θ) + 2x2 sin(θ) − 2bx sin(θ)

2ax sin(θ) − 2ay cos(θ) + by − ab sin(θ)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.13)

The equilibrium points based on G(X) given in (3.10) are on the following manifold

−2xy cos(θ) + by cos(θ) + ab sin(θ) cos(θ) + 2x2 sin(θ) − 2bx sin(θ) = 0. (3.14)

This manifold is shown in Fig. 3.2 with a = 0.25, b = 8. Note that all of the points in (3.14)
are not feasible since due to the nature of the system, the static workspace of the robot is
restricted to 0 < x < 8, y < 0 and −π2 < θ < π

2 . Thus, Fig. 3.2 shows the feasible workspace
of the robot which is equivalent with static workspace of the robot. As indicated in this
figure, if the robot is close to the anchor points (i.e. x ≈ 0 or x ≈ b), θ is also close to its
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Figure 3.3: Schematic of the spatial underactuated cable-driven robot.

boundary values (i.e. θ ≈ −π2 or θ ≈ θ
2). Furthermore, if x = b

2 , then θ is equal to zero and y
is arbitrary. These are verified through a physical point of view to the system. Note that
in [123] the equilibrium points of the robot are computed based on a geometric point of
view that coincides with (3.14).

3.2 Spatial Robot

Similar to the previous case, the robot consists of a mass suspended from two cables.
However, the cables are attached to a unique point of the end-effector; thus, its rotation
is negligible. But instead, the end-effector has out-of-plane motion. Hence, the robot
is underactuated with three translational degrees of freedom and two actuators. The
schematic of the mechanism is depicted in Fig. 3.3. The center of coordinate is located
on one of the anchor points, X axis is in the direction of the anchor points, and Y axis
is upward. [x, y, θ]T denotes the position of end-effector, and l1 and l2 are the cables’
length. It is common in planar suspended CDRs to use a vertical platform to prevent
out-of-plane motions. Therefore, prevention from this oscillations by controller design is
the aim. Furthermore, the proposed controller is suitable for a 3-DOF spatial CDR to
stabilize it when a failure occurs in an actuator, or one of the cables is torn out.

3.2.1 Kinematic Analysis

The loop-closure equation is

X = l1ŝ1 = bî + l2ŝ2, (3.15)
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in which X = [x, y, z]T , ŝ1 and ŝ2 denote the direction of the cables, and î = [1,0,0]T .
Inverse kinematic is derived from (3.15) as follows

l1 =
√
x2 + y2 + z2, l2 =

√
(x − b)2 + y2 + z2, (3.16)

and the direction of cables are

ŝ1 =
1

l1
X =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x
l1
y
l1
z
l1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ŝ2 =
1

l2
(X − bî) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x−b
l2
y
l2
z
l2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.17)

with b as the distance between anchor points. Forward kinematic has infinite solution due
to fewer number of equations than the number of unknowns.

3.2.2 Jacobian and Dynamic Analysis

In order to derive the Jacobian matrix, it is required to differentiate (3.15) respect to time

Ẋ = l̇1ŝ1 + l1 ˙̂s1 = l̇2ŝ2 + l2 ˙̂s2 (3.18)

Dot product (3.18) in ŝ1 and ŝ2, yields

l̇1 = ŝ1 ⋅ Ẋ, l̇2 = ŝ2 ⋅ Ẋ, (3.19)

where ŝ1. ˙̂s1 = ŝ2. ˙̂s2 = 0 was used. Therefore, the Jacobian matrix is

Ja(X) = [

x
l1

y
l1

z
l1

x−b
l2

y
l2

z
l2

] . (3.20)

Dynamic equations of the robot is in the form (3.9) with the following parameters

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m 0 0
0 m 0
0 0 m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

C = 0 G =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
mg
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.21)

with m as the mass of end-effector. Note that it is also possible to represent it in PH form
(2.9) with the following parameters

H =
1

2
pTM−1p +mgy, G = −JTa , q =X, p =MẊ. (3.22)

3.2.3 Equilibrium Points

Based on the explanations in section 3.1.3, we should calculate G�G = 0. Since the
dimension of G is 3 × 2, G� is derived easily as follows

G⊥(X) = [0 −bz by] (3.23)

The equilibrium points of the robot are a subset of the following manifold

G�
G = −mgbz. (3.24)

Therefore, the feasible equilibrium points are in the plate z = 0 with 0 < x < b and y < 0
which is equivalent to static workspace of the robot. This coincides with the nature of the
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Figure 3.4: Schematic of a 6-DOF underactuated cable-driven robot with four actuators.

robot since a mass is suspended from two anchor points.

3.3 Spidercam

As explained in detail in chapter 1, spidercam is an UCDR with four actuators and 6-DOF.
The robot consists of a suspended mass from four cables that the position and orientation
of the end-effector are controlled via the cables’ length. Fig. 3.4 shows a schematic of a
spidercam. In addition to the fixed frame, a frame is attached to the center of mass of
the end-effector. PAis and PBis denote the position of anchor points and attachment of
cables to the end-effector represented in fixed frame and moving frame, respectively. By
this means, the position of Bis are constant in the moving frame and can be represented
in the fixed frame using rotation matrix Rm.

3.3.1 Kinematic Analysis

The loop-closure equation of this robot is

P = PAi + liŝi −RmBi, for i = 1, ...,4 (3.25)

in which P = [x, y, z]T denotes the position of center of mass of the end-effector, lis are
the cables’ length and ŝis are unit vectors denoting the direction of the cables. In order
to compute inverse kinematic, (3.25) is rewritten in the following form

liŝi = P −PAi +RmBi, for i = 1, ...,4 (3.26)

Now by multiplying both sides to its transpose, the following equation is derived

l2i ŝ
T
i ŝi = l

2
i = (P −PAi +RmPBi)

T
(P −PAi +RmPBi) = P

TP − 2P TPAi

+ 2P TRmPBi + P
T
Ai
PAi − P

T
Ai
RmPBi +P

T
Bi
PBi , for i = 1, ...,4
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Therefore, inverse kinematic is

li =
√

P TP − 2P TPAi + 2P TRmPBi +P
T
Ai
PAi −P

T
Ai
RmPBi +P

T
Bi
PBi for i = 1, ...,4

(3.27)

in which the relationRT
m =R−1

m was used. Note that the rotation matrix can be represented
based on different methods such as Euler angles, screw axis, etc. [2]. Similar to previous
cases, forward kinematic is not solvable due to fewer number of equations than unknowns.

3.3.2 Jacobian and Dynamic Analysis

In order to derive the Jacobian matrix, we should differentiate (3.26) with respect to time.
It yields

l̇iŝi + li ˙̂si = Ṗ + ṘmBi, for i = 1, ...,4 (3.28)

Dot product of (3.28) to ŝi yields

l̇i = ŝi ⋅ Ṗ + ŝi ⋅ω×RmBi, for i = 1, ...,4 (3.29)

in which ω denotes angular velocity and ω× is matrix representation of the vector ω as
follows

ω× =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ω = [ω1, ω2, ω3]
T .

Finally, the Jacobian matrix is derived as follows

Ja(X) = [
ŝ1 ŝ2 ŝ3 ŝ4

RmB1 × ŝ1 RmB2 × ŝ2 RmB3 × ŝ3 RmB4 × ŝ4
]

T

(3.30)

where we used this fact that a.(b × c) = b.(c × a).
Invoking [124], dynamic parameters of the robot are easily derived in PH form (2.9)

as follows

M = [
mI3 03×3

03×3 I
] , V =mgy, G = −JTa , q =X, p =MẊ, (3.31)

with m and I as the mass and moment of inertia of the end-effector, respectively.

3.3.3 Equilibrium Points

The dimension of G is 6 × 4. Hence, computing G� is not straightforward. Therefore, it
may be derived for a particular case. Here, it should be noted that as explained in [121],
the equilibrium points of an UCDR are natural. In other words, they are open-loop stable
and the robot has a oscillatory response around them.

3.4 ARAS Cable-Driven Robot

Since in this thesis, the proposed controllers are implemented on some CDRs, the robots
are introduced here.
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Figure 3.5: Different components of ARAS underactuated cable-driven robot

3.4.1 ARAS Underactuated Cable-Driven Robot

Fig. 3.5 illustrates ARAS planar UCDR. A safety cable is used to confine the workspace
of the robot to prevent from dangerous problems. Furthermore, two cameras are used
to detect the position of the end-effector. Additionally, the cables’ length are measured
through incremental encoders and knowing the initial lengths. Using x, y and l1, l2, the
value of θ should be calculated analytically. For this purpose, define the following auxiliary
variables

γ1 = x
2
+ y2

+ a2
− l22, γ2 = l

2
1 − x

2
− b2 − y2

− a2
+ 2bx,

α1 = α2 = 2ay, β1 = 2ax, β2 = 2ax − 2ab,

A1 = α
2
1 + β

2
1 , B1 = −2α1γ1, C1 = γ

2
1 − β

2
1 ,

A2 = α
2
2 + β

2
2 , B2 = −2α2γ2, C2 = γ

2
2 − β

2
2 .

θ is derived from

θ =
arcsin ((−B1 +

√
B2

1 − 4A1C1)/(2A1)) + arcsin ((−B2 −
√
B2

2 − 4A2C2)/(2A2))

2
(3.32)

The distance between anchor points is b = 1.49, the length of end-effector is 2a = 0.48 and
its mass is 1.6Kg. Implementation results on this robot are proposed in Section 7.2.

3.4.2 ARAS Cam

ARAS cam is generally a 6-DOF CDR with four cables. Since the attachment point of the
cables to end-effector is a point, usually it is modeled as a 3-DOF robot by neglecting the
rotational variables. In this thesis, we merely utilize three cables of the robot that leads
to a fully actuated CRD. The schematic of the setup is shown in Fig. 3.6. Furthermore, a
picture of the robot is depicted in Fig. 3.7.
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Figure 3.6: Schematic of a 3-DOF suspended CDR.

Dynamic formulation of the robot is represented by equation (2.9) with [125],

M =mI3, V =mgz, q = [x, y, z]T , G =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xa1−x
l1

ya1−y
l1

za1−z
l1

xa2−x
l2

ya2−y
l2

za2−z
l2

xa3−x
l3

ya3−y
l3

za3−z
l3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

Here, q denotes the position of end-effector and lis are the length of the cables given by

l1 =
√

(x − xa1)
2 + (y − ya1)

2 + (z − za1)
2

l2 =
√

(x − xa2)
2 + (y − ya2)

2 + (z − za2)
2

l3 =
√

(x − xa3)
2 + (y − ya3)

2 + (z − za3)
2

Kinematic parameters of this robot are

xa1 = xa2 = −xa3 = b/2 = 3.56/2

ya1 = −ya2 = −ya3 = a/2 = 7.05/2

za1 = za2 = za3 = h = 4.26,

Mass of end-effector payload is m = 4.5Kg. The readers are referred to [39] for further
details.

Figure 3.7: ARAS cable driven robot.
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3.5 Conclusion

In this chapter, the kinematic, Jacobian, and dynamic equations of three UCDRs were
proposed. It should be noted that although the main focus of this thesis is UCDRs, espe-
cially the planar and spatial robots, in the following chapters, other benchmark systems
are also considered.



Chapter 4

Solution of Matching Equations

In this chapter, we focus on the PDEs arisen from IDA-PBC approach. Three different
methods are proposed to solve them. The first method is based on transforming a PDE to
some Pfaffian differential equations. By this means, the matching equations of several sys-
tems will be solved. Furthermore, the potential energy shaping of underactuated parallel
robots will be accomplished. By this means, it is possible to stabilize all of the UCDRs and
natural equilibrium points of underactuated parallel robots. Another method is specified
to solve kinetic energy PDE of UaSs with underactuation degree one and constant input
mapping matrix. Finally, a comment on simultaneous IDA-PBC for mechanical systems
is proposed. It will be shown that SIDA-PBC does not simplify the matching equations.

4.1 Pfaffian Differential Equations

Solving the PDEs is the challenging part of IDA-PBC approach that restricts its applica-
tions. Although different numerical methods have been proposed to derive an approximate
solution of a PDE with boundary condition, here, the matching equations do not have a
boundary condition. Furthermore, due to the satisfaction of constraint (2.4) and the fact
that an approximate solution may destroy the proof of stability, an exact general solution
of the PDEs is required. A method that can derive the general solution of a nonlinear PDE
has been proposed in [19]. In this method, a PDE is replaced by some Pfaffian differential
equations. Generally, a Pfaffian differential equation is in the following form

n

∑
i=1
fi(x1, ..., xn)dxi = 0.

It has been shown that if φi(x1, ..., xn, z) = ci, i ∈ {1, ..., n} are independent solutions of the
following equations

dx1

P1
=
dx2

P2
= ⋅ ⋅ ⋅ =

dxn
Pn

=
dz

R
, (4.1)

then Φ(φ1, ..., φn) with Φ an arbitrary function forms the general solution of the following
(nonlinear) PDE

P1
∂z

∂x1
+ P2

∂z

∂x2
+ ⋅ ⋅ ⋅ + Pn

∂z

∂xn
= R, (4.2)

where Pis and R are function of independent variables x1, ..., xn and z. Note that since
the PDE (4.2) is generally nonlinear, the solution is implicit.

30
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Solving the Pfaffian equations (4.1) is still a cumbersome task while it is easier than
that of the corresponding PDE. However, for a Pfaffian differential equation with n = 3,
i.e.

Pdx1 +Qdx2 +Rdx3 = 0, (4.3)

it has been shown that if the following condition holds

XT curl(X) = 0, (4.4)

with X = [P,Q,R]T , then the problem turns to an exact differential equation which may
be easily solved by direct integration. By this means, in order to solve (4.2) with n = 3,
one may derive a Pfaffian differential equation such that condition (4.4) holds. Several
methods have been proposed to solve a Pfaffian differential equation satisfying (4.4). One
of these methods which is proposed in [19, Ch. 1] is summarized here.

Assume that Pfaffian equation (4.3) satisfy condition (4.4).
Stage 1: Assume that x3 is constant. The solution of

Pdx1 +Qdx2 = 0

is U(x1, x2, x3) = C. Define

µ ∶=
1

P

∂U

∂x1
=

1

Q

∂U

∂x2

Stage 2: Define

K ∶= µR −
∂U

∂x3

Stage 3: Parameterize K such that K =K(U,x3).
Stage 4: Solve dU +Kdx3 = 0.
Stage 5: Then the solution is

φ(U,x3) = φ(U(x1, x2, x3), x3) = C.

In the following, this method will be used to solve the matching equations of planar and
spatial UCDR proposed in the previous chapter. More examples on several benchmark
system are presented in Appendix A. Note that since this method is applicable only to a
single PDE, it is not possible to solve the matching equations of spidercam. Before solving
the PDEs, let us propose the following corollary.

Corollary 1. Consider PDE (4.2) and presume that Pis and R are merely functions of
independent variables xis. Then,

a) The functions z − φi(x1, ..., xn) = ci, i ∈ {1, ..., n − 1} are the homogeneous solutions
of this PDE if φis are solutions of the first n − 1 equations (4.1).

b) Non-homogeneous solution is derived by setting the last term in (4.1) equal to other
terms.

Proof. a) Presume that φi(q1, ..., qn) = ci are the solutions of the first n − 1 equations in
(2.1). Since this equations are independent of z; thus, z − φi(q1, ..., qn) = ci are also the
solutions of Pfaffian differential equations. Notice that they are homogeneous solutions of
the PDE, because they satisfy the following equations which are related to homogeneous
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part of PDE
dx1

P1(x1, ..., xn)
= ⋅ ⋅ ⋅ =

dxn
Pn(x1, ..., qxn)

=
dz

0

b) The proof of this part is clear. Non-homogeneous solution of PDE (2.2) corresponds
to its special solution that depends on both the left and right–hand sides of (2.2). Hence,
this is derived based on the last term of (4.1).

Notice that the results of this section have been published in [126].

4.1.1 Solution of Matching Equations of UCDRs

Here, first, the matching equations of the robots are computed. After this, they will be
solved using Pfaffian differential equations. Note that as indicated in [127], to stabilize a
natural equilibrium point of a robot, it is sufficient to solve the potential energy PDE.

Planar robot

Since the input mapping matrix G proposed in (3.11) is a function of all the configuration
variables, the available methods in the literature are not applicable to this system. Hence,
another approach is required to derive the solution of the PDEs. First, consider kinetic
energy PDE (2.16.) The first this PDE is equal to zero due to M is constant. Thus, it is
possible to solve it by considering a constant matrix Md. For simplicity, Md is considered
equal to M i.e., only potential energy is shaped. This does not limit the stability of the
closed-loop system since, as indicated in [121,123] the equilibrium points of the robot are
natural and can be stabilized by only potential shaping. By this means, the potential
energy PDE (2.17) yields

( − 2xy cos(θ) + by cos(θ) + ab sin(θ) cos(θ) + 2x2 sin(θ) − 2bx sin(θ))mga

= a(2 cos(θ)y2
− 2 sin(θ)xy + by sin(θ) − ab sin2

(θ))
∂Vd
∂x

+ a( − 2xy cos(θ) + by cos(θ) + ab sin(θ) cos(θ) + 2x2 sin(θ) − 2bx sin(θ))
∂Vd
∂y

+ (2ax sin(θ) − 2ay cos(θ) + by − ab sin(θ))
∂Vd
∂θ

. (4.5)

PDE (4.5) is a stumbling block. In order to solve it, the proposed method based on Pfaffian
differential equation is used. Hence, the corresponding Pfaffian equations are

dx

G�
1

=
dy

G�
2

=
dθ

G�
3

=
dVd
mgG�

2

, with G�
= [G�

1 ,G
�
2 ,G

�
3]. (4.6)

The solution of linear PDE (4.5) can be separated into homogeneous and non-homogeneous
parts. Invoking Corollary 1, the non-homogeneous solution Vdn is derived from the second
and forth terms in (2.13) as Vdn = mgy. For the homogeneous solution we should solve
the following equations

dx

G�
1

=
dy

G�
2

=
dθ

G�
3

(4.7)

First, it is tried to find a Pfaffian differential equation in the following form:

P1(θ)dx + P2(θ)dy + P3(x, y, θ)dθ = 0, (4.8)
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such that the condition (2.12) holds. For this purpose, the following simple properties are
used.

Assume that a1/b1 = a2/b2. Then:

• For arbitrary values α,β ∈ R we have:

a1

b1
=
a2

b2
=
αa1 + βa2

αb1 + βb2
.

• If α and β are chosen such that αb1 + βb2 = 0, then αa1 + βa2 ≡ 0.

In order to derive a Pfaffian differential equation in the form of (4.8), let us build a
new fraction with the aim that the terms 2a cos(θ)y2 and 2x2 sin(θ) are omitted in the
denominator. This can be achieved by defining: cos(θ)G�

1 + cos(θ)yG�
3 and sin(θ)G�

2 −

sin(θ)xG�
3 , respectively. Therefore

ζ1

η1
=
dx

G�
1

=
dy

G�
2

=
dθ

G�
3

=
dVd
mgG�

2

with

ζ1 = cos(θ)dx + sin(θ)dy + ( − sin(θ)x + cos(θ)y)dθ,

η1 = cos(θ)G�
1 + sin(θ)G�

2 + ( − sin(θ)x + cos(θ)y)G�
3

= b cos(θ)y2
− b sin(θ)xy − abx sin2

(θ) + aby sin(θ) cos(θ).

To omit b cos(θ)y2 the following expression is defined

ζ2
η2

=
ζ1
η1

= dx
G�

1
=
dy
G�

2
= dθ
G�

3
=

dVd
mgG�

2

ζ2 = −
b

2adx + ζ1

η2 = −
b

2aG
�
1 + η1 = −

b2

2 y sin(θ) + ab2

2 sin2(θ) − abx sin(θ) + aby sin(θ) cos(θ).

Finally, by defining new terms η3 = b
2 sin (θ)G�

3 + η2 = 0, and ζ3 = b
2 sin (θ)dθ + ζ2, the

following Pfaffian equation is obtained

ζ3 = ( cos(θ) −
b

2a
)dx + sin(θ)dy + ( − sin(θ)x + cos(θ)y +

b

2
sin(θ))dθ = 0. (4.9)

By substituting (4.9) in (4.4), it is clear that this equation is integrable. The solution of
(4.9) is derived easily as follows

φ((2a cos(θ) − b)x + 2a sin(θ)y − ab cos(θ)) = c.

Although solving the Pfaffian equation (4.9) is not hard, let us apply the procedure
proposed at the beginning of this chapter, to find the solution in a systematic manner.
Note that for simplicity, (4.9) is multiplied in 4a.

U((4a cos(θ) − 2b)x + 4a sin(θ)y) = C, µ = 1

K is derived as
K = R + 4a sin(θ)x − 4a cos(θ)y = 2ab sin(θ).
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Finally, by using Lemma 1, the solution is given by

Vd = φ(U − 2ab cos(θ)) = φ((4a cos(θ) − 2b)x + 4a sin(θ)y − 2ab cos(θ)).

To derive the other solution of (4.5), it is sufficient to derive a Pfaffian equation in the
form:

P1(x)dx + P2(y)dy + P3(θ)dθ = 0,

which is clearly integrable. For this purpose, Consider the following term

ξ1
λ1

= dx
G�

1
=
dy
G�

2
= dθ
G�

3
=

dVd
mgG�

2

ξ1 = xdx + ydy,
λ1 = −abxy sin(θ) − a2bx sin2(θ) + aby2 cos(θ) + a2by sin(θ) cos(θ).

Two terms in λ1 can be eliminated by defining

ξ2
λ2

=
ξ1
λ1

= dx
G�

1
=
dy
G�

2
= dθ
G�

3
=

dVd
mgG�

2

ξ2 = −
b
2dx + ξ1,

λ2 = −
b
2G

�
1 + λ1 = −a

2bx sin2(θ) + a2by sin(θ) cos(θ) − ab2

2 y sin(θ) + ab2

2 sin2(θ)

Finally, by defining, λ3 =
ab
2 sin (θ)G�

3 + λ2 = 0, the following Pfaffian differential equation
is resulted

ξ3 = (x −
b

2
)dx + ydy +

ab

2
sin(θ)dθ = 0.

It is a simple equation with the following solution

φ(x2
+ y2

− bx − ab cos(θ)) = c.

Thus, the solution of PDE (4.5) is

Vd = Vdn + Vdh =mgy + φ((2a cos(θ) − b)x + 2a sin(θ)y − ab cos(θ),

x2
+ y2

− bx − ab cos(θ)), (4.10)

where φ is an arbitrary function.

Remark 1. The PDE (4.5) at the first look is seriously a challenging problem. The
situation is more crucial when it is seen that neither it is matched with the conditions
proposed in the literature in this field nor solvable with the available software. However,
by transforming it to the corresponding Pfaffian differential equations, the general solution
was derived. Note that although it is not straightforward to derive an equation satisfying
(4.4), the structure of equations helps us to facilitate solving this problem.

Spatial robot

The structure of equations of this robot is similar to planar robot since matrix G is a
function of all of the configuration variables. Therefore, the proposed methods in literature
are not directly usable. In order to design an IDA-PBC controller, it is possible to shape
only the potential energy. By this means, the potential energy PDE (2.17) with the
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dynamical parameters (3.22) is in the following form

−mgz = −z
∂Vd
∂y

+ y
∂Vd
∂z

.

This is a simple PDE with the following solution

Vd =mgy + φ(x, y
2
+ z2

). (4.11)

Unfortunately, as indicated in the simulation results in chapter 7, the response of this
controller is prolonged in z direction. In order to rectify this issue, total energy shaping
is required. In the following, two controllers based on total energy shaping are presented.

Since the inertia matrix of this robot is constant, a trivial solution of kinetic energy
PDE (2.16) is a constant desired inertia matrix. Hence, the structure of Md is in the
following form

Md =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m 0 0
0 m 0
0 0 m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.12)

with m being an arbitrary positive constant. The reason why this structure is considered
is improving the response in z direction. Replacing (4.12) in potential energy PDE (2.17)
yields

−mgz = −z
∂Vd
∂y

+ y
∂Vd
∂z

.

The solution of this PDE is

Vd =mgy + φ(x, y
2
+
m

m
z2

). (4.13)

Although the response of this controller is better than the previous one, in the sequel
IDA-PBC with state-dependent Md is proposed. The general form of kinetic energy PDE
introduced in (2.16) for this system is

G�
{−m−1Md∇q(p

TMd
−1p) + 2J2Md

−1p} = 0, G�
= [0,−bz, by].

As explained in [74], the general solution of kinetic energy PDE is derived from the fol-
lowing equation

n

∑
i=1
γi(q)

dMd
−1

dqi
= −[J (q)AT

(q) +A(q)J T (q)]

in which

J2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 p̃T 1α p̃T 2α . . . p̃Tn−1α
−p̃T 1α 0 p̃Tnα . . . p̃T 2n−3α

⋮ ⋮ ⋮ ⋱ ⋮

−p̃Tn−1α −p̃T 2n−3α . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.14)

p̃ =Md
−1p, J = [1α⋮2α⋮⋯⋮n0

α] ∈ Rn×n0 , γ =G�MdM
−1,

A = −[W 1(G
�
)
T , . . . ,W n0(G

�
)
T
] ∈ Rn0×n, n0 = n(n − 1)/2.
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To define W is, first define the (i, j)th element of the matrices F kl ∈ Rn×n with k, l ∈
{1, ..., n} as follows

F kl
ij =

⎧⎪⎪
⎨
⎪⎪⎩

1 if j > i, i = k and j = l

0 otherwise

and set W kl = F kl − (F kl)T . The matrices W is are defined as follows

W 1 =W
12,W 2 =W

13, ...,W n0 =W
(n−1)n. (4.15)

Hence, the following PDE should be solved

(−zMd22 + yMd23)
∂Md

∂y
+ (−zMd23 + yMd33)

∂Md

∂z

=m

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2(−z 1α1 + y 2α1) ∗ ∗

−z 2α1 + y(2α2 + 3α1) 2y 3α2 ∗

y 2α3 + z(3α1 − 1α3) y 3α3 + z 3α2 2z 3α3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where iαj denotes jth element of the vector
i
α and the up-diagonal elements were not

indicated due to symmetry of the matrix. By setting the left and right–hand sides element
by element equal to each other, it is clear that Md11 ,Md12 ,Md13 are defined arbitrarily due
to free terms αij . The other terms should satisfy the following equations

(−zMd22 + yMd23)
∂Md22

∂y
+ (−zMd23 + yMd33)

∂Md22

∂z
= 2my 3α2,

(−zMd22 + yMd23)
∂Md23

∂y
+ (−zMd23 + yMd33)

∂Md23

∂z
=my 3α3 +mz 3α2,

(−zMd22 + yMd23)
∂Md33

∂y
+ (−zMd23 + yMd33)

∂Md33

∂z
= 2mz 3α3. (4.16)

It is a set of PDEs with two arbitrary functions. Thus, it is possible to convert it to a
single PDE. However, there is no simple analytical solution tp solve it. In the following,
the proposed method is used to find the solution of (4.16). With the purpose of converting
(4.16) to Pfaffian differential equations, substitute first and third equations of (4.16) in
the second equation. This yields to the following equation

dy

P1
=
dz

P2
=
dMd23

R
(4.17)

with

P1 = −zMd22 + yMd23 ,

P2 = −zMd23 + yMd33 ,

R = −(
y

2

∂Md33

∂z
+
z2

2y

∂Md22

∂z
−
y2

2z

∂Md33

∂y
−
z

2

∂Md22

∂y
)Md23

+
y

2z
(−zMd22

∂Md33

∂y
+ yMd33

∂Md33

∂z
) +

z

2y
(−zMd22

∂Md22

∂y
+ yMd33

∂Md22

∂z
),

in which Md22 and Md33 are set arbitrarily by suitably defining 3α2 and 3α3. Equation
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(4.17) is equivalent to the following equation

zdy + ydz

−z2Md22 + y
2Md33

=
dMd23

R
(4.18)

Note that the left–hand side is independent of Md23 , while R is summation of two terms
including a linear term and an independent term with respect to Md23 . Pfaffian equation
(4.18) is easier to solve if R is independent of Md23 . Notice that the second term in R is
fractional and may lead to non-definite Md since z is in the denominator of the fraction
and z = 0 is equilibrium point of the system. Hence, a suitable choice for Md22 and Md33

is

Md22 =
y2

2
+ k1, Md33 =

z2

2
+ k2,

with k1, k2 > 0 to address the above issues and reduce the complexity of (4.18). Substitute
these values in (4.18) yields

zdy + ydz

k2y2 − k1z2
=

dMd23

k2y2 − k1z2

The solution to this simplified equation is Md23 = 1
2yz, hence, the matrix Md is in the

following form

Md =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗ ∗

∗
y2

2 + k1
1
2yz

∗ 1
2yz

z2

2 + k2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.19)

in which undefined elements are designed arbitrarily. Note that these elements do not
affect on potential energy PDE.

Potential energy PDE (2.17) for this robot is in the following form

−bmgz = bm−1
(−zMd22 + yMd23)

∂Vd
∂y

+ bm−1
(−zMd23 + yMd33)

∂Vd
∂z

.

Replacing (4.19) in this equation, yields

−m2gz = −k1z
∂Vd
∂y

+ k2y
∂Vd
∂z

This is a simple PDE, that can be solved easily by Corollary 1. The corresponding Pfaffian
equations are

dx

0
=

dy

−k1z
=
dz

k2y
=

dVd
−m2gz

It is clear that x = c1 and k2y
2 + k1z

2 = c2 are the solutions of the first two equalities.
Hence, homogeneous solution of the PDE is

Vdh = φ(x, k2y
2
+ k1z

2
).

From second and forth terms, non-homogeneous solution is derived as follows

Vdn =
m2g

k1
y.
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Hence, Vd = Vdh + Vdn = φ(x, k2y
2 + k1z

2) +
m2g
k1
y.

Remark 2. In this example, total energy shaping for the spatial UCDR has been ac-
complished by a configuration-dependent desired inertia matrix. Note that none of the
proposed articles on this topic, e.g. [74,77,79–81] can be utilized to derive a configuration-
dependent solution.

4.2 Potential Energy Shaping of Underactuated Parallel Robots

In this section, we focus on the PDE of potential energy in parallel robots. A particular
structure of parallel robots is considered to shape the potential energy in a general form.
It should be noted that potential energy shaping is sufficient to stabilize a system if the
equilibrium point is natural, i.e., similar to downward equilibrium point of a pendulum,
it is oscillatory.

As indicated in chapter 3, the input mapping matrixG in parallel robots is equal to the
transpose of the Jacobian matrix. The Jacobian matrix is derived from time derivative of
inverse kinematic. Let us consider the inverse kinematic formulation of a general parallel
manipulator as

l1 = f1(X), ... lm = fm(X), (4.20)

then its derivative is

l̇i =
n

∑
j=1

∂fi
∂Xj

Ẋj , X = [X1, ...,Xn]
T .

Therefore, Ja(X) is in the following form

Ja(X) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∇X1f1 . . . ∇Xnf1

⋮ ⋱ ⋮

∇X1fm . . . ∇Xnfm

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.21)

in which ∇Xfj denotes the row vector of gradient of fj . This structure is a fundamental
role in the potential energy shaping of these robots. Although it seems that the equilib-
rium points of underactuated parallel robots similar to UCDRs are stabilizable by merely
potential energy shaping, the following assumption is presented to exclude any particular
system.

Assumptiom 1. The equilibrium point q∗ is a natural equilibrium point of the system.
In other words, it is possible to stabilize it by shaping only the potential energy. ◻

Theorem 1. Consider an underactuated parallel robot satisfying Assumption 1. The
solution of potential energy PDE (2.17) with Md =M is

Vd = φ(f1, ..., fm) + V, (4.22)

in which fis are introduced in (4.20) and V is potential energy of the system.

Proof. Invoking Corollary 1, it is clear that the non-homogeneous solution of (2.17) is
Vdn = V . The homogeneous solution is derived from the following equation

G�
∇qVd = 0, G = JTa ,
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in which q =X. This means that the vector ∇qVd should be perpendicular to the rows of
G�. Since the columns of G are gradient of the fis, they are perpendicular to G�. Hence,
the functions fis are the homogeneous solutions of the PDE.

One of the most important properties of Theorem 1 is that it is possible to apply IDA-
PBC to the systems with any degree of underactuation. In the following, the solution of
potential energy PDE of the robots presented in chapter 3 is proposed.

Planar robot

Invoking Theorem 1, the solution of potential energy PDE of planar robot with Md =M
is as follows

Vd =mgy + φ(l1(X), l2(X)) =mgy + φ(

√

(x − a cos(θ))
2
+ (y − a sin(θ))

2
,

√

(x − b + a cos(θ))
2
+ (y + a sin(θ))

2
). (4.23)

At the first look, it may seem that the solution (4.10) is different from (4.23). However,
after some manipulations, it is shown that a solution can be derived as before by

(2a cos(θ) − b)x + 2a sin(θ)y − ab cos(θ) = (l22 − l
2
1)/2,

x2
+ y2

− bx − ab cos(θ) = (l21 + l
2
2)/2.

Note that although Theorem 1 simplifies solving PDE (4.5), it is not applicable if total
energy shaping is required.

Spatial robot

In this case, Vd is derived using Theorem 1 as follows

Vd =mgy + φ(l1(X), l2(X)) =mgy + φ(
√
x2 + y2 + z2,

√
(x − b)2 + y2 + z2). (4.24)

Similar to previous case, it is possible to show that (4.11) is equivalent to (4.24) in the
following form

x = (l21 − l
2
2 + b

2
)/2b, y2

+ z2
= (l21 + l

2
2 − 2x2

+ bx − b2)/2,

where x in the second equation should be replaced from the first equation.

Spidercam

Ax explained before, the advantage of Theorem 1 is its applicability to the systems with
underactuation degree of two or even more. Therefore, stabilization of spidercam via
potential energy shaping is possible. By this means, the desired potential energy is derived
using Theorem 1 as follows

Vd =mgy + φ(l1(X), l2(X), l3(X), l4(X)) (4.25)

where lis are proposed in (3.27). Note that to the best of authors knowledge, this is the
first IDA-PBC designed for a system with underactuation degree two.



4.3. SOLUTION TO KINETIC ENERGY PDE 40

4.3 Solution to Kinetic Energy PDE

In this section a constructive method to solve the kinetic energy PDE of the UaSs with
underactuation degree one is introduced. For this purpose, let us present a necessary
condition on the design of Md as stated in the following proposition. Note that as ex-

plained before, q∗ is a stable equilibrium point if ∂Vd
∂q ∣

q=q∗
= 0 and also the Hessian matrix

∂2Vd
∂q2

∣
q=q∗

should be positive definite. Notice that the results of this section are published

in [128].

Proposition 1. Consider PDE (2.17) and assume that s = n − m = 1. The following

inequality is a necessary condition for ∂2Vd
∂q2

∣
q=q∗

to be positive definite

(G⊥MdM
−1∂(G

⊥∇V )

∂q
)
q=q∗

> 0. (4.26)

Proof. Differentiating the PDE (2.7) with respect to q yields

∂(G⊥∇V )

∂q
= (G⊥MdM

−1∂
2Vd
∂q2

)
T
+
∂(G⊥MdM

−1)

∂q
∇Vd. (4.27)

Note that ∇Vd∣q=q∗ = 0. Thus, (4.27) at q = q∗ is

∂(G⊥∇V )

∂q
∣
q=q∗

= (G⊥MdM
−1∂

2Vd
∂q2

)
T
∣
q=q∗

= (
∂2Vd
∂q2

(G⊥MdM
−1

)
T
)∣
q=q∗

By multiplying the above equation from left side to (G⊥MdM
−1)∣

q=q∗ , the proof is com-

pleted by noticing that an arbitrary matrix A is positive definite if ξTAξ > 0 for any
ξ ≠ 0.

In the sequel, with a minor loss of generality, assume that

G = P [Im,0m×n−m]
T , (4.28)

with P a permutation matrix that leads to G� = eTk , k ∈ {1, ..., n} (ei is ith Euclidean basis
vector). Now we will Simplify the kinetic energy PDE (2.16) term by term. The first term
is:

G�
∇q(p

TM−1
(q)p) =G�

[pT
∂M−1

∂q1

p, ...,pT
∂M−1

∂qn
p]T = pT

∂M−1

∂qk
p.

The following matrices are used in the sequel of this section

M−1
(q) =

1

detM
M(q) Ô⇒

∂M−1

∂qk
=

1

(detM)2
M(q) (4.29)

where M ∈ Rn×n is adjugate matrix of M and M ∈ Rn×n is a matrix determining the

numerator elements of ∂M−1
∂qk

. Notice that although the most previously works on this

topic have presumed that M(q) is a function of only some specified elements of q, here
M(q) is an arbitrary matrix. Note that in [88] it has been shown that for the UaSs with
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s = 1, (2.16) is reduced to a single PDE utilizing free matrix J2. By this means and with
regard to second term of (2.16), the following structure for Md

−1(q) is considered

Md
−1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 0 . . . b1 0 . . . 0
0 a2 . . . b2 0 . . . 0
⋮ ⋮ ⋮ 0
b1 b2 . . . a(q) bk . . . bn−1

0 0 . . . bk ak . . . 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 . . . bn−1 0 . . . an−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.30)

in which except diagonal elements, and the kth row and column, the other elements are all
zero. Note that a(q) is the only configuration-dependent element. ais and bis are designed
to be constant since our aim is to solve the kinetic energy PDE as simple as possible. By
calculation adjugate of Md

−1, it is inferred that kth row of adjugate matrix of Md
−1 is

constant. This is one of the advantage of the proposed structure of (4.30). To streamline
second term of (2.16), G�MdM

−1 is rewritten in the following form

G�MdM
−1

=
1

detM detMd
−1
γ (4.31)

where γ ∈ Rn is a row vector independent of a(q). This point is another advantage of the
structure (4.30). The determinant of Md

−1 is

detMd
−1

= φ1a(q) + φ2,

with φ1, φ2 being constant parameters that are function of ais and bis. By this means, the
second term of (2.16) is given by

G�MdM
−1
∇q(p

TMd
−1

(q)p) =

pT
n

∑
i=1

(γi
∂Md

−1

∂qi
) p

detM detMd
−1

(4.32)

where the only non-zero element of ∂Md
−1

∂qi
is (k, k)th element. Note that if similar to some

of the previous papers such as [74, 129], the matrix Md is only a function of qk, then
(4.32) is simplified to the following form

γkp
T ∂Md

−1
∂qk

p

detM detMd
−1
.

Invoking [74], we know that J2 is linear with respect to p. Hence, With the purpose of
simplifying the last term of (2.16), J2 is represented as follows

J2(q,p) =
1

detM

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 pT 1α(q) . . . pTn−1α(q)

pTnα(q) 0 . . . pT 2n−2α(q)
⋮ ⋮ ⋱ ⋮

pT
n2−2n+2α(q) pT

n2−2n+3α(q) . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.33)

with
i
α ∈ Rn, i ∈ {1, ..., n(n−1)}. This is not necessarily the structure of a skew-symmetric

matrix. However, in the sequel we will consider only the kth row of this matrix. Hence,
the kth column can be determined such that J2 = −J2

T . Note that other elements of
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this matrix can be determined arbitrarily. It is possible to express (4.33) in the following
compact form

J2 =
1

detM

n0

∑
i=1
pT iαW i, n0 = n(n − 1),

where W is are defined as follows

W 1 =W
1,2,W 2 =W

1,3, . . . ,W n−1 =W
1,n,W n =W

2,1, . . . ,W n0 =W
n,n−1,

where W i,j is matrix of zeros except (i, j) element which is equal to 1. Notice that this
structure is general version of (4.15). Furthermore, G⊥J2 can be expressed as follows

G⊥(q)J2(p,q) =
1

detM
pTJ (q)A, J = [1α . . . n0

α] ∈ Rn×n0 ,

A = [(G⊥W 1)
T . . . (G⊥W n0)

T ]
T
∈ Rn0×n.

Thus, JA is in the following form

JA = [(k−1)n−k+2α, . . . , (k−1)nα,0n, (k−1)n+1α, . . . , kn−kα] ≜B(q) ∈ Rn×n. (4.34)

It is clear that only one of the rows of J2 appears in this equation.
Finally, third term in PDE (2.6) is

G�J2(q,p)Md
−1

(q)p =
1

detM
pTBMd

−1p, (4.35)

with B(q) defined in (4.34). All terms in (2.16) are quadratic with respect to p and
shall be symmetric. Substituting (4.29), (4.32) and (4.35) in (2.16) leads to the following
equation

M

detM
−

n

∑
i=1
γi
∂Md

−1

∂qi

detMd
−1

+ (BMd
−1
+Md

−1BT
) = 0. (4.36)

By considering the diagonal and up-diagonal elements, there are
n(n+1)

2 equations and
n(n−1) design parameters. For n ≥ 3, the number of design parameters are more than the
number of unknowns. Hence, it may seem that it is possible to satisfy it without solving
a PDE. However, based on Lemma2 of [74], the rank of (BMd

−1 +Md
−1BT ) is always

n − 1. Note that as explained before, we should solve s = 1 PDE [88]. Hence, (4.36) is

replaced by
n(n+1)

2 −1 algebraic equations and a PDE with respect to a(q). Note that due

to the proposed structure of Md
−1, (k, k)th element of (4.36) lead to a PDE. By setting

the other elements equal to other elements-wise, some algebraic equations in the following
form shall be solved

1

detM
[M11,M12, . . . ,M1n,M22, . . . ,Mk(k+1), . . . ,Mnn]

T

= −Ψ[(k−1)n−k+2α1, (k−1)n−k+2α2 . . . , (k−1)n−k+2αn, (k−1)n−k+3α1, . . . ,

(k−1)n−k+3αn, . . . , kn−kα1, . . . kn−kαn]
T , (4.37)
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with

Ψ = [ψ1 . . . ψn(n−1)] ∈ R
n(n+1)−2

2
×n(n−1)

ψ1 = [2a1,0
T
k−2, b1,0

T
n(n+1)

2
−k−1

]
T , ψ2 = [0, a1,0

T
n+k−4, b1,0

T
n(n+1)

2
−n−k

]
T , . . .

ψn+1 = [0, a2,0
T
k−3, b1,0

T
n(n+1)

2
−k−1

]
T , . . . ψn(n−1) = [0Tk(2n−k−1)

2
−1
, bn−1,0

T
n(n+1)−k(2n−k−1)

2
−1

]
T ,

in which,
i
αj denotes jth element of iα, and 0n is a column vector of zeros with n elements.

The matrix Ψ is generally full rank; thus, equation (4.37) has at least one solution. The
remaining PDE is in the following form

n

∑
i=1
γi
∂a(q)

∂qi

detMd
−1

−
Mkk

detM
− 2

n−1

∑
i=1

bi (k−1)n−k+1+iαk = 0. (4.38)

Notice that ais and bis should be designed such that Proposition 1 is satisfied, the inertia
matrix (or equivalently its inverse) should be positive definite, and the matrix Ψ has right
pseudo-inverse. The PDE (4.38) has the following cases.

case1: If similar to [129], the inertia matrix M merely depends on unactuated coordinate

qk, then the first term of (4.38) is equal to
γk

∂Md
−1

∂qk

detMd
−1 . Hence, (4.38) is replaced by the

following ODE

γk
da(qk)
dqk

φ1a(qk) + φ2
=
Mkk

detM
+ 2

k−1

∑
i=1

bi (k−1)n−k+1+iαk ≜ f(qk) (4.39)

whose solution is

a(qk) =
λeφ1F (qk) − φ2

φ1

(4.40)

in which, λ is an arbitrary constant and F = ∫
f
γk
dqk. Notice that the proposed

method is more applicable than the one in [129] where a set of ODEs are derived
that are analytically solvable only if n = 2. The systems satisfy this case are not
restricted, but include ball and beam system [14], cart-pole [74], pendubot [84] and
some types of cranes [130,131].

case2: If Mkk is zero, the second term of (4.38) is also zero. By this means, it is trivial to
design a(q) with respect to parameters in the last term. A particular state of this
case is reported in [74], where a(q) is designed analytically under this assumption
that it is a function of only one of the configurations. Here, since our goal is deriving
the simplest solution, a constant Md with respect to Proposition 1 is considered.
By this means, we get rid of solving (4.38). Note that if M is constant; this case
is satisfied without paying attention to the structure of G(q). Hence, UCDRs are
one of the subjects of this case. The proposed controller for acrobot in [83] , VTOL
aircraft in [74] and inertia wheel pendulum in [14,94] are other application examples
within this case..

case3: In this case, a PDE shall be solved. It is possible to use the methods in the literature
to solve it. Furthermore, the proposed method in section 4.1 based on Pfaffian
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Figure 4.1: The procedure of solving the kinetic energy PDE based on the proposed method.

differential equations is another powerful tool. By this means, the PDE (4.38) is
equivalent to

detMd
−1dq1

γ1
= ⋅ ⋅ ⋅ =

detMd
−1dqn

γn
=

da

Mkk

detM + 2
n−1

∑
i=1

bi (k−1)n−k+1+iαk

For ease of readers, the design steps of Md are summarized in Fig. 4.1. As seen in this
diagram, firstm invers of M and its partial derivative should be computed. Then, the
matrix Md

−1 and the vector γ are formulated as (4.30) and (4.31), respectively. The
matrix B(q) is computed from (4.34). After this, equation (4.36) is fomulated and iαj
is derived from (4.37). At last, the PDE (4.38) should be solved based on the proposed
cases. Some examples of this procedure are presented in Appendix B.

During this section, some of the advantages of the structure (4.30) were reported. In
the following remark, the motivation why this structure was considered, is presented.

Remark 3. The matching equation (2.16) related to kinetic energy shaping is a nonlinear
PDE. Moreover, its solution should be positive definite. According to this condition, a
novel structure for Md

−1 was proposed that not only reduces the complexity of kinetic
energy PDE but also eases up verification of the positive definiteness of this matrix.
Additionally, this structure results in the vector γ defined in (4.31) to be independent of
a(q) that reduces the nonlinearity of the PDE, and verification of Proposition 1 is quite
simple.
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4.4 Comparison of IDA-PBC to Simultaneous IDA-PBC

In this section, IDA-PBC and SIDA-PBC are compared. For this purpose, first, SIDA-
PBC is reviewed. Then we focus on the results of [89], where it has been asserted that
SIDA-PBC simplify the kinetic energy PDE, and show that practically SIDA-PBC is
equivalent to IDA-PBC.

4.4.1 Simultaneous IDA-PBC

In IDA-PBC, we use gyroscopic (workless) forces to simplify the kinetic energy PDE.
However, it seems that what is presented in the literature looses the generality of the
problem. Considering dissipative forces instead of gyroscopic forces is more general. A
typical example has been shown in [132] that the system

[
ẋ1

ẋ2
] = [

x1

−x2
] + [

0
1
]u (4.41)

y = x2
1x2

is conservative by considering H = 1/2x2
1x

2
2. However, there is not a smooth skew-

symmetric matrix J(X) such that

[
ẋ1

ẋ2
] = J(X) [

x1x
2
2

x2
1x2

] + [
0
1
]

However, note that considering F = [x1,−x2]
T as a dissipative force that

(∇H)
TF = [x1x

2
2, x

2
1x2][x1,−x2]

T
= 0.

It should be noted that it is possible to represent a conservative system using dissipative
force, but it may not be possible with gyroscopic forces.

According to this fact, in [87,89], the target dynamic (2.14) is replaced by

[
q̇
ṗ
] = [

0 M−1(q)Md(q)

−Md(q)M
−1(q) 0

] [
∇qHd

∇pHd
] + [

0
C(q,p)

] (4.42)

in which the vector C(q,p) denotes dissipative forces and will be determined later. Based
on stability criteria, this vector should satisfy

P TMd
−1C ≤ 0 (4.43)

Note that a particular choice of this vector is C = (J2 −GKvG
T )Md

−1p which coincides
with IDA-PBC. This shows that SIDA-PBC is a general version of IDA-PBC.

By setting (4.42) equal to open-loop dynamic (2.9), the kinetic energy PDE (2.16) is
replaced by

G�
(q){∇q(p

TM−1
(q)p) −MdM

−1
∇q(p

TMd
−1

(q)p) + 2C} = 0, (4.44)

while the potential energy PDE (2.17) does not change. By considering the structure of
(4.44), it is inferred that the structure of C is in the following form

C(q,p) = Λ(q,p)Md
−1p (4.45)
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in which the matrix Λ is a free matrix such that its elements should be linear with respect to
p since the other terms in (4.44) are quadratic with respect to p (note that this constraint
is not necessarily applied to the part of C which is in range space of G). By this means,
the closed-loop dynamic (4.42) is in the following form

[
q̇
ṗ
] = [

0 M−1(q)Md(q)

−Md(q)M
−1(q) Λ

] [
∇qHd

∇pHd
] , (4.46)

and (4.43) yields to

pTMd
−1ΛMd

−1pT ≤ 0.

A sufficient condition to ensure this inequality is

Λ +ΛT
≤ 0. (4.47)

By this means, the control law is derived easily as follows

u = (GTG)
−1GT (∇qH −MdM

−1
∇qHd +ΛMd

−1p)

Note that in comparison with IDA-PBC that energy shaping and damping injection are
performed separately; here it is accomplished simultaneously. In [89], some examples of
solving the kinetic energy PDE using this method have been proposed.

4.4.2 Comment on SIDA-PBC

In the previous section, SIDA-PBC was introduced. At first sight, it seems that the
kinetic energy PDE is much easier in SIDA-PBC method. In the following, we show that
SIDA-PBC is practically equivalent to IDA-PBC.

The first point is the possibility of negative definiteness of Λ. Since the elements of
this matrix are linear with respect to p, it is impossible to derive a definite matrix. Hence,
the damping term should be added to the system through inputs. By which, the matrix
Λ should be in the following form

Λ = Λn −GKvG
T , (4.48)

in which the first term is lossless part of Λ appears in the PDE (4.42) and the second
term is damping injection, which clearly does not affect on (4.42). Note that if similar
to (2.18) the natural damping terms are modeled, the first term in (2.20) is added to
(4.48). By comparing SIDA-PBC with IDA-PBC, it is inferred that the damping term is
equal in both methods. The difference is limited to the skew-symmetric matrix J2 and
lossless matrix Λn. Note that both matrices are multiplied to Md

−1p from the right side.
Although it is clear that the number of free parameters in Λn is more than J2, it seems
that the reported applications of SIDA-PBC are representable with IDA-PBC. In other
words, it is possible to replace Λn with the skew-symmetric matrix J2. In the following,
it is shown that the examples of SIDA-PBC are equivalent to IDA-PBC.

Cart-pole

In [79] a controller for a class of underactuated mechanical systems based on energy shaping
without solving the matching equations that is different from IDA-PBC has been reported.
In [89] it is asserted that this controller is in the form of SIDA-PBC with Λ in the following
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form

Λ =
1

2
Md [

0 −
2kakukk
ml3

sin(q2)p2
kakukk
ml3

sin(q2)p2
kakukk
ml3

sin(q2)p1
]Md

− [
1

ml cos(q2)
]kv [1 ml cos(q2)] . (4.49)

Other matrices have been proposed in [79, 89]. Note that to design this controller, first a
partial feedback linearization has been used which results in a system in the form (2.9)
with the following new input mapping matrix

G = [
1

ml cos(q2)
] .

by this means, the second term of (4.49) is in the form GKvG
T . Hence, (4.49) is in the

form of (4.48). As explained before, the matrix Λ is multiplied to Md
−1p from right side.

Thus, we should find J2 such that

1

2
Md [

0 −
2kakukk
ml3

sin(q2)p2
kakukk
ml3

sin(q2)p2
kakukk
ml3

sin(q2)p1
] [
p1

p2
] = J2Md

−1p

Considering this equation, it is inferred that a suitable choice is J2 =MdJ2newMd with
J2new

T = −J2new . One can easily verify that

J2new = [
0 −2a sin(q2)p2

2a sin(q2)p2 0
] (4.50)

Hence, the proposed controller is exactly an IDA-PBC.

Ball and beam

The second example is ball and beam system (see Section 7.1.4 for more details). In [133]
a controller based on direct Lyapunov method has been design. In [89] it has been asserted
that that controller is a SIDA-PBC. The matrix Λ is in the following

Λ = −
1

2
Md

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −
q1p1√
ε+q21

+

√
2ε+q21q1p2
ε+q21

q1p1√
ε+q21

−

√
2ε+q21q1p2
ε+q21

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Md −
δ

ε
[

√
2ε + q2

1

√
ε + q2

1√
ε + q2

1

√
2ε + q2

1

]

− [
kv 0
0 0

] .

The first term is apparently skew-symmetric. Furthermore, the last term is in the form
GKvG

T with G = [1,0]T . The second term is arisen from modeling the natural damp-
ing term of the system (i.e., −δp1) as discussed in (2.20). Therefore, this case is also
representable with IDA-PBC methodology.

At the end of this section, it is necessary to disclose two points. The first one is that
the motivator example (4.41) is representable with a skew-symmetric matrix as follows

[
ẋ1

ẋ2
] = [

0 1
x1x2

− 1
x1x2

0
] [
x1x

2
2

x2
1x2

] + [
0
1
]
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Although this matrix is not smooth, it is merely a representation on the paper that may
give us some insights into the system. By this means, one may argue that SIDA-PBC
prevents this non-smooth structure. The other point is that although we showed the
current literature of SIDA-PBC does not differ from IDA-PBC, it may find some cases
that it is not representable with IDA-PBC.

4.5 Conclusion

In this section, we concentrated on the matching equations arisen in IDA-PBC method.
One method was based on Pfaffian differential equations in which a nonlinear PDE was
replaced by some Pfaffian equations. This powerful method has successfully been applied
to several systems, such as planar and spatial underactuated cable-driven robots. Potential
energy shaping of underactuated parallel robots with application to stabilization of UCDRs
was another subject of this chapter. Furthermore, a systematic approach to solve the
kinetic energy PDE of UaSs with underactuation degree one. In the end, a comparison
between SIDA-PBC and IDA-PBC was performed and it was shown that the current state
of SIDA-PBC is not different from IDA-PBC for mechanical systems.



Chapter 5

IDA-PBC with Bounded Input

In this chapter, we concentrate on designing IDA-PBC with bounded inputs. For this
purpose, two different methodologies is introduced. The first one is based on analyzing
the control law of IDA-PBC term by term. By this means, the upper bound of velocity is
calculated, and then the upper bound of all terms is derived. Another method is based on a
suitable definition of the free part of the interconnection matrix. An optimization problem
with respect to this matrix is formulated and solved analytically for the mechanical systems
with at least two actuators.

5.1 Bounded Input IDA-PBC for Mechanical Systems

In this section, the upper bound of IDA-PBC’s control law is derived. First, we focus
on the terms related to potential energy shaping. A suitable form for the homogeneous
solution of potential energy PDE is considered such that limits its derivative. However, the
difficulty of computing the upper bound of control law is velocity-dependent terms. Since
the upper bound of velocity is generally unknown, computation of the upper bound of
velocity-dependent terms is challenging. Here, the upper bound of velocity is analytically
computed, and then using this value, the upper bound of velocity-dependent terms are
derived. Notice that the results of this section are published in [134].

First, assume that the elements of input mapping matrix G are only 0 or 1. As indi-
cated in Corollary 1, the solution of potential energy PDE (2.16) is divided to homogeneous
(Vdh) and non-homogeneous (Vdn) parts. The homogeneous solution is computed from the
following PDE

G�MdM
−1
∇qVdh = 0,

as follows

Vdh = φ(Vdh1 , Vdh2 , . . . ),

in which φ is an arbitrary function and Vdhis are the homogeneous solutions. Note that φ
is chiefly defined in quadratic form to satisfy (2.11). This form leads to very large or even
unbounded control law. Hence, the function φ should be defined such that the inputs are
confined. Invoking [91], it seems that it is possible to confine the homogeneous solution
by designing Vdh as follows

Vdh =∑ki∫ S(Vdhi − V
∗
dhi

)dVdhi , (5.1)

where, V ∗
dhi

= Vdhi ∣q=q∗ and S(x) shall be designed based on the following items

49



5.1. BOUNDED INPUT IDA-PBC FOR MECHANICAL SYSTEMS 50

1. S(0) = 0,

2. S is an increasing function which is bounded with the upper bound ∣S ∣ ≤ 1,

3.
d2S(x)
dx2

≠ 0, ∀x ≠ 0.

For example, S(x) = tanh(x) is a suitable choice. Note that in contrast to fully actuated
robots, suitable definition of S(x) does not guarantee boundedness of homogeneous so-
lution of all the UaSs. This problem is related to the physical property of the systems
and is confirmed by Brockett’s theorem [135]. For example, consider the cart-pole system.
it is clear that if the position of the pendulum is close to the horizon, an immense force
is required to prevent it from falling. In this cases, irrespective of S(x), the functions
Vdh and Vdn may be non-smooth, resulting in unbounded control law. Hence, we consider
the following assumption to foster the rest of this section. Note that we will relax this
assumption by Remark 6.

Assumptiom 2. Consider a mechanical system with natural damping represented by
the model (2.18). Presume that the input mapping matrix is constant as (4.28). The
coefficients kis in (5.1) are chosen sufficiently small. Similar to bounded input controllers
that have been designed for fully actuated serial robots, the actuators should be capable
to compensate the terms related to potential energy shaping. In IDA-PBC, these terms
are

uv = ∇qV −MdM
−1
∇qVd. (5.2)

Hence, it is necessary that the following inequality is satisfied

∣(∇qV −MdM
−1
∇qVd)i∣ < uMi , (5.3)

with uMi being the upper bound of actuators. This means that the actuators can com-
pensate the effects of gravitational force in the workspace. Note that in (5.3), (⋅)i denotes
the ith element of (⋅) while i is related to only actuated joints. Based on (5.3), it is also
assumed that there exist the constants cVis and cVd such that

∣(∇qV )i∣ ≤ cVi , ∥∇qVd∥ ≤ cVd . (5.4)

◻

Note that this assumption is not restrictive since ∇qV is bounded for all the systems
in workspace and also it is always possible to find cVd , see Remark 6 for more details.

Now consider the terms related to kinetic energy shaping which are as follows

∇qK −MdM
−1
∇qKd. (5.5)

Note that it is possible to add the term J2Md
−1p to (5.5) since it is used to simplify the

kinetic energy PDE. Since K = 1/2pTM−1p and Kd = 1/2pTMd
−1p, it is obvious that the

terms in (5.5) are quadratic with respect of p. Thus, confining the velocity may lead to
limitation of the terms related to kinetic energy shaping. The results are proposed in the
following theorem. Before that, the following required assumption is stated.

Assumptiom 3. There exist constants cMis, cMd
, cJ and cΛis such that

(∇qK)i ≤ cMi∥p∥
2, ∥∇qKd∥ ≤ cMd

∥p∥2, ∥J2(q,p)∥ ≤ cJ∥p̃∥, ∥Λi∥ ≤ cΛi (5.6)
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where p̃ =Md
−1p and Λ ∶=MdM

−1. ◻

Notice that this assumption is satisfied mathematically for CDRs and the robots with
revolute joint, and practically for all the systems in the workspace.

The upper bound of the control law is derived in the following theorem. Note that the
particular structure G = P [Im,0s×m]T will be relaxed in Remark 5.

Theorem 2. Consider a mechanical system represented with the model (2.18) and control
law (2.15). Assume that condition (2.21), Assumption 2 and Assumption 3 are satisfied.
The the following items are inferred:

a) The upper bounds of ∥p∥ and ∥p̃∥ are

∥p∥ ≤

¿
Á
ÁÀ Hd(t0)

λmin{Md
−1}

≜ cp1, ∥p̃∥ ≤

¿
Á
ÁÀ Hd(t0)

λmin{Md}
≜ cp̃1. (5.7)

b) The ultimate bounds of ∥p∥ and ∥p̃∥ are derived as follows

∥p∥ ≤ (
λmax{Md

−1}

λmin{Md
−1}

)
1/2 cVdλmax{Md

−1}

λ2
min{Md

−1}λmin{R2} − µ
≜ cp2. (5.8a)

∥p̃∥ ≤ (
λmax{Md}

λmin{Md}
)

1/2 cVd
λmin{R2} − µ

≜ cp̃2, (5.8b)

where λmin{⋅} and λmax{⋅} denote the maximum and the minimum eigenvalue of
{⋅}, respectively, and µ is an small positive scalar.

c) The upper bound of ∣ui∣ is

cVi + cΛicVd + (cMi + cΛicMd
)c2
p + cJc

2
p̃ + λmax{Kv}cp̃, (5.9)

in which cp and cp̃ are the upper bounds of ∥p∥ and ∥p̃∥, respectively. In general,
cp = cp1 and cp̃ = cp̃1,unless ∥p(t0)∥ ≤ cp2 and ∥p̃(t0)∥ ≤ cp̃2, then

cp = min{cp1, cp2}, cp̃ = min{cp̃1, cp̃2}.

Proof. a) Consider Hd as a Lyapunov candidate. The trajectory of the system with initial
value Hd(t0) descends to lower level sets because Ḣd is negative semi-definite. Thus, the
following inequality is inferred

1

2
λmin{Md}∥p̃∥

2 &
1

2
λmin{Md

−1
}∥p∥2

≤Kd ≤Hd ≤Hd(t0).

Hence, the upper bounds of ∥p̃∥ and ∥p∥ are derived easily as indicated in (5.7).
b) Consider the desired kinetic energy Kd as a Lyapunov candidate. Since Hd =Kd+Vd,

we have the following equation

Kd =Hd − Vd. (5.10)

Using this equation, time derivative of Kd is

K̇d = −p
TMd

−1R2Md
−1p − (∇qVd)

TMd
−1p

≤ −∥p∥2λ2
min{Md

−1
}λmin{R2} + ∥∇qVd∥λmax{Md

−1
}∥p∥. (5.11)
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Due to the satisfaction of (2.21) that means R2 is negative definite, this inequality ensures
that ∥p∥ is bounded since the first term which is negative is proportional to ∥p∥2 while
the other term is proportional to ∥p∥. Note that the Lyapunov function (5.10) has the
following upper and lower bounds

1

2
λmin{Md

−1
}∥p∥2

≤Kd ≤
1

2
λmax{Md

−1
}∥p∥2.

On the other hands, the right hand side of (5.11) is less than −µ∥p∥2 if:

∥p∥ ≥
cVdλmax{Md

−1}

λ2
min{Md

−1}λmin{R2} − µ
,

where µ ∈ R > 0 is an arbitrary value such that the denominator be positive, while the
upper bound of ∇qVd is replaced by cVd based on Assumption 3. Invoking Theorem 4.18
of [136], the ultimate bound of ∥p∥ is derived as (5.8a). Similarly, the ultimate bound of
p̃ is derived as (5.8b). Notice that one may compute the upper bound of p̃ using (5.8a).
However, it is more conservative than (5.8b). Note that by considering (5.8a) and (5.8b),
it is obvious that these ultimate bounds are reduced by increasing λmin{R2}. It should
be noted that these ultimate bounds are also the upper bounds, if the initial condition of
p and p̃ are less than cp2 and cp̃2, respectively.

c) Considering Assumption 3, the upper bound of ith element of the kinetic energy
shaping terms proposed in (5.5) is

(cMi + cΛi , cMd
)c2
p (5.12)

with the parameters defined in the Assumption 3. Notice that as explained in previous
chapter, the elements of J2 are linear with respect to velocity. Thus, similar to (4.14), it
is given as

J2(q,p) =
n0

∑
i=1
p̃T iα(q)W i

in which n0 =
n(n−1)

2 , and Wis were introduced in (4.15). Since αis are determined based
on PDE (2.16), it is inferred that

∥J2(q,p)∥ ≤ cJ∥p̃∥. (5.13)

Therefore, J2p̃ has also an upper bound proportional to ∥p̃∥2. The remaining term in
control law is the damping term which has the following upper bound

∥KvG
T p̃∥ ≤ λmax{Kv}cp̃. (5.14)

Finally, the upper bound of ith element of control law (2.15) is derived through summation
of the above terms given in (5.4), (5.6), (5.12), (5.13) and (5.14) as (5.9).

Remark 4. The natural damping of a system represented by R does not depend on
whether a configuration is actuated or unactuated. Therefore, it is possible to R be a
positive definite matrix. If all the friction-like terms of a system are modeled, condition
(2.21) is certainly satisfied. However, if they are not modeled, or if (2.21) is not satisfied,
part b of the Theorem 2 is not applicable. Hence, for a system without natural damping
terms, the upper bound of the velocity is derived from part a of Theorem 2. Furthermore,
if the natural damping is included in the model and R2 is positive definite, the upper
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bound of the velocity will be the minimum of the two upper bounds obtained in parts a
and b of the Theorem 2. ◻

In some UaSs like parallel robots [137] and VTOL aircraft [74], the input mapping
matrix G(q) is configuration-dependent. Additionally, in some cases, the bound of the
control law is not necessarily symmetric (i.e., um ≠ −uM with um and uM being the lower
and upper bounds of actuators, respectively), e.g., in cable-driven robots, the control law
shall be positive since cables can only push [138]. In the following remark, these issues are
investigated.

Remark 5. Consider G(q) as a full rank matrix that maps the actuator torques/forces
to configuration space torques/forces of the system. Based on a physical and energy-based
point of view, it is bounded in the entire workspace. Thus, presume that,

∥(GTG)
−1GT

∥ ≤ GM , ∥G∥ ≤ Gm.

In this case, the upper bound of the control law is derived based on the results of Theorem 2
as follows

GM(cV + cΛicVd + (cM + cΛicMd
)c2
p + cJc

2
p̃) +Gmλmax{Kv}cp̃, (5.15)

with ∥∇qV ∥ ≤ cV , which is more conservative than that of (5.9). For the cases in which the
bounds of the controller are non-symmetric, the lower bound of the actuators should be
calculated separately. In this case, presume that σ denotes the minimum of all elements
of the following expression in the workspace of the robot

(GTG)
−1GT

(∇qV −MdM
−1
∇qVd).

Hence, using (5.15) the lower bound of the control law (2.15) is derived as

σ −GM((cMi + cΛicMd
)c2
p + cJc

2
p̃) −Gmλmax{Kv}cp̃. (5.16)

By this means, if this value is positive, tensile forces in CDRs are ensured. Note that
the aforementioned upper and lower bounds are general, but they are very conservative.
Hence, for a specific system, one may derive less conservative bounds. ◻

One of the main features of the IDA-PBC is that the stability of desired equilibrium is
ensured without a switching in the control law. However, it may require high control effort
in some cases. This fact is in confirmation of Brockett’s theorem [135]. The reason is when
the generalized positions of the system are close to a singular region, the control effort will
get enormous values. As an example, for the cart-pole system [74], when the pendulum
is close to the horizontal configuration, the control effort should get very enormous values
to prevent the pendulum from falling. The following remarks are given on this issue.

Remark 6. In the Assumption 2, ∇qVd is presumed to be bounded. However, in some
UaSs, ∇qVd is non-smooth. By considering Hd as a Lyapunov candidate, the system
trajectory starts on the level set Hd(t0) and goes to lower level sets. The maximum value
of qi − q

∗
i , is found by setting p = 0 and qj = q

∗
j for j = 1, ..., i− 1, i+ 1, ..., n in Hd and set it

equal to Hd(t0) = Vd(t0) since

Vd(t0) ≤Hd ≤Hd(t0).
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By this means, the upper bound of each element of ∇qVd is derived. Therefore, Assump-
tion 2 is always satisfied. This will be used in the VTOL aircraft example explained in
Chapter 7. ◻

Remark 7. The maximum torque/force of actuators is practically limited, and it may
be lower than the computed upper bound proposed in (5.9), which maybe leads to ac-
tuator saturation. Poor performance or even instability are the results of this situation.
Furthermore, this may lead to a divergence of the configuration variables from the region
of attraction of the controller. As explained in Remark 6, large control efforts might be
due to the initial configuration of the system in the vicinity of the singular regions. In
order to rectify this problem; it is possible to design a two-phase controller, such that the
goal of the first phase is to bring the system into a configuration away from the singular
points, and then IDA-PBC, as the second phase, will be applied. The design of the first
controller is case-dependent and might be done by prior knowledge of the system and the
reported methods in literature such as [139, 140], but usually not a prohibitive task. We
assume that the first phase controller is designed suitably such that the closed-loop system
is stable and the configuration variables reach to a new configuration far from singular
points. The stability of the system is ensured under this assumption since the first phase
which is applied in a period of time, brings the system into a new configuration, and then
the IDA-PBC, which has a precise stability proof, is applied. Furthermore, since from
Theorem 2 and Remark 6, it is inferred that the upper bound of IDA-PBC depends on
the initial condition of the system, the first phase aims to bring the system into a new
configuration such that in this situation, the upper bound (5.9) is less than the upper
bound of actuators (note that the new configuration is the initial condition of IDA-PBC).
◻

5.1.1 Discussion

Here, we discuss how the derived upper bound can be used to design a suitable controller to
keep the control effort within the actuator’s limit. Furthermore, a comparison with similar
works in the literature is accomplished to validate the proposed method. Additionally, the
applicability of the method to fully actuated systems is also described.

In (5.9), except the upper bound of the gravity (i.e., cV ), the other parameters are
either derived from the matching equations or the free gains of the controller (i.e., Kv and
kis defined in (5.1)). Thus, derivation of a suitable solution of the PDEs and appropriate
selection of the gains lead to a suitable controller with respect to the practical limitation
of the actuators. Smaller values for kis result to lower control efforts and its bound,
with the expense of a slow rate of convergence. On the other hand, the effects of Kv

can be considered twofold. With a larger value of Kv, it is expected that the control
law is augmented. However, it may reduce the upper bound of the velocity. Hence, it
is possible to decrease the upper bound of control law by enlarging Kv. In order to
analyze the relation between Kv and control law, first, its effect on the fully actuated
systems is investigated. After this, UaSs are categorized into two classes, and each case
is analyzed in detail. Notice that the proposed upper bound may also be extended to the
fully actuated systems without either solving the PDEs or requirement to the condition
(2.21). Furthermore, note that in most cases cp1 < cp2 and it may be inferred that cp2 is
not useful. However, in total energy shaping of fully actuated systems, it is conceivable
to decrease cp2 arbitrarily by increasing Kv. It is due to the fact that in a fully actuated
system, enlarging Kv leads to increasing λmin{R2}, while this is not necessarily held in
UaSs. Therefore, with Kv = κIn and a large κ ∈ R > 0, the upper bound of the fully
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actuated systems is approximated by the following expression:

cVi + cΛicVd + cVd(
λmax{Md}

λmin{Md}
)

1/2
.

In UaSs, suitable selection of Kv is more complex. If cp̃ = cp̃2, the right hand side of (5.14)
is as follows

λmax{Kv}cp̃ = (
λmax{Md}

λmin{Md}
)

1/2 cVdλmax{Kv}

λmin{R2} − µ

By setting µ to be infinitesimal (µ ≈ 0), and replacing R2 from (2.20), the following
equation is derived

λmax{Kv}

λmin{R2}
=

λmax{Kv}

λmin{
1
2(RM

−1Md +MdM
−1R) +GKvG

T }
(5.17)

Hence, in order to decrease the upper bound of the damping term, ifRM−1Md+MdM
−1R

is positive definite, Kv ≈ 0 is a suitable choice. Otherwise, Kv should be sufficiently large
such that R2 > 0 is satisfied. From (5.8a), it is also inferred that the upper bound of
the velocity is reduced by having a larger value for λmin{R2}. In the cases in which
RM−1Md +MdM

−1R ≥ 0 and λmin{R2} depends on Kv, analytical design of Kv is not
facile, and it can be chosen case by case. However, under RM−1Md +MdM

−1R > 0, and
λmin{R2} is independent of KvG

T p̃, Kv = 0 is the best choice for minimizing (5.9).
In Theorem 2, the upper bound of the control law was computed. Since the control

law of IDA-PBC was not modified, the domain of attraction depends on the solutions of
potential and kinetic energy PDEs [74]. However, in the cases that the upper bound (5.9)
is larger than the upper bound of actuators, Remark 7 is a suitable way to get rid of
this problem. Otherwise, the domain of attraction of the controller is shrunk. This is the
expense of using a bounded input controller with prescribed bounds.

Another method to address this issue is the modification of IDA-PBC approach. It
should be accomplished such that the stability of the closed-loop system is not endangered.
This is the main concentration of the next section.

5.2 IDA-PBC with Prescribed Bounds

In this section, we concentrate on the problem of designing an IDA-PBC for a mechanical
system such that saturation of the actuators is prevented. Presume that Assumption 2
with Vd defined as (5.1) is satisfied. By virtue of Assumption 2, define um and uM as the
lower and upper bounds of actuators

um ≤ u ≤ uM . (5.18)

In order to satisfy this inequality, the matrix Jn is added to the target dynamic (2.14) as
follows

[
q̇
ṗ
] = [

0 M−1Md

−MdM
−1 J2 −GKvG

T + Jn
] [
∇qHd

∇pHd
] , (5.19)

where Jn ∈ Rn×n is a design parameter. Note that adding extra parameters to other
elements of the matrix in (5.19) is not straightforward since q̇ =Md

−1p should be held in
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closed-loop. By this means, the kinetic energy PDE (2.16) is replaced by

G�
{∇q(p

TM−1p) −MdM
−1
∇q(p

TMd
−1p) + 2(J2 + Jn)Md

−1p} = 0, (5.20)

the potential energy PDE (2.16) does not changed, and the control law is

u = G(∇qH −MdM
−1
∇qHd + (J2 −GKvG

T
+ Jn)∇pHd), (5.21)

in which G = (GTG)−1GT . Furthermore, the stability condition is in the following form

Ḣd = (∇pHd)
T
(−GKvG

T
+ Jn)∇pHd, (5.22)

which should be negative (semi) definite. Considering PDE (5.20), it is clear that the
obtained solution of (2.16) does not satisfy (5.20) in general. Therefore, it seems that the
proposed solutions for specific systems are not usable here. Additionally, the stability of
the closed-loop system is not ensured. With the purpose of remedy these problems, it is
reasonable to design Jn such that it is in range space of input mapping matrix and it is
skew-symmetric. This structure leads to vanishing Jn in PDE (5.20) and its ineffectiveness
on stability criteria (5.22). Hence, Jn is in the following form

Jn =GJuG
T , (5.23)

with Ju = −Ju
T ∈ Rm×m as a design parameter. Since a skew-symmetric matrix has at

least two rows, the following assumption is required.

Assumptiom 4. The mechanical system has at least two actuators, i.e., m ≥ 2. ◻

The control law (5.21) may be decomposed as follows

u = uI +uJ (5.24)

uI = G(∇qH −MdM
−1
∇qHd + (J2 −GKvG

T
)∇pHd)

uJ = GJn∇pHd,

in which uI represent the normal IDA-PBC control law and uJ is the added design pa-
rameter with respect to actuators’ bound. Replacing (5.23) in (5.24) results in uJ =

JuG
T∇pHd = Juyd with yd as follows

yd ∶=G
T
∇pHd. (5.25)

Incorporation of (5.18) and (5.24) yields

um ≤ uI +uJ ≤ uM . (5.26)

Adding −
um+uM

2 to all sides of (5.26), results in

∣uIi + uJi −
umi + uMi

2
∣ ≤

uMi − umi

2
, fori = 1, ...,m (5.27)

in which the index i denotes the ith element of a vector. With a minor loss of generality,
replace (5.27) by the following inequality

∥uJ − b∥∞ ≤ ρ ∶= min
i

{
uMi − umi

2
} , (5.28)
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with

b = −uI +
um +uM

2
. (5.29)

Note that (5.28) is derived by calculating the largest and the lowest values of the left and
right-hand side of (5.27), respectively. It is clear that if (5.28) is satisfied then (5.27) is
satisfied. See the following lemma for more details.

Lemma 1. A sufficient condition for equivalence of the inequality (5.27) to (5.28) is
satisfaction of one of the following conditions.

a) uM −um = κ[1,⋯,1]T with an arbitrary scalar κ,

b) um = κ[1,⋯,1]T and uM = κ′[1,⋯,1]T with arbitrary scalars κ and κ′,

c) um = −uM .

Proof. Notice that inequality (5.28) is the worst case of (5.27) in which the maximum
value of the left hand side, and the minimum value of the right hand side of (5.27) are
replaced. If all elements of the right hand side of (5.27) are equal, i.e.,

uMi − umi

2
=
uMj − umj

2
for every i, j ∈ {1, ...,m}. (5.30)

then it is required to prove that the inequality (5.28) holds. Now the condition (5.30) is
verified for the above cases.

a) It is the simplest case that apparently satisfies (5.30).
b) It is clear that if all components of um and uM are the same, then (5.30) is held.

Note that this case is very fit for parallel robots.
c) If um = −uM , it is possible to form the new control inputs as unewi = ui/uMi . In this

case, the upper and lower bounds of all components of unew are 1 and -1, respectively.
Hence, this coincide with case b) and thus, (5.30) is satisfied. This case is fit for serial
robots in practice.

In [125] the inequality (2.18) was replaced by a 2-norm and this conservative problem
was solved for the case of fully actuated CDRs. In the following, we focus on the problem
(2.18). Since the design parameters are in the matrix Ju, the inequality (5.28) should be
reformulated. Hence, uJ = Juyd is represented as follows

YJ ∶= Juyd, (5.31)

where Y(q,p) ∈ Rm×m(m−1)
2 is matrix representation of yd and J ∈ R

m(m−1)
2 contains the

components of Ju as

J = [Ju1,2 , . . . , Ju1,m , Ju2,3 , . . . , Jum−1,m]
T ,

with Ju represented in the following form

Ju =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Ju1,2 . . . Ju1,m
−Ju1,2 0 . . . Ju2,m
⋮ ⋮ ⋱ ⋮

−Ju1,m −Ju2,m . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The structure of the matrix Y is defined as follows. Denote the ith column of Y by
Y(∶, i) and (i, j)th element of Ju as Jui,j . Presume that Ji is (j, k)th element of matrix
Ju, i.e., Ji = Juj,k with k > j. Due to skew-symmetric feature of the matrix Ju, Ji is
multiplied to two elements of yd with different sign since Juj,k = −Juk,j . Therefore, in the
new representation YJ, every column of matrix Y has only two nonzero elements with
different sign. In Y(∶, i), the non-zero elements Yj,i and Yk,i are derived as follows

Yj,i = ydk , Yk,i = −ydj .

For example, for m = 2 and m = 3 the matrix Y is in the following form

m = 2 ∶ Y = [
yd2
−yd1

] , m = 3 ∶ Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

yd2 yd3 0
−yd1 0 yd3

0 −yd1 −yd2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.32)

The problem is now designing the vector J with respect to

∥YJ − b∥∞ ≤ ρ, (5.33)

with ρ as(5.28). As it will be described in the latter theorem, the rank of the matrix Y
has a critical role in solving (5.33). In the following lemma, the rank is computed.

Lemma 2. Under Assumption 4,

rank(Y) = m − 1.

Proof. Since Jn is skew-symmetric, (∇pHd)
TJn(∇pHd) = 0, from (5.23) and (5.31) it is

inferred that (GT∇pHd)
TJu(G

T∇pHd) = yd
TYJ = 0. Due to satisfaction of this term for

every J, the following equation is deduced

yd
T
Y = 0. (5.34)

Based on this equation, the structure of Y and also the dimension of Y which is m×
m(m−1)

2 ,
it is inferred that

rank(Y) = min(m,
m(m − 1)

2
) − 1.

Clearly, for m ≥ 3, it shows that rank(Y) = m − 1. The remaining case is m = 2 that from
(5.32) it is apparent its rank is one. Thus, generally it is argued that rank(Y) = m−1.

Due to rank deficiency of Y, we should find the best value of J . The main results of
this section are gathered in the next theorem where the following optimization problem is
solved

min
J

∥YJ − b∥∞ (5.35)

Theorem 3. Consider the optimization problem (5.35) and presume that the optimal
solution is denoted by J∗.
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1. Define

σ∗ ∶= min
a
−
$Tb

$Tv(a)
(5.36)

s.t. −
$Tb

$Tv(a)
> 0,

in which

v(a) = [(−1)a1 , . . . , (−1)am]
T
, (5.37)

with ai ∈ {0,1} for i ∈ {1, . . . ,m} and $ denotes left kernel of

A ∶= YY
T (5.38)

such that $TA = 0. Then, σ∗ is the minimum value of (5.35).

2. In order to derive the optimal J, consider ` such that the matrix Ae(`, `) is full rank
where Ae(i, j) is obtained by elimination of the ith row and jth column of A. Then,
J∗ as the optimal J is

J∗ = YTx∗, (5.39)

where

x∗ = [θ1, . . . , θ`−1,0, θ`, . . . , θm]
T

θ ∶= A−1
e (`, `)(be(`) + σ

∗v∗e(`)) (5.40)

in which v∗ = v(a∗) and be(i) means ith element of b is omitted.

Invoking Theorem 3, the control law is

u = uI +uJ = G(∇qH −MdM
−1
∇qHd + (J2 −GKvG

T
)∇pHd) +YJ

∗. (5.41)

Proof. 1. Since range{Y} = range{YYT }, for simplicity J = YTx is set with x ∈ Rm as the
new design parameter. By this means, the problem (5.35) is in the following form

min
x

∥Ax − b∥∞ (5.42)

with A introduced in (5.38). In order to prove this part, the problem is separated into
two cases.

a) Suppose that for any i ∈ {1, ...,m}, the matrix Ae(i) which is derived from elimi-
nation of ith row of A, is full rank. Then, it is shown by contradiction that the absolute
value of all components of Ax∗ − b, with x∗ as optimal solution, are equal. Define the
residual vector r = Ax − b and presume that the absolute value of one of the components
of r∗ = Ax∗ − b is smaller than the others, where with out loss of generality, the last
element is considered as the smallest value. Hence, The problem (5.42) is reformulated in
the following form

[
Ae(m)

A(m, ∶)
]x∗ − [

be(m)

bm
] = [

r∗e(m)

r∗m
] ,
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in which A(m, ∶) denotes the mth row of A. Since Ae(m) is full rank, it is possible to
reduce r∗e(m) and acquire a new optimal residual vector denoted by r∗∗ such that the
largest absolute value of r∗∗e (m) is equal to ∣r∗∗m ∣. Thus, a smaller value for (5.42) is
derived and this is a contradiction.

b) Suppose that A and b are decomposed as follows

A = [
A1

A2
] , b = [

b1

b2
] ,

in which rank of the matrix A1 ∈ Rr×m is r − 1 and A2 ∈ Rm−r×m is full rank. Then
absolute value of all components of A1x

∗ − b1 are equal. This claim is easily proven by
referring to the case a) because the matrix A2 is full rank and the minimization is limited
by ∥A1x − b1∥∞ that from the prior case, the absolute value of its components in x = x∗

are equal. Notice that in this case, it is feasible to set the last m − r components of the
residual vector r∗ equal to zero. However, to derive a general solution for x∗, it is set
equal to ∥A1x

∗ − b1∥∞. Thus, it is asserted that the absolute value of all components of
Ax∗ − b are equal.

According to above statement, the optimal residual vector is in the following form

r∗ = σ∗v∗,

in which the components of the vector v are in {−1,1} as determined in (5.37). From
Ax − b = σv, it is deduced that −$Tb = σ($Tv) in which $ belongs to the left kernel
of A. The optimal σ∗ is derived by selecting the optimal sequences of 1 and −1 in v, as
indicated in (5.36).

2. Based on previous part, using σ∗ and v∗, the optimal x is computed from Ax∗−b =
σ∗v∗. A method is removing the `th equation and also `th column of A such that Ae(`, `)
is full rank. By this means, the special solution x∗ is derived directly as (5.40) and then,
J∗ = YTx∗. Note that due to rank deficiency of A, x∗ is not unique.

Theorem 3 proposes the best solution of the optimal problem (5.35). However, it
does not necessarily satisfy the input constraint (5.33). Therefore, although the results of
Theorem 3 minimize the actuators’ efforts with respect to Ju, it is not possible to ensure
boundedness of inputs with prescribed bounds using merely a skew-symmetric matrix.

5.2.1 Satisfaction of Prescribed Input Bounds for a Particular Class of
Systems

In some cases, such as potential energy shaping of fully actuated serial robots [92] and
total energy shaping of inertia wheel pendulum (where the inertia and desired inertia
matrices are constant results in vanishing kinetic energy shaping terms) [94], by defining
Vd as (5.1) and selection of conservative gains, the desired equilibrium point is stabilized
while preventing the actuators from saturation. In this case, full power of the actuators
are not used. Here, a methodology is designed for a class of mechanical systems to ensure
stability with bounded input.

Assumptiom 5. Suppose that one of the following states holds.

1. The desired equilibrium point q∗ is natural such that merely potential energy is
shaped.
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2. The term ∇q(p
TM−1p) is zero. Thus, total energy shaping is accomplished with a

constant Md.

◻

Notice that a large number of systems such as VTOL aircraft [74], inertia wheel pen-
dulum [94], UCDRs [17, 123] and cranes [141] satisfy Assumption 5. For the case of fully
actuated systems, the control law is modified to

u = uA +uB +uJ

uA = G∇qV

uB = −k̄G(∇qVd +GKvG
T
∇pHd)

uJ = GJn∇pHd = YJ, (5.43)

in which k̄ > 0 is a design parameter determined later, and in this case G = G−1. For the
case of underactuated systems, the control law is modified as follows

u = uA +uB +uJ

uA = G(∇qV −MdM
−1
∇qVdn)

uB = −k̄G(MdM
−1
∇qVdh +GKvG

T
∇pHd)

uJ = GJn∇pHd = YJ, (5.44)

in which from first case of Assumption 5, Md =M is selected if q∗ is the natural equilib-
rium point. Under satisfaction of second condition in Assumption 5, Md will be a constant
matrix. Note that uA contains some of the terms of controller related to potential energy
shaping and uB includes all the terms that depends on the gains, i.e., Kv and kis in (5.1).

Theorem 4. Consider a mechanical system represented as (2.9) with control law (5.43) if
it is fully actuated, or (5.44) if it is underactuated. Suppose that Assumptions 2, 4, 5 and
Lemma 1 are satisfied. σ∗ denotes the solution of (5.35) derived from applying Theorem
1 with b = −uB with k̄ = 1. Define k̄ as

k̄ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if σ∗ ≤ ρ′

ρ′
σ∗ otherwise

(5.45)

with

ρ′ ∶= ρ − ∥uA −
um +uM

2
∥∞. (5.46)

Then, q∗ is stable while prescribed bounds of actuators are met.

The interpretation of this theorem is that at first, Theorem 3 is used. If the control
law is not within the prescribed bounds, then k is modified as (5.45) such that the input
constraints are held. Notice that under Assumption 5, it is feasible to guarantee stabiliza-
tion with bounded inputs via only modification of the gains in uB. However, using Ju, a
better response with less conservative inputs may be achieved.
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Proof. Invoking [142], the system is stable by considering the following Lyapunov function
candidate,

V =
1

2
pTMd

−1p + Vdn + ∫
q−q∗

0
k̄
∂Vdh(r)

∂r
dr,

whose time derivative is equal to (2.8). The left hand side of (5.27) in this case is in the
following form

∥uA +uB +uJ −
um +uM

2
∥∞ ≤ ∥uB +uJ∥∞ + ∥uA −

um +uM
2

∥∞

where triangle inequality was used. By virtue of Assumption 2 and Lemma 1, it is simply
deduced that ρ′ > 0. Now we should prove that ∥uB +uJ∥ ≤ ρ

′, or equivalently,

∥YJ − b∥ ≤ ρ′,

with b = −uB and k̄ = 1. After applying Theorem 1, if σ∗ ≤ ρ′ with σ∗ as the solution
of (5.35), this control law is within the actuators’ bound. Otherwise, consider equations
(5.36), (5.39) and (5.40). Clearly, J∗ is linear with respect to b, which itself is linearly
dependent on k̄. Thus, J∗ is linear with respect to k̄. Hence, J∗ and b are both linear
with respect to k̄ results in linearity of σ∗ to k̄. By this means, k̄ should be reduced such
that σ∗ = ∥YJ∗ − b∥∞ ≤ ρ′ is satisfied. From linearity of J∗ and b to k̄, the control law is
modified based on (5.45). Therefore, the control law is within the prescribed bounds of
actuators.

At the end of this chapter and based on the above theorem, it is possible to propose
a simple practical method to confine the control law. The results are presented in the
following proposition.

Proposition 2. Consider a mechanical system with dynamic formulation (2.9) under
Assumptions 2, 5 with the following control law

u = sat(G(∇qV −MdM
−1
∇qVd −GKvG

T
∇pHd)) (5.47)

in which the function sat(⋅) is the standard saturation function as follows

sat(ui) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

umaxi ui > umaxi
ui umini ≤ ui ≤ umaxi
umini ui < umini

(5.48)

in which umin and umax should be chosen such that

umi ≤ umini , uMi ≥ umaxi . (5.49)

Then q∗ is stable with bounded inputs.

Proof. The boundedness of the inputs in the prescribed bounds is immediately derived
from (5.47). Furthermore, the stability proof is similar to the proof of Theorem 4. In
other words, we claim that the control law (5.47) is equal to the controller of Theorem 4
with uJ = 0. Note that the terms in control law which are independent of the gains
are necessarily inside the bounds of actuators. Hence, if control law is out of the range
[umin,umax], it is possible to choose the gains such that u coincides with the edge of the
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[umin,umax]. This means that saturation of the control law is equivalence to a controller
with varying gains. This completes the proof since Theorem 4 ensures the stability of a
controller with varying gain.

5.3 Conclusion

In this section, we focused on the bounded input IDA-PBC for mechanical systems. The
problem was examined from two different perspectives. The first approach was based on
the calculation of the upper bound of each term in the control law. Based on the suitable
definition of Vdh and computation of the upper bound of velocity, the upper bound of
controller was derived. The effect of non-smooth terms in potential shaping was analyzed,
and a two-phase controller was designed to prevent enormous control law. The second
method was devised with the purpose of satisfying the prescribed bounds of actuators.
Using the free part of the interconnection matrix, the problem was reformulated in an
infinite norm optimization, and the analytic solution was computed. Modification of IDA-
PBC for a class of mechanical systems such that the control law is within the prescribed
bounds was another achievement of this section.



Chapter 6

Other Developments of IDA-PBC

This chapter presents a number of advanced methods of IDA-PBC. First, IDA-PBC with
position feedback for a class of underactuated manipulators is designed. Then, we concen-
trate on the problem of stabilization of UaSs in the presence of parameter uncertainties. It
will be shown that generally, this problem does not seem to obviate using an adaptive con-
troller without the requirement of correct estimation of parameters. However, for a class
of mechanical systems, it is possible to design an adaptive IDA-PBC such that stability
of desired equilibrium point is ensured while the parameters are not necessarily estimated
correctly. Another achievement of this chapter is a simplification of potential energy PDE
for stabilization of natural equilibrium points such that the non-homogeneous solution is
not required. Finally, gravity compensation of actuated joints in the entire workspace is
replaced by desired gravity compensation. By this means, only the gravity term in the
desired pose is needed.

6.1 IDA-PBC with Position Feedback

As explained in chapter 2, using immersion and invariance (I&I) observer, it is possible
to design IDA-PBC by merely position feedback [107]. However, I&I is designed based on
the solution of two sets of PDEs that restrict its applicability. Here, a simple well-known
velocity observer in mechanical systems which is usually called “dirty derivative” is used
to implement IDA-PBC with position feedback on a class of systems including UCDRs.
Let us first introduce this observer. Consider a fully actuated serial robot with dynamic
formulation

M(q)q̈ +C(q, q̇)q̇ + G(q) = u,

in which M(q) is inertia matrix, C(q, q̇) denotes the centrifugal and Coriolis matrix,
G(q) = ∇qV is the vector of gravity terms. The control law for regulation problem is
designed as follows [105,143]

u = G(q) −Kp(q − q
∗
) −Kdν (6.1a)

ν̇ = −Aν +Bq̇, (6.1b)

with Kp,Kd,A,B ∈ Rn×n being arbitrary positive definite matrix. Note that the control
law is the well-known PD with gravity compensation, but q̇ is replaced by its estimate

64
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denoted by ν. Notice that the observer (6.1b) may be represented as follows

q̇c = −A(qc +B(q − q∗))

ν = qc +B(q − q∗), (6.2)

with qc being an auxiliary variable. Asymptotic stability of closed-loop system is easily
proved by considering

V =
1

2
q̇TM(q)q̇ +

1

2
(q − q∗)TKp(q − q

∗
) +

1

2
νTKdB

−1ν

as a Lyapunov candidate. Note that by integrating (6.1b), it is inferred that ν is a function
of q.

Now consider IDA-PBC methodology. Since the controller (6.1a) is a particular form
of potential energy shaping, it seems that the observer (6.1b) is applicable to IDA-PBC
when potential energy is shaped, or M and Md are constant. The results are presented
in the following proposition.

Proposition 3. Consider a mechanical system with dynamic formulation (2.9) (or (2.18))
under satisfaction of Assumption 5. Then, the equilibrium q∗ is stable with the following
control law

u = (GTG)
−1GT (∇qV −MdM

−1
∇qVd) −KvG

Tν

ν̇ = −Aν +GKvG
TMd

−1p, (6.3)

in which Vd satisfy PDE (2.17).

Recall that Assumption 5 contains a number of UaSs including UCDRs.

Proof. Replacing (6.3) in (2.9), the closed-loop system has a PH structure as follows

⎡
⎢
⎢
⎢
⎢
⎢
⎣

q̇
ṗ
ν̇

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 M−1Md 0

−MdM
−1 0 −GKvG

T

0 GKvG
T −A

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∇qHdnew

∇pHdnew

∇νHdnew

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6.4)

with

Hdnew =Hd +
1

2
νTν. (6.5)

Consider Hdnew as Lyapunov function. Its derivative is

Ḣdnew = −νTAν.

Hence, ν converges to zero. Replacing ν = 0 in the dynamic of observer, it is inferred that
GKvG

T∇pHdnew converges to zero. Hence, q∗ is stable.

Remark 8. In Proposition 3, it was possible to represent the closed-loop equations with
control law (6.3) as PH form (6.4) since ∇qHdnew = ∇qVd or Md =M . In other words, if
the kinetic energy shaping terms in control law (2.15) are not omitted, it is not possible
to use the dirty derivative observer. In this case, we may design an I&I observer with the
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expense of solving two sets of PDEs. Note that although designing I&I observer for the
cases satisfy Assumption 5 is straightforward, it is not possible to represent the closed-loop
system in PH form. ◻

6.2 Adaptive IDA-PBC

In the IDA-PBC approach, it is assumed that the dynamic parameters of the system are
known. However, the exact value of the parameters is usually uncertain in practice. Fur-
thermore, in some cases that the input mapping matrix is state-dependent, such as VTOL
aircraft and UCDRs, some parameters in G may be uncertain. A powerful method to
address this issue is adaptive control. This method categorizes to some classes, including
model reference adaptive system, (MRAS) such that stability is ensured without necessar-
ily correct estimation of parameters. Indirect adaptive control is another method that the
parameters are estimated online. Here, the aim is to develop MRAS for IDA-PBC method-
ology that stability of desired equilibrium point is ensured in the presence of uncertain
parameters. In the following, we show that this problem is generally hard to solve.

Due to uncertain parameters in M and V , presume that we have the following regres-
sors:

∇q(p
TM−1p) −MdM

−1
∇q(p

TMd
−1p) + 2J2Md

−1p = [Y 11,Y 12][θ
T
11,θ

T
12]

T
= Y 1θ1

(6.6a)

∇qV −MdM
−1
∇qVd = [Y 21,Y 22][θ

T
21,θ

T
22]

T
= Y 2θ2, (6.6b)

where

Y 11θ11 = ∇q(p
TM−1p), Y 12θ12 = −MdM

−1
∇q(p

TMd
−1p) + 2J2Md

−1p,

Y 21θ21 = ∇qV, Y 22θ22 = −MdM
−1
∇qVd.

(6.7)

It seems that if the following matching equations are satisfied

G�
(Y 1θ̃1) = 0, G�

(Y 2θ̃2) = 0, (6.8)

then by applying the following control law

u = (GTG)
−1GT

(Y 1θ̂1 +Y 2θ̂2) = (GTG)
−1GT

(Y 1θ1 +Y 2θ2)

+ (GTG)
−1GT

(Y 1θ̃1 +Y 2θ̃2), (6.9)

the following equations are derived for the closed-loop system

[
q̇
ṗ
] = [

0 M−1Md

−MdM
−1 J2 −GKvG

T ] [
∇qHd

∇pHd
] + [

0

Y 1θ̃1 +Y 2θ̃2
] , (6.10)

By considering V =Hd+
1
2 θ̃

T
Γθ̃ as a Lyapunov function with Y = [Y 1,Y 2], θ = [θT1 ,θ

T
2 ]T

and Γ a free positive definite matrix, its derivative is

V̇ = −pTMd
−1GKvG

TMd
−1p + pTMd

−1Y θ̃ + θ̃
T

Γ
˙̂
θ. (6.11)

By defining the adaptation law
˙̂
θ = −Γ−1Y TMd

−1p, under satisfaction of (6.8), the deriva-
tive of Lyapunov function (6.11) is −pTMd

−1GKvG
TMd

−1p. It is clear that a sufficient
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condition for satisfaction of (6.8), is that θ̃1 = 0 and θ̃2 = 0. Generally, we should have

θ̃1 ∈ null space{G�Y 1}, θ̃2 ∈ null space{G�Y 2},

such that (6.8) is held. This is the major problem of designing adaptive IDA-PBC such
that ensuring stability of system depends on some conditions on estimated parameters.
Furthermore, the proposed adaptation law is not well-defined since it is a function of Md

which is unknown. Additionally, the expression of the terms in (6.6) in regressor form is
doubtful due to the fractional terms. Hence, based on the above shortcoming issues, it is
clear why an adaptive IDA-PBC with respect to dynamical parameters has not yet been
reported in the literature. In the following, we try to design adaptive IDA-PBC for a class
of UaSs. A particular form of the following theorem has been designed for spatial CDR
in [144].

6.2.1 Adaptive Potential Energy Shaping of UCDRs

Before presenting the results, we need to the following assumption.

Assumptiom 6. The natural damping matrix of the robot is positive definite, i.e., there
exists the constant σ such that

0 < σ ≤ min{r1, ..., rn} with R = diag[r1, ..., rn] (6.12)

where R was defined in (2.18). ◻

Note that not only this assumption is not restrictive due to several elements such as
air resistance, but also it lead to a better simulation of real world.

Theorem 5. Consider a general n-DOF UCDR with potential energy V = mgy and the
solution of potential energy PDE is derived as (4.22). The control law is designed as
follows

u = (GTG)
−1GT

(∇qV̂ −∇qV̂d) −KvG
T tanh(q̇) (6.13)

where

V̂ = m̂gy, V̂d = m̂gy +
m

∑
i=1
m̂ci ln cosh(fi) + ki ln cosh(fi − f

∗
i ),

m denotes the number of cables (actuators), m̂ is the estimated value of the mass, and
q =X denotes position and orientation of the end-effector. The constants cis are derived
from the condition ∇qVd∣q=q∗ , and positive gains kis are chosen such that ∇2

qVd∣q=q∗ > 0.

The adaptation law of m̂ is

˙̂m =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if µ > 0 & m̂ =m

0 if µ < 0 & m̂ =m

γµ else

(6.14)

µ ∶= −q̇T
m

∑
i=1
ci∇q ln cosh(fi) − ℵ tanh(y − yd)(

m

∑
i=1
ci∇y ln cosh(fi))

in which γ > 0 is a free gain, m and m are the upper and lower bounds of m̂, and ℵ is an
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arbitrary value satisfying

0 < ℵ <min{

¿
Á
Á
ÁÀ

m

∑
i=1

⎛

⎝
(1 + tanh2

(f∗i )) (
∂fi
∂y

)
2
∣
q=q∗

+ tanh(f∗i )
∂2fi
∂y2

∣
q=q∗

⎞

⎠
/m,

κσ

mnλ2
max{Kv}

,
σ

m
,

4κσ2

σ(σ +
√

mnλmax{Kv})
2 + σmnλ2

max{Kv}
}. (6.15)

Then q∗ is asymptotically stable with bounded inputs.

Proof. Replacing the control law (6.13) in (2.18), yields

[
q̇
ṗ
] = [

0 In
−In −R

] [
∇qHd

∇pHd
] − [

0

GKvG
T tanh(q̇)

] + m̃

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
m

∑
i=1
ci∇q ln cosh(fi)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6.16)

Consider the following Lyapunov candidate

V =
1

2
pTM−1p + Vd + ℵ tanh(y − yd)p2 +

1

2
γ−1m̃2. (6.17)

First it should be shown that the above function is a suitable Lyapunov candidate. For
this purpose, the third term in (6.17) together with 1

2mẏ
2 may be expressed as follows

1

2
m(ẏ + ℵ tanh(y − yd))

2
−
mℵ2

2
tanh2

(y − yd).

Hence, all the terms in (6.17) are clearly non-negative except the terms related to y. For
this purpose, define

h̵ ∶= −
mℵ2

2
tanh2

(y − yd) +mgy +
m

∑
i=1
mci ln cosh(fi)

It is simple to show that ∇yh̵ = 0. Furthermore,

∂2h̵

∂y2
∣
q=q∗

= −mℵ2
+

m

∑
i=1

⎛

⎝
(1 + tanh2

(f∗i )) (
∂fi
∂y

)
2
∣
q=q∗

+ tanh(f∗i )
∂2fi
∂y2

∣
q=q∗

⎞

⎠
,

which is positive definite with respect to (6.15). Thus, (6.17) is a suitable Lyapunov
candidate. Its derivative is

V̇ = −q̇TRq̇ − q̇TGKvG
T tanh(q̇) + m̃q̇T

m

∑
i=1
ci∇q ln cosh(fi) − ℵ tanh(y − yd)(mg

+
m

∑
i=1
mci tanh(fi)∇yfi + ki tanh(fi − f

∗
i )∇yfi + r2ẏ + (GKvG

T tanh(q̇))2

− m̃
m

∑
i=1
ci∇y ln cosh(fi)) +mℵ(1 − tanh2

(y − yd))ẏ
2
+ γ−1m̃ ˙̂m.
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Replacing adaptation law (6.14) in the above equation, yields

V̇ = −q̇TRq̇ − q̇TGKvG
T tanh(q̇) − ℵ tanh(y − yd)(mg +

m

∑
i=1
mci tanh(fi)∇yfi

+ ki tanh(fi − f
∗
i )∇yfi + r2ẏ + (GKvG

T tanh(q̇))2) +mℵ(1 − tanh2
(y − yd))ẏ

2

≤ −q̇TRq̇ − ℵκ tanh2
(y − yd) + ℵr2∣ tanh(y − yd)∣∣ẏ∣ + ℵmnλmax{Kv}∣ tanh(y − yd)∣

∥ tanh(q̇)∥ +mℵẏ2,

in which ∥G∥2 ≤ ∥G∥F ≤
√

mn [145], and based on the structure of fis, the following
inequality was used

mg +
m

∑
i=1
mci tanh(fi)∇yfi + ki tanh(fi − f

∗
i )∇yfi ≥ κ tanh(y − yd), κ <

−yd
mg

.

Hence, by defining q̇y× ∈ Rn−1 as a part of the velocity vector by omitting ẏ, V̇ may be
represented as follows

V̇ ≤ −ℵ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣ tanh(y − yd)∣
∥ tanh(q̇y×)∥

∣ẏ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

κ
mnλmax{Kv}

2
r2+mnλmax{Kv}

2
mnλmax{Kv}

2
σ
ℵ 0

r2+mnλmax{Kv}
2 0 r2

ℵ / −m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣ tanh(y − yd)∣
∥ tanh(q̇y×)∥

∣ẏ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6.18)

which is negative definite under (6.15). Hence, using Lasalle theorem, q∗ is asymptotic
stable. Furthermore, based on Remark 5 and projection algorithm defined in (6.14), the
control law is bounded. Positive tension is ensured by suitable selection of the gains with
respect to (5.16), or using Proposition 2.

The semi-strict Lyapunov candidate (6.17) has a significant role in suitable designing
of adaptation law and, as a result, stability analysis. This fact is explained in the following
remark.

Remark 9. Consider a general UCDR with control law (6.13) and the following adapta-
tion law

˙̂m = −q̇T
m

∑
i=1
ci∇q ln cosh(fi).

By considering

V =
1

2
pTM−1p + Vd +

1

2
γ−1m̃2

as Lyapunov candidate, it is simple to verify that p → 0. This means that all of the
configuration variables of the robot converge to desired values. However, convergence of
y to y∗ depends on correct estimation of m since the remaining dynamic is

mg + m̂
m

∑
i=1
ci∇y ln cosh(fi) +

m

∑
i=1
ki∇y ln cosh(fi),

which is zero in y = y∗ if m̂ =m. ◻

In addition to the uncertainty in the dynamic parameters, the parameters in the input
mapping matrix may also be unknown. However, as discussed at the beginning of this
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section, since in general, these parameters appear in the PDEs, it is difficult to design
a suitable adaptive IDA-PBC controller. However, in some cases, the structure of G is
such that G⊥ is independent of the parameters of G. Thus, it seems that it is possible to
design an adaptive IDA-PBC concerning unknown parameters in G. Invoking the novel
idea developed in our articles [39,146], in the following proposition, an adaptive IDA-PBC
with respect to kinematics and dynamics parameters is designed for 3-DOF spatial UCDR.

Proposition 4. Consider the spatial UCDR with dynamic formulation (3.22) satisfying
Assumption 6. The control law is designed based on (4.13) as

u = (Ĝ
T
Ĝ)

−1Ĝ
T
(∇qV̂ −∇qV̂d) −KvĜ

T
tanh(ν) (6.19)

ν̇ = −A tanh(ν) + ĜKvĜ
T
[ẋ, ẏ, βż]T ,

with

∇qV̂d =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k1 tanh(x − xd)

2m̂ck2y tanh (k2(y
2 + βz2))

2m̂ck2βz tanh (k2(y
2 + βz2))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Ĝ
T
=
⎡
⎢
⎢
⎢
⎣

x
l1

y
l1

z
l1

x−b̂
l2

y
l2

z
l2

⎤
⎥
⎥
⎥
⎦
,

where k1, k2 are positive gains and it is presumed that the length of cables are known.
The constants c and β are

β ∶=
m

m
=
m̂

m̂
, c ∶=

−g

2k2yd tanh(k2y2
d)
. (6.20)

The adaptation laws are

˙̂m =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if µ > 0 & m̂ =m

0 if µ < 0 & m̂ =m

γ1µ else

(6.21)

µ ∶= −[ẏ, βż][2ck2y tanh (k2(y
2
+ βz2

)),2ck2βz tanh (k2(y
2
+ βz2

))]
T

− 2ck2ℵy tanh(y − yd) tanh (k2(y
2
+ βz2

)),

˙̂
b =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if ẋξ2 > 0 & b̂ = b

0 if ẋξ2 < 0 & b̂ = b

γ2ẋ
u2
l2

else

(6.22)

with m,m, b, b being the bounds of m̂, b̂, while ℵ should be chosen with respect to the
following inequality

ℵ ≤ min{

√

−g/yd + 4mck2
2y

2
d/ cosh2(k2y2

d),4κσ/(4κm − σ2
),

κλmin{A}/(9λ2
max{Kv} + r2λmin{A})}, (6.23)

with 0 < κ ≤ −yd
mg . Then q∗ is asymptotic stable with bounded inputs.
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Proof. The closed-loop dynamic of the robot is

[
q̇
ṗ
] = [

0 M−1Md

−MdM
−1 R2

] [
∇qHd

∇pHd
] − [

0

ĜKvĜ
T

tanh(ν)
] + m̃ [

0
ξ1

] + b̃ [
0
ξ2

] (6.24)

with the following parameters

ξ1 ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

2ck2y tanh (k2(y
2 + βz2))

2ck2βz tanh (k2(y
2 + βz2))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,ξ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u2
l2
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,R2 = diag[r1, r2,
r3

β
],Md = diag[m,m,m].

Note that (6.24) is derived by replacing G = Ĝ − G̃ in the dynamic of the system. Now,
consider the following Lyapunov candidate

V =
1

2
pTMd

−1p + Vd + ℵ tanh(y − yd)p2 +
1

2
γ−1

1 m̃2
+

1

2
γ−1

2 b̃2 +
3

∑
i=1

ln cosh(vi). (6.25)

Similar to Theorem 5, one may verify that under (6.23), it is a suitable Lyapunov function.
Its derivative is

V̇ = −r1ẋ
2
− r2ẏ

2
−
r3

β
ż2
− [ẋ, ẏ, βż]ĜKvĜ

T
tanh(ν) + m̃[ẏ, βż][ξ2, ξ3]

T
+ b̃ẋξ2

− ℵ tanh(y − yd)(mg + 2mck2y tanh (k2(y
2
+ βz2

))) − ℵr2 tanh(y − yd)ẏ

− ℵ tanh(y − yd)(ĜKvĜ
T

tanh(ν))
2
+ ℵm̃ tanh(y − yd)2ck2y tanh (k2(y

2
+ βz2

))

+
ℵmẏ2

cosh2(y − yd)
+
m̃

γ1

˙̂m +
b̃

γ2

˙̂
b +

3

∑
i=1

tanh(νi)ν̇i ≤ −r1ẋ
2
− r2ẏ

2
−
r3

β
ż2

+ ℵr2∣ tanh(y − yd)∣∣ẏ∣ + ℵmẏ
2
+mnℵλmax{Kv}∣ tanh(y − yd)∣∥ tanh(ν)∥

− ℵκ∣ tanh(y − yd)∣
2
− tanh(ν)TA tanh(ν),

hence, V̇ is rewritten in the following form

V̇ ≤ −r1ẋ
2
−
r3

β
ż2

− ℵ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣ tanh(y − yd)∣
∣ẏ∣

∥ tanh(ν)∥

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

κ r2
2

mnλmax{Kv}
2

r2
2

r2
ℵ −m 0

mnλmax{Kv}
2 0

λmin{A}
ℵ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣ tanh(y − yd)∣
∣ẏ∣

∥ tanh(ν)∥

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(6.26)

which is negative definite due to (6.23). Boundedness of inputs is derived from Remark 5,
or Proposition 2.

6.3 Robust IDA-PBC

as discussed in Chapter 2, designing robust IDA-PBC with matched disturbance has at-
tracted more attention from researchers rather than adaptive IDA-PBC. In [96], nonlinear
PI and nonlinear PID terms have been added to IDA-PBC to design a robust controller
with respect to constant matched disturbance. The method, which is applicable to the
mechanical systems with constant input mapping matrix is based on non-trivial change of
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coordinate. A robust IDA-PBC controller for PH systems with constant G has been re-
ported in [97] where the matched disturbance, which is derived from another PH structure,
is rejected. The results of the last-mentioned paper were generalized in [98] to include the
systems with configuration-dependent input mapping matrix. [99, 101, 102] are the works
that design robust IDA-PBC with respect to unmatched disturbance. Unfortunately, as
indicated in [100], the results of these papers are not correct. Thus, it is inferred that
rejection of matched disturbance is well studied. Furthermore, robust IDA-PBC with
respect to unmatched disturbance is still an open problem due to the following reasons:

1) The damping term GKvG
T is not negative definite. In other words, it is not

possible to inject damping to unactuated coordinates.
2) The unmatched disturbance appears in the matching equations.

Due to these problems, It is very challenging to design a robust IDA-PBC with respect to
unmatched disturbance. In the following, we analyze some particular cases. Let us first
introduce the following simple but practical proposition in which has been published for
a particular case in [147].

Proposition 5. Consider a mechanical system subject to matched disturbance as follows

[
q̇
ṗ
] = [

0 In
−In 0

] [
∇qH
∇pH

] + [
0

G(q)
] (u + d), (6.27)

1) The equilibrium q∗ is stable with the following control law

u = ues +udi −Ksign(GTMd
−1p), (6.28)

in the presence of bounded disturbance ∥d∥ ≤$ where ues +udi was defined in (2.15) and
K ∈ Rm×m is such that λmin{K} ≥$.

2) The equilibrium q∗ is stable with u = ues +udi as (2.15) if

∫

∞

0
∥d∥2dt <∞. (6.29)

Proof. 1) By considering Hd as a Lyapunov function, its derivative is

Ḣd = −p
TMd

−1GKvG
TMd

−1p + pTMd
−1Gd − pTMd

−1GKsign(GTMd
−1p)

≤ −pTMd
−1GKvG

TMd
−1p + ∥pTMd

−1G∥∥d∥ − λmin{K}∥pTMd
−1G∥

≤ −λmin{Kv}∥p
TMd

−1G∥
2,

which prove that q∗ is stable.
2) Similar to previous part, time derivative of Lyapunov function Hd is

Ḣd = −p
TMd

−1GKvG
TMd

−1p + pTMd
−1Gd

≤ −λmin{Kv}∥p
TMd

−1G∥ + ∥pTMd
−1G∥∥d∥

Using the young inequality:

xy ≤ kx2
+
y2

4k
, x, y ∈ R, k ∈ R > 0,

Ḣd is as follows

Ḣd ≤ −λmin{Kv}∥p
TMd

−1G∥ + k∥pTMd
−1G∥ + ∥pTMd

−1G∥
2
+

∥d∥2

4k
.
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Integrating both sides of above inequality yields

Hd(t) −Hd(t0) ≤ −∫
t

t0
λmin{Kv}∥p

TMd
−1G∥

2dt + ∫
t

t0
k∥pTMd

−1G∥
2dt + ∫

t

t0

∥d∥2

4k
dt.

Rearranging the terms yields

∫

t

t0
(λmin{Kv} − k)∥p

TMd
−1G∥

2dt ≤Hd(t0) + ∫
t

t0

∥d∥2

4k
dt.

The left hand side is positive if k is chosen such that λmin{Kv} > k. By limiting t → ∞

and considering the constraint (6.29), it is inferred that integral of a positive value is
bounded. Hence, based on Barbalat’s lemma [136], ∥pTMd

−1G∥ converges to zero. Thus,
it is deduced that q∗ is stable.

Notice that the term Ksign(GTMd
−1p) may lead to chattering phenomena [137] that

degrade the performance in practice. Replacing “sign” function with a smooth function
like “tanh” may rectify this problem with the expense of an ultimate bound for the error.

As explained before, the solution of potential energy PDE is separated to homogeneous
and non-homogeneous parts. In some cases, derivation of non-homogeneous solution is
difficult. Furthermore, in potential energy shaping of underactuated parallel robots, it is
desirable to set Vd = Vdh since based on Theorem 1, Vdh = φ(l1, ..., lm) and the function φ
may be defined easily. In other words, satisfaction of q∗ = arg minVd(q) with Vd =mgy+Vdh

needs some calculations while Vd = Vdh =
m

∑
i=1
ki(li − lid)

2 has a nice physical interpretation

that the minimum value of Vd is the pose that the cables’ length are equal to their desired
values. The results are proposed in the following proposition.

Proposition 6. Consider a mechanical system with IDA-PBC controller such that Vd =
Vdh is designed suitably. Then q∗ is stable if the following inequality is satisfied

∂2Vn

∂q2
∣
q=q∗

> 0, (6.30)

in which

Vn = Vd +∫ (G�∇V )G�

∥G�∥2
Md

−1Mdq,

should be integrable.

Proof. By defining Vd = Vdh, it means that instead of potential energy PDE (2.17), the
following PDE has been solved

G�MdM
−1
∇qVd = 0.

this means that the gravity vector ∇qV has not been compensated in unactuated coordi-
nates. Hence, the closed-loop dynamics of the system is

[
q̇
ṗ
] = [

0 M−1Md

−MdM
−1 J2 −GKvG

T ] [
∇qHd

∇pHd
] −

⎡
⎢
⎢
⎢
⎢
⎣

0

(G�∇V )G�T

∥G�∥2

⎤
⎥
⎥
⎥
⎥
⎦

, (6.31)
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where the last term indicates the gravity terms related to unactuated coordinates. Now,
if

V =Kd + Vd +∫ (G�∇V )G�

∥G�∥2
Md

−1Mdq =Kd + Vn, (6.32)

is a suitable Lyapunov function, its derivative yields −pTMd
−1GKvG

TMd
−1p which

shows that q∗ is stable. V exists since Vn is integrable. Note that Vn is merely a function
of q; thus, we should have

1)
∂Vn
∂q

∣
q=q∗

= 0, 2)
∂2Vn

∂q2
∣
q=q∗

> 0. (6.33)

Notice that the first condition of (6.33) is trivially satisfied since

∂Vn
∂q

∣
q=q∗

=
∂Vd
∂q

∣
q=q∗

+
(G�∇V )G�

∥G�∥2
Md

−1M ∣
q=q∗

=
∂Vd
∂q

∣
q=q∗

= 0

Recall that q = q∗ is an equilibrium point if G�∇V ∣
q=q∗ = 0. Hence, it is sufficient to check

the second condition of (6.33).

Note that Proposition 6 is related to stability of q∗ in open-loop. By this means, if it
is stable, then this proposition is certainly applicable.

6.4 IDA-PBC with Desired Gravity Compensation

Proportional derivative with gravity compensation (PD-GC) is a well-known controller
to stabilize fully actuated robotic systems in the desired pose. This controller is based
on compensation of gravity at the current position of the robot. A simpler version of
PD-DG has been introduced that the gravity is compensated merely at desired pose.
This controller which is called PD with desired gravity compensation (PD-DGC) has been
successfully applied to serial robots with revolute joints [148]. The control law of PD-DGC
is as follows

u = G(q∗) −Kp(q − q
∗
) −Kdq̇,

with Kp,Kd being positive definite matrices. The stability of closed-loop system is guar-
anteed by the following Lyapunov function

V =H +
1

2
(q − q∗)TKp(q − q

∗
) − (q − q∗)TG(q∗),

under this constraint
λmin{Kp} > κg,

where κg is a constant satisfies the following inequality

∥G(q1) − G(q2)∥ ≤ κg∥q1 − q2∥, for everyq1,q2in the workspace of the robot.
(6.34)

In this section, we aim to merge PD-DGC with IDA-PBC to derive a simpler controller.
For simplicity, we focus on the systems with constant input mapping matrix as (4.28).
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Proposition 7. Consider a mechanical system with input mapping matrix as (4.28) and
the following control law

u = ues +udi −∇qaV (q) + (∇qaV (q))∣
q=q∗ , (6.35)

where Vd,Md are derived from the matching equations and q = [qa,qu]
T with qa ∈ Rm

and qu ∈ Rn−m denote the actuated and unactuated coordinates, respectively. The gains
of Vd should be chosen such that the following inequality is held

(
∂2Vd
∂q2

+MMd
−1G(

∂∇qaV (q)

∂q
))∣

q=q∗
> 0 (6.36)

Then, under the integrability condition of the following expression, q∗ is stable

∫ q̇TMMd
−1G∇qaV (q)d t − ∫ q̇TMMd

−1G (∇qaV (q))∣
q=q∗ d t.

Note that the control law (6.35) is similar to IDA-PBC’s control law and merely the
gravity compensation in actuated coordinate is replaced by desired gravity compensation.
Hence, the matching equations do not change.

Proof. Under the itegrability condition, consider the following Lyapunov candidate

V =Hd + ∫ q̇TMMd
−1G∇qaV (q)d t − ∫ q̇TMMd

−1G (∇qaV (q))∣
q=q∗ d t

Note that it is a suitable Lyapunov function since

∂V

∂q
= ∇qVd +MMd

−1G∇qaV (q) −MMd
−1G (∇qaV (q))∣

q=q∗ ,

and thus, ∂V
∂q ∣q=q∗

= 0 and ∂2V
∂q2

∣
q=q∗

> 0 due to (6.36). One may easily verify that

V̇ = −pTMd
−1GKvG

TMd
−1p.

Hence, q∗ is stable.

6.5 Conclusion

In this chapter, some developments of IDA-PBC were introduced. First, we concentrated
on IDA-PBC with position feedback, and it was shown that dirty derivative of velocity
might be employed to address this topic for a case of UaSs. Adaptive and robust IDA-PBC
were other subjects of this chapter. By this means, adaptive IDA-PBC for potential energy
shaping of UCDRs with unknown mass and also total energy shaping of spatial UCDR with
kinematic and dynamic uncertainties were proposed. Furthermore, simplification of solving
potential energy PDE that leads to the elimination of non-homogeneous solution was
analyzed. Finally, IDA-PBC with desired gravity compensation for actuated coordinates
of mechanical systems with constant input mapping matrix was designed.



Chapter 7

Simulation and Experimental
Results

In this chapter, the proposed controllers are applied to some different systems to evaluate
the performance. By this means, some simulations and experiments are presented. In
the following, first, simulation results are exhibited and then, experimental results are
introduced.

7.1 Simulation Results

In this section, the results of previous chapters are verified through several simulations.
For this purpose, first, using the solution of matching equations proposed in Chapter 4
together with the results of Chapter 5 and Chapter 6, some controllers are implemented on
the UCDRs. Furthermore, some benchmark systems are utilized to show the effectiveness
of the proposed methods in detail. Note that despite analyzing the controllers via some
experiments, the simulations are also presented to test the performance of the controllers
in accordance with the conditions of the theorems/propositions.

7.1.1 Planar Underactuated Cable-Driven Robot

In this section, some controllers are applied to planar UCDR introduced in Section 3.1.
For this purpose, the results of Section 4.1.1 are utilized to design some controllers based
on potential energy shaping. A common method to define the function φ in (4.10) is
quadratic form. Hence,

Vd =mgy + αχ + βψ + k3(χ − χd)
2
+ k4(ψ − ψd)

2, (7.1)

with

χ = (2a cos(θ) − b)x + 2a sin(θ)y − ab cos(θ), ψ = x2
+ y2

− bx − ab cos(θ). (7.2)

Defining Vd as (7.1) leads to appearance of the terms including y3 and x3 in the control
law. A better definition of Vd which is proposed in (5.1) is as follows

Vd =mgy + αχ + βψ + k3 ln cosh(χ − χd) + k4 ln cosh(ψ − ψd). (7.3)

By this means, ∇qVd is a function of x and y. The positive gains k3 and k4 should be

chosen concerning ∂2Vd
∂q2

∣
q=q∗

> 0 while the constants α and β are derived from ∂Vd
∂q ∣

q=q∗
= 0

76
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as follows

[
α
β
] = [

2a cos(θd) − b 2xd − b
2a sin(θd) 2yd

]

−1

[
0

−mg
] , (7.4)

The gains k3 and k4 together withKv shall be chosen based on Remark 5 such that positive
tension in cables are ensured. Since ∇qVd is a function of x3, y3 and x, y, respectively, we
should use the method proposed in Remark 2.2 to compute the upper bounds of potential
energy shaping terms in the control law. However, this method leads to conservative gains.
Note that for simplicity, we merely concentrate on assurance of tensile force in cables.

In order to compare the results, the sliding mode controller proposed in [123] is also
simulated. The control law is [123]

u =

⎡
⎢
⎢
⎢
⎢
⎣

x−a cos(θ)
l1

y−a sin(θ)
l1

x−b+a cos(θ)
l2

y+a sin(θ)
l2

⎤
⎥
⎥
⎥
⎥
⎦

−T

[
−γẋ

0
] +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y−a sin(θ)
l1

− cos(θ)(y−a sin(θ))
l1

+
sin(θ)(x−a cos(θ))

l1

y+a sin(θ)
l2

cos(θ)(y+a sin(θ))
l2

−
sin(θ)(x−b+a cos(θ))

l2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−T

([
m 0
0 I

] ν̇ + [
mg
0

] −Ks − κsgn(s)) (7.5)

with K,Γ, γ > 0 and

κ = ∣f(X, Ẋ)γẋ∣ = ∣JT (3, ∶)

⎡
⎢
⎢
⎢
⎢
⎣

x−a cos(θ)
l1

y−a sin(θ)
l1

x−b+a cos(θ)
l2

y+a sin(θ)
l2

⎤
⎥
⎥
⎥
⎥
⎦

−T

[
−γẋ

0
] ∣

= ∣
2y2 cos(θ) − 2xy sin(θ) + by sin(θ) − ab sin2(θ)

2ax sin(θ) − 2ay cos(θ) + by − ab sin(θ)
γẋ∣

and

ν = −ΓX̃
′
, X̃

′
=X ′

−X ′∗, s = Ẋ
′
− ν =

˙̃X ′
+ΓX ′, X ′

= [y, θ]T .

The parameters of the robot are a = 0.5m,b = 8m and m = 2Kg. Based on the above
explanations, it is deduced that k3 = k4 = 0.01,Kv = I2 and k3 = k4 = 0.1,Kv = 3I2

are suitable gains for IDA-PBC with desired potential energy given in (7.1) and (7.3),
respectively. The gains of sliding mode controller are K = Γ = 2I2 and γ = 3. Note that
it is tried to choose the gains of (7.4) such that the settling time is close to settling time
of the other controllers. The results are proposed in Fig. 7.1-7.3. Fig. 7.1 and Fig. 7.2
show the results of IDA-PBC with desired potential energy (7.1) and (7.3), respectively,
while the results of sliding mode controller (7.5) are presented in Fig. 6.4. It is clear
that all the configuration variables converge to their desired values. More precisely, the
best performance is related to the IDA-PBC with Vd as (7.3). However, the control
efforts are quite different. The lower value of control effort of the controllers based on
energy shaping is about 5N while it is less than −5N with sliding mode controller since
positive tension has not been considered in this controller. Clearly, negative control law
leads to poor performance or even instability of the system. Furthermore, a transient
chattering in inputs is apparent due to the “sign” term. Another disadvantage of this
controller in comparison with energy shaping controllers is its dependency on the full
dynamic parameters of the system. In other words, the potential shaping controllers
merely require the mass of the system while the other controller needs mass and inertia
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Figure 7.1: Simulation results of potential energy shaping with Vd as (7.1) on planar UCDR.
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Figure 7.2: Simulation results of potential energy shaping with Vd as (7.3) on planar UCDR.

of the end-effector.
In order to examine some of the results of Chapter 6, Proposition 3 and Proposition 6

are also simulated on this robot. Proposition 3 is applied with Vd as (7.3) and A = 10. In
Proposition 6, Vd = Vdh is designed based on Theorem 1 as follows

Vd = k1 ln cosh(l1 − l1d) + k2 ln cosh(l2 − l2d), (7.6)
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ẏ

θ̇

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

In
p

u
ts

(N
)

Time(sec)

 

 
u

1

u
2

Figure 7.3: Simulation results of sliding mode controller [123] on planar UCDR.

where k1 = k2 = 1 are chosen. Simulation results are illustrated in Fig. 7.4 and Fig. 7.5.
Fig. 7.4 shows the results of Proposition 6. It is clear that replacing q̇ with ν does not
affect on the stability of the closed-loop system. Comparison of this figure with Fig. 7.2
shows that the performance of this controller is similar to original IDA-PBC with a bit
more oscillation in the initial times of control effort. The results of Proposition 7.5 are
depicted in Fig. 7.5. Although Vdn is eliminated in control law, all the configuration
variables converge to their desired values. Comparison between (7.3) and (5.25) show that
Proposition 7.5 simplify controller design for UCDRs. Additionally, the control efforts
are far from zero in the initial times that is another superiority of this controller since in
regulation, inputs have usually the largest value at the beginning.

7.1.2 Spatial Underactuated Cable-Driven Robot

In this section, the proposed controllers are applied to the spatial UCDR proposed in Sec-
tion 3.2. First, some controllers including potential energy shaping, total energy shaping
and sliding mode are implemented on the robot. For this purpose, a controller relied on
potential energy shaping is designed based on (4.11) with the following desired potential
energy

Vd = k1 ln cosh(x − x∗) + k2 ln cosh(y2
+ z2

− α) +mgy (7.7)

where k1, k2 are free positive gains and the constant α is derived from ∇Vd∣q=q∗ = 0 as
follows

α = y∗
2

− 0.5 ln(
1 + a

1 − a
), a = −

mg

2k2y∗
.
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Figure 7.4: Simulation results of Proposition 3 on planar UCDR.
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Figure 7.5: Simulation results of Proposition 6 with Vd as (7.3) on planar UCDR.

The other controller is based on total energy shaping with Md as (4.12) and desired
potential energy (4.13) which is designed as follows

Vd = k1 ln cosh(x − x∗) + c1 ln cosh(y2
+
m

m
z2

) +mgy, (7.8)
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with k1 ∈ R+ a free parameter and the constant c1 is derived as follows

c1 = −
mg

2y∗ tanh(y∗2)
.

Note that c1 is a positive constant since y∗ < 0. Furthermore, we simulate the controller
based on total energy shaping with configuration-dependent Md. For this purpose, the
desired inertia matrix given in (4.19) is

Md =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m 0 0

0 y2

2 + k1
1
2yz

0 1
2yz

z2

2 + k2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.9)

αis are

1α = [0,0,0]T , 2α = [0,0,0]T , 3α = [0,−
k1z

2m
,
k2y

2m
]
T , (7.10)

and the desired potential energy is designed as follows

Vd = k3 ln cosh(x − x∗) + k4 ln cosh(k2y
2
+ k1z

2
− α) +

m2g

k1
(y − y∗), (7.11)

in which α is

α = k2y
∗2
− 0.5 ln(

1 + a

1 − a
), a = −

m2g

2k1k4y∗
.

In order to compare the results, we invoke to the controller designed for planar UCDR [123]
and develop it for this case. The control law is as follows

u = [

x
l1

x−b
l2

y
l1

y
l2

]

−1

(mν̇ + [0,mg]T −Ks − κsign(s)) − [
γsign(z)ż
γsign(z)ż

] (7.12)

with the following parameters

ν = Γ [
x − x∗

y − y∗
] , s = [

ẋ
ẏ
] − ν, κ =

γ∣zż∣

l1
+
γ∣zż∣

l2
,

with 0 <K,Γ ∈ R2×2 and γ > 0 as free parameters. Simulation results are proposed in
Fig. 7.6-7.10. The gains of the energy shaping controllers are chosen based on the results
of Section 5.1 to ensure positive tension in cables. Note that for simplicity, only the lower
bound of actuators is considered. The parameters of the robot are m = 3Kg and b = 3m.
The results of potential energy shaping are proposed in Fig. 7.6. the gains of the controller
are k1 = 2, k2 = 3 and Kv = 5I2. It is clear that x−x∗ and y−y∗ converge to zero while the
inputs are positive. However, the rate of convergence of z is very slow. In order to improve
the results, total energy shaping controllers are designed and simulated. The results of the
controller with constant Md as (4.12) and Vd as (7.8) are depicted in Fig. 7.7 and Fig. 7.8
with m = 0.1 and m = 0.4, respectively. The convergence rate of z is faster than the potential
energy shaping controller. Lower values of m lead to faster response with the expense of
more oscillations in the control efforts. Fig. 7.9 shows the results of total energy shaping
withMd as (7.9) and Vd as (7.11) with the gains k1 = 2, k2 = 0.5, k3 = 8, k4 = 24. The results
show that the convergence rate of z is suitable while other configuration variables converge
to their desired values in a short time. Note that the initial value of u1 is very large in
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Figure 7.6: Simulation results of potential energy shaping on spatial UCDR.

Figure 7.7: Simulation results of total energy shaping with m = 0.1 on spatial UCDR.

this controller due to the term MdM
−1∇qVd since at t ≈ 0 the velocity is almost zero and

the term related to p are negligible. Thus, invoking the results of Theorem 3 may not
improve the control efforts. Note that it may seem that the control effort is non-smooth
in initial times; however, it is due to long simulation time and u is smooth. The results of
sliding mode controller are depicted in Fig. 7.10 with the gains K = 0.5I2,Γ = 3I2, γ = 2.
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Figure 7.8: Simulation results of total energy shaping with m = 0.4 on spatial UCDR.

Figure 7.9: Simulation results of total energy shaping with configuration-dependent Md on spatial
UCDR.

Although the convergence rate of z is appropriate, the inputs’ oscillations may worsen
the performance in practice. Furthermore, assurance of tensile forces in cables is not
straightforward.

With the purpose of analyzing uncertainty in parameters, Proposition 4 is also simu-
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Figure 7.10: Simulation results of sliding mode controller on spatial UCDR.

lated. For this purpose, the end-effector’s mass and the distance between anchor points
which are m = 2Kg and b = 3m, respectively, are perturbed about 10% and 1%, respec-
tively. The gains/parameters of Proposition 4 are

r1 = r2 = r3 = 0.005, m = 0.02, k1 = 0.1, k2 = 0.01, γ1 = γ2 = 0.1, ℵ = 0.05

The results of simple IDA-PBC and adaptive IDA-PBC are illustrated in Fig. 7.11 and
Fig. 7.12. As it is seen, simple IDA-PBC leads to a steady-state error in y direction
while using adaptive IDA-PBC, all the errors of stabilization converge to zero. This is the
superiority of Proposition 4 that uncertainties in kinematic and dynamic parameters do
not destroy the stability of the closed-loop system.

7.1.3 Spidercam

The robot was introduced in Section 3.3. Since the degrees of underactuation of the robot
is two, calculation of equilibrium points is not straightforward. Furthermore, finding
the solution of matching equations is very complex since a set of PDEs shall be solved.
Fortunately, based on Theorem 1, it is possible to shape the potential energy of the robot.
Furthermore, Proposition 6 simplifies suitable design of Vd. Hence, it is possible to propose
a simulation on a spidercam. The parameters of the robot are

m = 3Kg, I = 0.2I3, A1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3.56/2
7.05/2
4.06

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, A2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−3.56/2
7.05/2
4.06

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, A3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3.56/2
−7.05/2

4.06

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

A4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−3.56/2
−7.05/2

4.06

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.2
0.4
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.2
0.4
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.2
−0.4

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.2
−0.4

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Figure 7.11: Simulation results of IDA-PBC in the presence of uncertain parameters.
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Figure 7.12: Simulation results of adaptive IDA-PBC in the presence of uncertain parameters.

Vd given in (4.25) is redesigned based on Proposition 6 as follows

Vd = k1 ln cosh(l1 − l1d) + k2 ln cosh(l2 − l2d) + k3 ln cosh(l3 − l3d) + k4 ln cosh(l4 − l4d).
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Figure 7.13: Simulation results of IDA-PBC on spidercam. All the configuration variables converge
to their desired values.
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Figure 7.14: Control efforts and cables’ length of spidercam.

The gains of the controller are

k1 = k2 = k3 = k4 = 5, Kv = 5I.
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Figure 7.15: Ball and beam system.

To choose a desired equilibrium point, a method is calculation of G�∇qV = 0. Another
way which is fit to the structure of Vd, is selection of the lids and the computation of q∗

from four forward kinematic equations and two equations G�∇qV = 0. By this means,
presume that

l1d = 5, l2d = 4.5, l3d = 5.5, l4d = 5.

Thus, the feasible equilibrium point of the robot is

xd = −0.51, yd = 0.33, zd = 0.55, α = 0.17, β = 0.63, γ = 0.07

Note that the orientation of the end-effector is displayed by pitch–roll–yaw Euler angles.
By this means, α denotes the rotation about x axis, β and γ denote the rotation about
y and z axes of fixed frame, respectively. Notice that in this case this representation is
singular free since due to structure of the robot, −π/2 < α,β, γ < π/2. Additionally, to
verify Proposition 5, the following matched disturbance is applied to the robot

d = [e−t,1/(t2 + 1), t/(t3 + 1), e−2t sin(t)]T .

To ensure tensile forces in cables, Proposition 2 is utilized. The results are depicted in
Fig. 7.13 and Fig. 7.14. It is clear that all the configuration variables and cables’ length
converge to their desired values. This shows the applicability of Theorem 1, Proposition 6
that simplify controller design for a complex UCDR. Additionally, positive tension in
cables are ensured easily using Proposition 2. Note that in this case, the gains are chosen
more than the required values derived from Remark 5 to reduce the convergence rate.

7.1.4 Benchmark Systems

In this section, we verify the results of previous sections on some benchmark systems. The
first two examples are introduced to verify the results of Section 5.1. Third and the last
examples are related to Section 5.2 and Proposition 7, respectively.

Ball and beam system

The system consists of a ball moving along a beam whose angle is controlled. The
schematic of the system is depicted in Fig. 7.15. The position of the ball with respect
to the pivot point of the beam is denoted by q1, and the angle of the beam with respect
to the vertical line is given by θ = q2. The dynamic parameters of the system are chosen
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based on the model given in [14],

M = [
1 0
0 L2 + q2

1
] , V = gq1 sin(θ),

where L is the half length of the beam, θ is the beam angle. For the control law, we utilize
the proposed controller in [14] with the desired parameters of the closed-loop system, given
by:

Md = [

√
2(L2 + q2

1)
1/2 L2 + q2

1

L2 + q2
1

√
2(L2 + q2

1)
3/2]

Vd = g[1 − cos(q2)] +
kp

2
[q2 −

1
√

2
arcsinh(

q1

L
)]

2

J2 = [
0 j
−j 0

] , j = q1[p1 −
√

2(L2
+ q2

1)
−1/2p2],

in which L = 2m, R = diag{0.2,0.1}, and the gains of the controller are kp = 5 and kv = 5
based on analysis proposed in [73]. The initial condition of the robot is considered to
be [qT (0),pT (0)] = [0.5,−0.1,0.1,0] based on Proposition 5 of [14] and the controller is
supposed to position the ball at the equilibrium point [qT (0),pT (0)] = [0,0,0,0]. With
the given parameters, Hd(0) = 0.24 is less than 0.31 derived from Proposition 5 of [14],
which ensures that the ball is always on the beam. Note that we do not modify the
homogeneous solution of Vd to utilize the analysis proposed in [14]. The parameters in
Theorem 2 are derived after some calculations as follows:

cV2 = 10.4, cVd = 2.4, cγ2 = 6, λmax{M
−1
d } = 0.82,

cM2 = 0, cMd
= 0.9, cJ = 10.4, λmin{M

−1
d } = 0.06

Using (5.7), one can simply compute cp = 2 and cp̃ = 0.44. Simulation results are depicted
in Fig. 7.16. The control effort is less than 15 which is clearly less that than the upper
bound obtained from (5.9) with the above parameters. The upper bound of ∥p∥ and
∥p̃∥ are about 1.6 and 0.3 which are less than cP and cp̃, respectively. Notice that the
reason of difference between the actual and the computed upper bound is that in (5.9)
we consider the worst-case scenario in obtaining the upper bounds. Note that in this
case, it is possible to confine ∇qVd using (5.1) as by considering Vdn = g[1 − cos(q2)] and
vdh = q2 −

1√
2
arcsinh( q1L ), their partial derivative would be as:

∇qVdn = [0, g sin(q2)]
T , ∇qVdh = [

1

L
√

2
√

1 + (
q1
L )2

,1]T ,

that are clearly bounded.

VTOL aircraft

In the previous example, the effects of velocity-dependent terms were investigated. Through
this example we aim to analyze the Remarks 5, 6 and 7. Hence, we consider an UaS with
strongly coupled dynamics, referred to as VTOL aircraft, which is introduced in Sec-
tion B.2. First, a non-smooth control law is derived, and the tracking performance of
the system and the magnitude of the control effort is analyzed. Secondly, we propose a
two-phase controller to compensate for the effects of the non-smooth control law. Finally,
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for the comparison purpose, the performance of smooth control law is also investigated.
The dynamic parameters are given in equation (B.6). The purpose is to stabilize the un-
stable equilibrium point [x∗, y∗,0] with bounded input IDA-PBC controller. In [74], an
IDA-PBC controller with configuration-dependent Md and smooth Vd has been designed.
Here, in order to analyze the effects of non-smooth terms, intentionally a locally stabilizing
controller with constantMd and non-smooth ∇qVd is applied. The controller’s parameters
which are derived in Section B.2 are as follows

Md =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

20ε2 0 ε
0 1 0
ε 0 0.1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, J2 = 03×3, Vd = k1 ln cosh (ε(y − y∗) + ln (ε cos(θ) − 0.1ε))

+ k2 ln cosh (
1

20ε
(x − x∗) − θ − 0.1arctanh(1.1055 tan(

θ

2
)))

− k1ε tanh ln(0.9ε)(y − y∗) −
g + k1ε tanh ln(0.9ε)

ε
ln (ε cos(θ) − 0.1ε) − ρ,

with k1, k2 > 0 being the free parameters and the constant ρ is determined such that
Vd(t0) = 0. It is clear that the terms arctanh(1.1055 tan( θ2)) and ln (ε cos(θ)−0.1ε) confine
θ in a region inside the workspace and lead to non-smooth terms in ∇qVd. Hence, we invoke
the results of Remark 6 and 7. Note that due to the simple structure of G, it is possible
to derive better upper bounds with respect to the conservative upper bound proposed in
(5.15) by the following matrices,

(GTG)
−1GT

= [
− sin(θ) cos(θ) 0
ε cos(θ)

1+ε
ε sin(θ)

1+ε
1

1+ε
]

(GTG)
−1GTMdM

−1
= [

−20ε2 sin(θ) cos(θ) −ε sin(θ)
20ε3 cos(θ)+ε

1+ε
ε sin(θ)

1+ε
ε2 cos(θ)+0.1

1+ε
]
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Figure 7.16: Simulation results of the ball and beam system.
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Figure 7.17: Configuration variables of the VTOL aircraft.
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Figure 7.18: Control efforts of the VTOL aircraft.

Note that a constant gravity is applied to the y direction of the system. Thus, the bounds
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of controller are in the following form:

∣u1 − g∣ ≤ maxq{∣g − ((GTG)−1GT∇qV )
1
∣} +maxq{∥(G

TG)−1GTMdM
−1∥}cVd + λmax{Kv},

∣u2∣ ≤ max
q

{∣((GTG)
−1GT

∇qV )
2
∣} +max

q
{∥(GTG)

−1GTMdM
−1

∥}cVd + λmax{Kv},

(7.13)

where the damping term is modified to be KvS(G
T p̃) with S defined in (5.1). The initial

condition of the system is [20,−15,1.3]T with zero velocity and the desired position is
the equilibrium point of the system at [0,0,0]T . Since the initial value of θ is close to
singularity, it results into high values for the control effort. Invoking Remark 6, one can
compute the upper bound of θ = 1.33 by considering k1 = 4 and k2 = 5. By this means, the
following upper bounds are derived after some calculations,

∣((GTG)
−1GT

∇qV )
1
∣ ≤ 10, ∣((GTG)

−1GT
∇qV )

2
∣ ≤ 2.25,

∥(GTG)
−1GTMdM

−1
∥ ≤ 1.75, cVd = 170.

Simulation results withKv = I2 and S = tanh is depicted in Fig. 7.17 and Fig. 7.18, denoted
by ‘nonsmooth Vd’ in both figures. The simulation results of the two-phase controller and
the smooth control law are also demonstrated in figures identified with the label ‘two-
phase’ and ‘smooth Vd’, respectively. In Fig. 7.17 the performance of the controllers
is shown, and Fig. 7.18 shows the control efforts. As it is clear from the figures, for
the non-smooth control law, the configuration variables converge to zero, but the upper
bound of the control effort is about 200, which is not even close to being applicable. To
rectify this problem, a two-phase controller based on Remark 7 is designed. Additionally,
the controller proposed in [74] is simulated. In the two-phase controller, the primary
controller is used in the first phase to converge θ to zero. Hence, for a small value of the
θ, the dynamic of the system can be represented in the following form:

ẍ ≈ 0, ÿ ≈ u1 − g,

which is obtained by replacing θ ≈ 0, u2 ≈ 0 in the dynamic of the system. Considering
the simplified dynamic, then a secondary controller is designed using IDA-PBC approach
such that y − y∗ converges to zero. Although with this controller ∣x∣ will increase with a
constant speed, it is possible to reduce Hd(t0) arbitrary by increasing Md11 or decreasing k2

in which t0 denotes the initial time of applying the secondary controller. In the two-phase
controller, the primary controller is given by:

u1 = g − ϑ1S(κ1y + κ2ẏ)

u2 = −ϑ2S(κ3θ + κ4θ̇)

with the following parameters:

ϑ1 = ϑ2,= 8, κ1 = 30, κ2 = 20, κ3 = 80, κ4 = 30

with this aim that ∣u1−g∣ ≤ 10 and ∣u2∣ ≤ 10 are satisfied. Referring to the simulation results
in Fig. 7.17 and Fig. 7.18, it is clear that after applying the two-phase controller, the control
efforts are in the bounds, and configuration variables converge to their desired values. This
shows the superiority of this method. Note that one may design a better controller for
the first phase to prevent the increase of ∣x∣, but this is out of the scope of this thesis. We
have also investigated the controller proposed in [74] which is based on a smooth Vd. The
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parameters of that controller are P = diag{0.003,0.005} and Kv = 0.2I2. It should be
noted that in this case, we have set smaller gains rather than the gains considered in [74]
for the controller such that the calculated upper bound meets the saturation requirement,
with the expense of a slow convergence rate. The simulation results show that as expected,
∣u1 − g∣ and ∣u2∣ lie in the predefined range. In other words, the non-smooth two-phase
controller and the smooth one proposed in [74] satisfy the practical constraint of the
actuators while the non-smooth controller has enormous control effort. This study confirms
that the suitable solution for the PDEs is an essential part of the controller design while
considering bounded input control problems. If the derived solution of Vd is not a smooth
function, it is recommended to design a two-phase controller to meet the actuators’ bounds.
Note that as discussed in the paragraph before Remark 6, in some cases, Vd is necessarily
non-smooth. Furthermore, generally, the matching equations are complicated to obtain,
and hence, it may not be possible to derive a smooth solution. Thus, the applicability of a
two-phase controller is prefered while it may also result in a faster response in comparison
with a smooth controller with small conservative gains.

2D SpiderCranr

To examine the proposed method in Section 5.2, consider 2D SpiderCrane introduced
in [127]. The schematic of this system is depicted in Fig. B.2, while its dynamic formulation
are given in Section B.3. [Fx, Fy]

T are considered as the control inputs. In [131], a
controller based on total energy shaping was proposed while in [127], potential energy
shaping was employed to design the controller. Here, we modify the controller introduced
in [131] through our proposed method in Theorem 3. The reader is referred to [131] for
details of the controller design.

First, by using partial feedback linearization, the system dynamics is transformed into
the normal form. Then, Md is designed by

Md =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−k1l3 cos2(θ) + k3 −k1l3 cos(θ) sin(θ) k1 cos(θ)
−k1l3 cos(θ) sin(θ) k1l3 cos2(θ) + k3 k1 sin(θ)

k1 cos(θ) k1 sin(θ) k2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

while, Vd, proposed in [131], is modified to

Vd = 0.2 ln cosh 10(x − xd −
k3

k1 + l3k2
(1 − cos(θ))) + 0.2 ln cosh 10(y − yd

−
k3 + l3k1

k1 + l3k2
(1 − cos(θ))) −

g

k1 + l3k2
cos(θ).

Note that with this control law, Assumption 5 is not satisfied; thus, we will apply the
proposed method based on the optimization given by Theorem 3. The controller gains are
chosen by

k1 = 0.05, k2 = 10, k3 = 3, Kv = 6I2,

while the initial and desired positions are set [xr(0), yr(0), θ(0)]
T = [−1,3,0.5]T ,[ẋr(0),

ẏr(0), θ̇(0)]
T = [0.1,0,0]T and [xrd , yrd , θd]

T = [0.5,1,0]T , respectively. The inputs are set
to be bounded by um = [−3,22]T and uM = [3,28]T .

Simulation results are shown in Fig. 7.19 and Fig. 7.20. Fig. 7.19 illustrates system
response using the IDA-PBC’s control law given in (2.15). As it is observed, the input
bounds are not satisfied in both control inputs. Fig. 7.20 illustrates the simulation results
with the control law (5.41) which is based on the optimization proposed in Theorem 3.
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Figure 7.19: Simulation results with total energy shaping without optimization.
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Figure 7.20: Simulation results with total energy shaping and optimized inputs.
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Comparison of these figures shows significant improvement in restricting the control efforts
within the assigned bounds while all the configuration variables converge to their desired
values, in expense of slightly slower convergence.

Pendubot

Here, the aim is analyzing Proposition 7. For this purpose, the proposed controller for
pendubot in Section A.4 is considered. The designed controller in that section with desired
gravity compensation is implemented. Since in q∗ = [π,0]T the gravity term is zero,
the term ∇qV is omitted in control law based on Proposition 7. The parameters of
the robot and the gains of the controller are similar to [84]. The initial condition is
q(0) = [π − 0.7,0.8]T with zero velocity. The results are depicted in Fig. 7.21. It is clear
that the configuration variables converge to their desired values. This shows that in some
scenarios, it is possible to design a simplified version of IDA-PBC by removing the gravity
compensation term.
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Figure 7.21: Simulation results of IDA-PBC with desired gravity compensation on pendubot.

7.2 Experimental Results

Here, some of the proposed controllers are implemented on cable-driven robots to analyze
the performance in practice.

7.2.1 ARAS Underactuated Cable-Driven Robot

The robot was introduced in Section 3.4. Here, some of the results of this thesis are
implemented on the robot. For this purpose, IDA-PBC controller based on potential
energy shaping with Vd as (7.3) is applied to the robot. To ensure positive tension in cables,
we utilize the results of simple Proposition 2 which was simply derived from Theorem 4.
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The gains of the controller are

k3 = 20 k4 = 20 Kv = 10I2. (7.14)

The robot starts from q(0) = [0.73,−1.04,0]T and moves toward q∗ = [0.58,−0.914,−0.392]T
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Figure 7.22: Configuration variables of ARAS UCDR with IDA-PBC.

and then comebacks to the initial position. Note that these points are on the manifold of
equilibrium points. The bounds of actuators are umin = [0.5,0.5]T and umax = [20,20]T .
The results are illustrated in Fig. 7.22 and Fig. 7.23. As indicated in Fig. 7.22, the con-
figuration variables are settled after about four seconds. The error of x and θ is negligible
while y − y∗ is about 4cm. The reason may be arisen from imprecise value of the mass of
the end-effector. The control efforts are depicted in Fig. 7.23. It is clear that the control
efforts are in the predefined bounds while the system is stable. This shows the applicability
of the proposed method in Proposition 2.

In order to improve the results, adaptive IDA-PBC proposed in Theorem 5 is also
implemented on the robot. The results are shown in Fig. 7.24 and Fig. 7.25. It is clear
that using an adaptation law, the error of y is essentially reduced. The reason is this
fact that the gravity force which is proportional to m is directly affects on y. Note that
since equilibrium points of the robot are on a complex manifold and also the matrix G is
configuration-dependent, improvement of y − y∗ leads to reduction of x − x∗ and θ − θ∗.

For the sake of comparison, a PD with gravity compensation is executed on the system.
It is designed such that merely x and y are controlled. The results are illustrated in
Fig. 7.26 and Fig. 7.27. It is seen that in the first movement, the configuration variables
converge to their desired values after about 18 second. However, in the latter relocation,
the response is oscillatory with large domain. In this phase, the robot goes out of scope of
the cameras, results in unknown defined value of θ. Furthermore, as indicated in Fig. 7.26,
although the gains of the controller are selected suitably, they are not always positive.
Note that the results of this controller are oscillatory in simulation, but in practice, due
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Figure 7.23: Control efforts of ARAS UCDR with IDA-PBC.

0.5

0.6

0.7

0.8

Adaptive IDA−PBC 

x
(m

)

 

 

x

x
d

−1

−0.9

−0.8

y
(m

)

 

 

y

y
d

0 2 4 6 8 10 12 14 16 18 20

−0.4

−0.2

0

θ
(r

a
d

)

Time(sec)

 

 

θ

θ
d

Figure 7.24: Configuration variables of ARAS UCDR with adaptive IDA-PBC.

to friction, the oscillations may be damped. By comparing the results, it is deduced that
the performance of IDA-PBC is much better than a traditional controller.

Furthermore, a simple controller in joint space (i.e. the cables’ length) is implemented
on the robot. The results are shown in Fig. 7.28 and Fig. 7.29. As indicated in these
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Figure 7.25: Control efforts of ARAS UCDR with adaptive IDA-PBC.
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Figure 7.26: Configuration variables of ARAS UCDR with PD controller.

figures, the performance and steady state error is much worse than IDA-PBC controller.
It is in concurrence with the results of [149] in which it is proven that a controller in task
space leads to better response compared to that in the joint space for parallel robots.
Additionally, the performance of a controller in joint space for UCDRs depends hugely
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Figure 7.27: Control efforts of ARAS UCDR with PD controller.

to the friction of the system in such a way that asymptotic stability is not achieved in
simulation without modeling natural damping terms.
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Figure 7.28: Configuration variables of ARAS UCDR with a controller in joint space.
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Figure 7.29: Control efforts of ARAS UCDR with a controller in joint space.

7.2.2 ARAS Cam

The proposed method in Theorem 4 is implemented on the fully actuated 3-DOF cable-
driven robot introduced in Section 3.4. The initial and desired position of the CDR
are [x(0), y(0), z(0)]T = [1.23,−0.6,1.41]T and [x∗, y∗, z∗]T = [1.11,−0.72,1.28]T , respec-
tively. Controller parameters and gains are as follows

Md =M , Vd = (q − q∗)TKp(q − q
∗
), Kp = 1100I3, Kv = 100I3.

The bounds of actuators are given by um = [0.5,0.5,0.5]T and uM = [60,60,60]T to
prevent loosening of the cables and their over stretching.

Fig. 7.30 illustrates the stabilization errors together with the control efforts with their
limits by using Theorem 4. Due to high gains of the controller, if Ju and k̄ are not used,
the cable forces become negative, resulting in loosening of the cables. However, with the
proposed method, the cable forces remain within the desired bounds, while the robot end-
effector position converges to the desired value. It is observed that adjustment of k̄ has
been merely done at the beginning of the experiment.
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Figure 7.30: Experimental results based on Theorem 4 on the 3-DOF ARAS CDR. Positive tensions
are achieved with the proposed controller.



Chapter 8

Conclusion and Future Works

In this thesis, controller design for underactuated systems and particularly, 3-DOF under-
actuated cable-driven robots were studied. For this purpose, interconnection and damping
assignment passivity-based control was utilized to stabilize the mechanical system at the
desired equilibrium point. Since IDA-PBC is based on the solution of some partial dif-
ferential equations, it is required to solve these matching equations analytically. In order
to address this stumbling block, three methods were proposed in this thesis. Replacing a
first-order PDE by some Pfaffian differential equations was one of the methods in which
it was shown that under the satisfaction of a condition for a Pfaffian equation with three
variables, it is straightforward to derive its solution. Using this method, the matching
equations of some UaSs, including magnetic levitation system, pendubot, underactuated
planar and spatial cable-driven robots were solved. Another method was proposed to solve
the matching equation of potential energy shaping in underactuated parallel robots. By
this means, it was possible to design IDA-PBC for the systems with underactuation de-
grees of more than one, such as spidercam. Simplification of the nonlinear PDE of kinetic
energy shaping for a class of UaSs was another achievement of this thesis regards to the
matching equations. Furthermore, since the amplitude of actuators is limited in practice,
the design of IDA-PBC with bounded input for mechanical systems was another topic of
interest in this thesis. For this purpose, two strategies were employed. Computing the
upper bound of control law in IDA-PBC approach was accomplished via calculation of
the upper bound of velocity and some of the parameters of the controller. Since, in some
cases, the desired potential energy is non-smooth and thus, it is unbounded, a two-phase
controller was proposed to confine the control efforts while the stability of the desired pose
is guaranteed. Design of IDA-PBC with prescribed bounds of actuators was another aim
of this thesis. For this purpose, the free part of a sub-block of the interconnection matrix
was considered, and an optimization problem based on minimization of control law was
solved analytically. Although it does not necessarily lead to satisfaction of the bounds of
the actuators, a modified version of it for a class of manipulators was presented to ensure
boundedness of inputs inside the prescribed bounds. IDA-PBC with position feedback
for a class of mechanical systems was also introduced to simplify its implementation in
practice. Since parameters’ uncertainty is inevitable in practice, an adaptive version of
IDA-PBC was suggested. It was shown that generally, the parameters should be estimated
correctly to ensure the stability of the closed-loop system. However, in some cases, such
as the potential energy shaping of UCDRs, it is possible to design a suitable adaptive
IDA-PBC for the mass of the end-effector. Additionally, robust IDA-PBC with respect to
matched external disturbance was analyzed. It was shown that the system is stable with
simple IDA-PBC if the disturbance satisfies a condition. IDA-PBC with desired gravity
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compensation and IDA-PBC with merely homogeneous part of desired potential energy for
a class of manipulators were other simplified versions of IDA-PBC that were introduced
in this thesis. Finally, the proposed controllers are verified through several simulations on
different UCDRs and underactuated benchmark systems. Furthermore, some of the con-
trollers are implemented on ARAS underactuated planar cable-driven robot and ARAS
cam to examine the performance in practice.

In future, several works in compliment of the accomplished studies will be performed.
Some of them are listed as follows:

• Implementation of the controllers to analyze their performance in practice.

• Analysis of feasible trajectory tracking with IDA-PBC especially for underactuated
spatial cable-driven robot.

• Total energy shaping of UCDRs.

• Extension of the results to port-Hamiltonian systems.



Appendix A

Solving the Matching Equations of
Benchmark Systems by Pfaffian
Differential Equations

Here, some examples of finding the solution of matching equations by Pfaffian differential
equations are proposed. First, let us introduce a special form of (2.2-2.7) for PH systems.
Consider a PH system with dynamic formulation of the following form

ẋ = (J(x) −R(x))∇xH(x) + g(x)u, (A.1)

where x ∈ Rn denotes the states of the system, u ∈ Rm denotes the input, J(x) = −JT (x) ∈
Rn×n and 0 ≤ R(x) = RT (x) ∈ Rn×n are the interconnection and damping matrices re-
spectively, H(x) ∈ R denotes the total stored energy in the system and g(x) ∈ Rn×m is full
rank input mapping matrix. The IDA-PBC method relies on matching the system (A.1)
with the generalized Hamiltonian structure

ẋ = (Jd(x) −Rd(x))∇xHd(x), (A.2)

in which Hd(x) is continuously differentiable desired storage function which is (locally)
minimum at the desired equilibrium point x∗, while 0 ≤ Rd(x) = Rd

T (x) ∈ Rn×n and
Jd(x) = −Jd(x) ∈ Rn×n represent desired interconnection and damping matrices, respec-
tively. Assume that the matrices Jd,Rd together with Hd are chosen such that the fol-
lowing equation is satisfied

g⊥(J −R)∇xH(x) = g⊥(Jd −Rd)∇xHd(x), (A.3)

where matrix g⊥(x) ∈ Rn−m×n is left annihilator of g(x) such that g⊥g = 0. This equation
results from matching the systems (A.1) and (A.2). The control law is derived as follows

u(x) = (gTg)−1gT ((Jd(x) −Rd(x))∇xHd(x) − (J(x) −R(x))∇xH(x)).

A.1 Magnetic Levitation System

This system consists of a ferric ball hovered under a magnetic field created by an electro-
magnet. The schematic of the system is illustrated in Fig. A.1. Consider λ as the flux
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Figure A.1: Schematic of magnetic levitation system (y = θ).

generated by the magnet and θ as the distance of the center of mass of the ball to its
nominal position. It is shown in [60] that the system may be represented in PH form as
follows:

ẋ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−r 0 0
0 0 1
0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∂H

∂x
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u,

in which, x = [λ, θ,mθ̇]T and r represents coil resistance while the Hamiltonian function
is given by [60]

H(x) =
1

2k
(1 − x2)x

2
1 +

1

2m
x2

3 +mgx2,

where k is a constant. Let us consider stabilization of the equilibrium point x∗ = [
√

2kmg,x∗2 ,0]
T .

It is shown in [60] that without modification of interconnection matrix, it is not possible
to stabilize x∗. Hence, the following interconnection matrix is considered

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −α
0 0 1
α −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Furthermore, with Rd =R, the matching equation (A.3) yields to

K3(x) = 0, αK1(x) −K2(x) = −
α

k
(1 − x2)x1, (A.4)

where it is assumed that Hd =H +Ha and

[K1,K2,K3]
T
∶=
∂Ha

∂x
= [

∂Ha

∂x1
,
∂Ha

∂x2
,
∂Ha

∂x3
]

T

. (A.5)

The PDE represented by (A.4) shows that Ha is independent of x3. If α ≠ 0, using the
proposed method, the PDE (A.4) is equivalent to the following Pfaffian equations

dx1

1
=
dx2

−β
=

dHa

− 1
k(1 − x2)x1

(A.6)
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with β = 1/α. Assume that β = −c1x1 − c2x2 − c3 with cis as arbitrary constants, and
substitute it in (A.6), results in

dx1

1
=

dx2

c1x1 + c2x2 + c3
=

dHa

− 1
k(1 − x2)x1

(A.7)

First, non-homogeneous solution is calculated by using Corollary 1. The strategy is to
derive a Pfaffian equation satisfying (4.4). With some manipulation one may show that
equation (A.7) is equal to the following equations

dHa −
x1
c2k
dx2

−x1k −
c1x21
c2k

− c3x1
c2k

=
dHa −

x1
c2k
dx2 −

x2
c2k
dx1

−x1k −
c1x21
c2k

− c3x1
c2k

− x2
c2k

In this representation, the term x1x2
k was omitted in the left–hand side, and then the term

− x2
c2k
dx1 was added with respect to condition (4.4). In order to eliminate x2

c2k
from right–

hand side of this equation, let us add it with 1
c22k
dx2. One may verify that the denominator

of the new expression depends only to x1. Hence, using the first term of (A.7), it is possible
to omit the remaining terms. By this means, the following Pfaffian differential equation
is derived:

dHa −
x1

c2k
dx2 −

x2

c2k
dx1 +

1

c2
2k
dx2 +

x1

k
dx1 +

c1x
2
1

c2k
dx1 +

c3x1

c2k
dx1 −

c1x1

c2
2k

dx1 −
c3

c2
2k
dx1 = 0.

This equation satisfies condition (4.4), and is separable in the following form:

(dHa) − (
x1

c2k
dx2 +

x2

c2k
dx1) + (

1

c2
2k
dx2) + (

x1

k
dx1

+
c1x

2
1

c2k
dx1 +

c3x1

c2k
dx1 −

c1x1

c2
2k

dx1 −
c3

c2
2k
dx1) = 0.

Therefore, one may find the following solution

Ha =
x1x2

c2k
−
x2

c2
2k

−
x2

1

2k
−
c1x

3
1

3c2k
−
c3x

2
1

2c2k
+
c1x

2
1

2c2
2k

−
c3x1

c2
2k

.

Furthermore, by using Corollary 1, the homogeneous solution is derived from the following
equation

(c1x1 + c2x2 + c3)dx1 − dx2 = 0. (A.8)

This equation need an integration factor µ which satisfies the following relation

∂µ

∂x1
+ (c1x1 + c2x2 + c3)

∂µ

∂x2
= −c2µ.

Hence, using the proposed method, it is equivalent to

dx1

1
=

dx2

c1x1 + c2x2 + c3
=

dµ

−c2µ
.

By considering the first and last terms, the solution may be given as µ = e−c2x1 . Hence,
homogeneous solution of (A.7) is derived from multiplying (A.8) to µ and then integration
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as follows

Ha = φ((
c1

c2
x1 + x2 +

c3

c2
+
c1

c2
2

)e−c2x1),

in which, the function φ and the constants cis shall be determined such that x∗ becomes
stable.

Remark 10. References [60,76], state that θ shall remain in the interval of (−1,∞) while
this limitation is released in our proposed solution. Note that using the method proposed
in [150] based on control barrier functions, one may define cis such that this constraint is
satisfied. For example, set c1 = 0 and c3 = −c2 results in α = −1/(c2x2 − c2) that ensures
θ ∈ (−1,∞). Furthermore, for the solution given in [60] it is assumed that α is a constant.
This limiting assumption is also released in the proposed solution given in this paper.
Therefore, based on the proposed method, a solution with suitable property was derived.

A.2 Micro Electro–Mechanical Optical Switch

Another benchmark example is the optical switching system with the following PH model [80,
151]:

ẋ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
−1 −b 0

0 0 −1
r

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∇H(x) +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1
r

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u, (A.9)

whose energy function is given by [80]:

H(x) =
1

2m
x2

2 +
1

2
a1x

2
1 +

1

4
a2x

4
1 +

x2
3

2c1(x1 + c0)
, (A.10)

where b, r > 0 are resistive constants, a1, a2 > 0 are spring terms, c0, c1 > 0 are capacitive
elements and m denotes the mass of actuator. The physical constraint to consider is x1 > 0,
while the equilibrium points of the system are [80]

x∗2 = 0, x∗3 = (c0 + x
∗
1)

√

2c1x∗1(a1 + a2x∗1
2), (A.11)

The aim of controller design in this example is to stabilize the system in x∗1 > 0. Hence,
let us consider the following desired interconnection matrix

Jd =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
−1 0 α(x)
0 −α(x) 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where α is a design parameter and Rd =R. For simplicity and due to physical constraint,

consider α =
β(x1+c0)

x1
. By this means, the following Pfaffian differential equations should

be solved

dx1

−x1
=

dx3

β(x1 + c0)
=
dHa

−
βx3
c1

. (A.12)
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In the sequel, it is shown that

Ha = φ(βx1 + βc0 ln(x1) + x3, x2) −
1

2c0c1
x2

3 −
β

c0c1
x1x3 −

β

2c0c1
x2

1 −
β

c1
x1, (A.13)

is the solution of Pfaffian differential equations (A.12). In order to derive non-homogeneous
solution, the following equation is derived

dx3

β(x1 + c0)
=
dHa

−
βx3
c1

=

x3
c0c1

dx3 + dHa

βx1x3
c0c1

=

x3
c0c1

dx3 + dHa +
βx3
c0c1

dx1

0
. (A.14)

Unfortunately, the last equation does not satisfy condition (4.4). To rectify this, let us
add the term βx1

c0c1
dx3 to it. Finally, one may reach to the following Pfaffian differential

equation

x3 + βx1

c0c1
dx3 + dHa +

βx3

c0c1
dx1 +

βx1

c0c1
dx1 +

β

c1
dx1 = 0,

which has the following solution

Ha = −
1

2c0c1
x2

3 −
β

c0c1
x1x3 −

β

2c0c1
x2

1 −
β

c1
x1. (A.15)

The homogeneous solution of (A.12) is derived easily as follows

Ha = φ(βx1 + βc0 ln(x1) + x3, x2).

Thus, one can suitably define the constants and function φ such that x∗ becomes a stable
equilibrium point while based on definition of α, the constraint x1 > 0 is satisfied [150].

A.3 Third Order Food-Chain System

Consider the following model for third order food-chain system based on [76] in PH form
(A.1) with the following values

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 x1x2 0
−x1x2 0 x2x3

0 −x2x3 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, R =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1 0 0
0 x2 0
0 0 x3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

g = [0,0,1]T , H = x1 + x2 + x3, (A.16)

where xi denotes the population of i-th species. In [152] it is shown that the PDE (A.3)
is not solvable with Jd = J and Rd > 0 since the span of the first 2 rows of Jd −Rd is not
involutive (i.e., its Lie bracket is not in the span of the first 2 rows of Jd −Rd, see [136]
for more information). The matching equation with the following matrices

Jd =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 J1 J2

−J1 0 J3

−J2 −J3 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Rd =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

R1 0 0
0 R2 0
0 0 R3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Hd =H +Ha,
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is in the following form

− x1 + x1x2 = −R1(1 +K1) + J1(1 +K2) + J2(1 +K3),

− x2 − x1x2 + x2 + x3 = −J1(1 +K1) −R2(1 +K2) + J3(1 +K3),

in which Kis are defined in (A.5). If we set Rd = I as the simplest choice, it is inferred
that with J1 = 0, J2 = f(x1), J3 = g(x2) where f, g are arbitrary functions, the PDEs are
involutive. This means that homogeneous part of PDEs has a solution. The overall of
PDEs has also a solution if non-homogeneous solution of a PDE satisfies the other PDE
in above equations. The corresponding Pfaffian differential equations are

dx1

−1
=
dx2

0
=

dx3

f(x1)
=

dHa

−x1 + x1x2 + 1 − f(x1)
,

dx1

0
=
dx2

−1
=

dx3

g(x3)
=

dHa

−x2 − x1x2 + x2x3 + 1
.

The solution of these equations using the explained methods is

Ha = φ1(x2,∫ f(x1)dx1 + x3) +
1

2
x2

1 −
1

2
x2

1x2 − x1 + ∫ f(x1)dx1,

Ha = φ2(x1, x2 + ∫
1

g(x3)
dx3) +

1

2
x2

2 +
1

2
x1x

2
2 − x2

+ ∫ (α(x2, x3) + β(x2, x3)g(x3)), s. to α + βg = −x2x3,

where the functions α and β should be defined such that the last term is integrable. Now
we should define f(x1) and g(x2) such that the non-homogeneous solution of a PDE lies
in the homogeneous solution of other PDE. Hence, by defining f(x1) = −1 and g(x3) = 0,
the solution of PDEs is

Ha = φ(x1 − x3) +
1

2
x2

2 +
1

2
x2

2(x1 − x3) − x2. (A.17)

Hence, although the proposed method is based on a PDE, it might be utilized to solve a
set of PDEs.

Figure A.2: Schematic of Pendubot. Merely the first joint is actuated.
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A.4 Pendubot

Here, the IDA-PBC method is applied to pendubot system in which it is not matched to the
proposed papers based on total energy shaping without solving matching equations [79–
82,153]. The robot consists of two revolute joints in which merely the first one is actuated.
The schematic of this system is shown in Fig. A.2. The dynamic model of the robot may
be expressed in the form of (2.9) with the following matrices [84]

M = [
c1 + c2 + 2c3 cos(q2) c2 + c3 cos(q2)

c2 + c3 cos(q2) c2
]

G = [1,0]T , V = −c4g cos(q1) − c5g cos(q1 + q2),

where the constants cis are given as follows

c1 =m1l
2
c1 +m2l

2
1 + I1, c2 =m2l

2
c2 + I2,

c3 =m2l1lc2, c4 =m1lc1 +m2l1, c5 =m2lc2. (A.18)

In [84], it is shown that the corresponding kinetic energy PDE given in (2.16) is simplified
to the following equation

2c3 sin(q2)(λ
2
3 + λ3λ4) + λ4

d

dq2
(λ3(c2 + c3 cos(q2)) + λ4c2) = 0, (A.19)

in which

MdM
−1
∶= [

λ1 λ2

λ3 λ4
] .

Note that two other PDEs generated form kinetic energy PDE (2.16) may be solved by
suitable definition of the matrix J2 in (2.14). The potential energy PDE (2.17) for this
system is

λ3∇q1Vd + λ4∇q2Vd = c5g sin(q1 + q2). (A.20)

Since, PDE (A.19) has two unknown variables, for simplicity, assume that λ4 = kλ3, and
reduce it to the following Pfaffian differential equations:

dq1

0
=

dq2

kλ3(c2 + c3 cos(q2) + kc2)
=

dλ3

−c3λ2
3 sin(q2)(2 + k)

Let us define k = −1 to simplify these equations. The non-homogeneous solution is derived
from the following equation

dλ3

λ3
= tan(q2)dq2,

which has the solution λ3 =
κ

cos(q2) with κ > 0 an arbitrary value since Md22 = κc3 should

be positive. Note that the homogeneous solution is trivially found to be φ(q1). The
corresponding Pfaffian equations to PDE (A.20) are given as follows

dq1

κ
=
dq2

−κ
=

dVd
c5g cos(q2) sin(q1 + q2)
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The homogeneous solution is Vd = φ(q1 + q2). In order to compute the non-homogeneous
solution, we should derive an equation in the form of

f1(q1, q2)dq1 + f2(q1, q2)dq2 + dVd = 0, (A.21)

in which,

κf1 − κf2 + c5g cos(q2) sin(q1 + q2) = 0,

and the following constraint resulted from (4.4) shall be satisfied

∂f2

∂q1
=
∂f1

∂q2
.

Combination of the two above equations yields to the following equation

κ
∂f2

∂q1
− κ

∂f2

∂q2
= −c5g cos(q1 + 2q2).

The solution of this equation is

f2 =
c5g

κ
sin(q1 + 2q2).

Therefore, the Pfaffian equation (A.21) yields to

(c5g sin(q1 + 2q2) − c5g cos(q2) sin(q1 + q2))dq1 + c5g sin(q1 + 2q2)dq2 − κdVd = 0.

In order to derive its solution, rewrite it in the following form

c5g sin(q2) cos(q1 + q2)dq1 + (c5g sin(q2) cos(q1 + q2)

+c5g cos(q2) sin(q1 + q2))dq2 − κdVd = 0,

whose solution may be found easily as

Vd =
c5g

κ
sin(q1 + q2) sin(q2). (A.22)

Remark 11. In [84], the simplest solution of (A.19) is reported, in which λ3 and λ4 are
set to be constant values. Here, a nontrivial solution with enlarged domain of attraction is
derived. In [84], Md22 ∝ −c2 + c3 cos(q2) that ensures Md is positive definite if q2 ∈ (−ε, ε)
with ε = arccos( c2c3 ). This limitation is also released in the proposed solution, where
Md22 = κc3 and Md21 = κc1/ cos(q2)+κc3 and the condition det(Md) > 0 confines q2 inside
a subset of the interval (−π2 ,

π
2 ) which can be enhanced by enlarging arbitrary value Md11 .



Appendix B

Solving the Matching Equation of
Kinetic Energy Shaping by the
Proposed Procedure in Section 4.3

In the following, three case studies are proposed to apply the proposed method in Sec-
tion 4.3 on them. The first example is Pendubot, in which its matching equation is replaced
by an ODE. The second example is VTOL aircraft where the corresponding PDE is solved
easily by a constant Md. The last example is 2D SpiderCrane in which, its matching
equation is solved by Pffafian differential equations.

B.1 Pendubot

The robot was defined in Section A.4. After some manipulation, the following expressions
are derived

detM = c1c2 − c
2
3 cos2

(q2), M = [
c2 −c2 − c3 cos(q2)

−c2 − c3 cos(q2) c1 + c2 + 2c3 cos(q2)
] ,

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2c2c
2
3 sin(q2) cos(q2)

c1c2c3 sin(q2) + c
3
3 sin(q2) cos2(q2)

+2c2c
2
3 sin(q2) cos(q2)

c1c2c3 sin(q2) + c
3
3 sin(q2) cos2(q2)

+2c2c
2
3 sin(q2) cos(q2)

−2c1c2c3 sin(q2) − 2c3
3 sin(q2) cos2(q2)

−2c2
3(c1 + c2) sin(q2) cos(q2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Md
−1

= [
a1 b1
b1 a(q2)

] , J2 = [
0 pT 1α

pT 2α 0
] ,

γT = [
−c2b1 − c2a1 − c3a1 cos(q2)

a1c1 + a1c2 + b1c2 + b1c3 cos(q2) + 2a1c3 cos(q2)
]

(B.1)

Note that in the following 2α will be determined and 1α = −2α will be set. Equation
(4.36) for this case is derived as follows

γ2

detMd
−1

[
0 0

0 ∂a
∂q2

] =
1

detM
M + [

2 2α1a1 2α2a1 + 2α1b1

2α2a1 + 2α1b1 2 2α2b1
] (B.2)

111
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By solving two algebraic equations, α2 is obtained as follows

2α1 = −
M11

2a1 detM
=

c2c
2
3 sin(q2) cos(q2)

a1(c1c2 − c2
3 cos2(q2))

,

2α2 = −
M21

a1 detM
− 2α1b1

a1
= −

c1c2c3 sin(q2) + c
3
3 sin(q2) cos2(q2) + 2c2c

2
3 sin(q2) cos(q2)

a1(c1c2 − c2
3 cos2(q2))

−
b1c2c

2
3 sin(q2) cos(q2)

a2
1(c1c2 − c2

3 cos2(q2)))

(B.3)

Finally, the following ODE should be solved

1

a1a(q2) − b21

da

dq2
=

1

γ2
detM(M22 −

−2b1M21

a1
+
b21M11

a2
1

) (B.4)

This ODE is in the form of (4.39) and its solution is derived from (4.40) with

φ1 = b1, φ2 = −b
2
1, F (q2) = ∫

1

γ2 detM
(M22 −

−2b1M21

a1
+
b21M11

a2
1

)dq2.

For example, assume that c1 = 4, c2 = 1 and c3 = 1.5. By some manipulation, a(q2) is
obtained as follows

a(q2) = cos(q2)
−7/3

+ (4 − 3 cos(q2))
49/6

− (4 + 3 cos(q2))
−7/2, (B.5)

in which, a1 = 1, b1 = −5, λ = 1 are chosen to simplify the ODE (B.4) and also the necessary
condition (4.26) is satisfied.

Figure B.1: VTOL aircraft.
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B.2 VTOL Aircraft

Dynamic model of VTOL in PH form (2.9) is given as follows

G(q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− sin(θ) ε cos(θ)
cos(θ) ε sin(θ)

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, M = I, V = gy, q =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x
y
θ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.6)

in which, x and y denote the position of center of mass, θ is the roll angle and ε models
the effect of the slopped wings. The desired equilibrium point of the system is [x∗, y∗,0]

T .
In [74] a controller with state-dependent Md by defining new inputs is derived. Notice
that although the matrix G(q) does not have the form P [Im,0m×n−m]T , based on case2,
it is possible to solve the PDE of kinetic energy with a constant Md, represented by:

Md =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a d e
d b f
e f c

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Necessary condition (4.26) in this case leads to following inequality

(g cos(θ)(ε cos(θ) + f sin(θ) − cε))∣
θ=0

> 0.

A suitable choice for Md is

a = κε2, b = 1, c = κ′, d = 0, e = ε, f = 0,

in which, the constants κ,κ′ > 0 should be selected such that κκ′ > 1. Note that Md = I
does not satisfy the necessary condition (4.26) which is in line with our prior knowledge
that it is not possible to stabilize the system with merely potential energy shaping. The
solution of potential energy PDE (2.17) with κ = 20 and κ′ = 0.1 is derived easily as follows

Vd = (ε(y − y∗) + ln (ε cos(θ) − 0.1ε))
2
+ (

1

20ε
(x − x∗) − (θ − θ∗)

− 0.1arctanh(1.1055 tan(
θ

2
)))

2
− 2ε ln(0.9ε)(y − y∗) −

g − 2ε ln(0.9ε)

gε
ln (ε cos(θ) − 0.1ε).

Figure B.2: Schematic of 2D SpiderCrane system.
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B.3 2D SpiderCrane

This system consists of a load suspended from a ring which is controlled by two cables.
The schematic of this system is depicted in Fig. B.2. The position of the ring and the mass
are denoted by (xr, yr) and (x, y), respectively, and their mass is denoted by m1 and m2,
respectively. The length of the controlled cables is denoted by l1 and l2, while l3 denotes
the fixed length of the cable between ring and the mass. Dynamic equation of the system
is represented in the form (2.9) with following parameters

q =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xr
yr
θ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

, V = (m1 +m2)gyr −m2gl3 cos(θ),

M(q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m1 +m2 0 m2l3 cos(θ)
0 m1 +m2 m2l3 sin(θ)

m2l3 cos(θ) m2l3 sin(θ) m2l
2
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Two IDA-PBC controllers have been designed for SpiderCrane. In [127] merely the po-
tential energy is shaped while in [131] total energy shaping based on the method proposed
in [74] is performed such that at first a partial feedback linearization is applied to the
system, and then a desired inertia matrix, which is merely a function of θ, is chosen.
Notice that it is possible to derive Md as a function of θ based on the case1 presented in
Section 4.3. However, here the aim is to derive a more general solution such that Md may
be set as a function of xr and yr. Consider Md

−1 in the form of (4.30). One can easily
check that necessary condition (4.26) is satisfied if b1m3l3 + a2(m1 +m2) > 0. In order to
solve matching equation (2.16), the following parameters are derived

detM = (m1 +m2)
2m2l

2
3 − (m1 +m2)m

2
2l

2
3,

M =

⎡
⎢
⎢
⎢
⎢
⎣

(m1 +m2)m2l
2
3 −m

2
2l

2
3 sin2

(θ) m2
2l

2
3 sin(θ) cos(θ) −(m1 +m2)m2l3 cos(θ)

m2
2l

2
3 sin(θ) cos(θ) (m1 +m2)m2l

2
3 −m

2
2l

2
3 cos2(θ) −(m1 +m2)m2l3 sin(θ)

−(m1 +m2)m2l3 cos(θ) −(m1 +m2)m2l3 sin(θ) (m1 +m2)
2

⎤
⎥
⎥
⎥
⎥
⎦

,

M = detM

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2m2
2l

2
3 sin(θ) cos(θ) m2

2l
2
3 cos(2θ) (m1 +m2)m2l3 sin(θ)

m2
2l

2
3 cos(2θ) m2

2l
2
3 sin(2θ) −(m1 +m2)m2l3 cos(θ)

(m1 +m2)m2l3 sin(θ) −(m1 +m2)m2l3 cos(θ) 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

γT =

⎡
⎢
⎢
⎢
⎢
⎣

−a2b1(m1 +m2)m2l
2
3 + a2b1m2

2l
2
3 sin

2(θ) − a1b2m2
2l

2
3 sin(θ) cos(θ) − a1a2(m1 +m2)m2l3 cos(θ)

−a2b1m2
2l

2
3 sin(θ) cos(θ) − a1b2(m1 +m2)m2l

2
3 + a1b2m2

2l
2
3 cos

2(θ) − a1a2(m1 +m2)m2l3 sin(θ)
a2b1(m1 +m2)m2l3 cos(θ) + a1b2(m1 +m2)m2l3 sin(θ) + a1a2(m1 +m2)2

⎤
⎥
⎥
⎥
⎥
⎦

Based on necessary condition and simplifying the corresponding matching equation, we
choose b1 = b2 = 0. By this means, the matrix Ψ in equality (4.37) is in the following form

Ψ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2a1 0 0 0 0 0
0 a1 0 a2 0 0
0 0 a1 0 0 0
0 0 0 0 2a2 0
0 0 0 0 0 a2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This matrix is full row rank, hence [αT5 , α
T
6 ]T is determined by right pseudo-inverse of Ψ.

The Pfaffian differential equations of PDE (4.38) for this system is given as follows

dx

−m2l3 cos(θ)
=

dy

−m2l3 sin(θ)
=

dθ

m1 +m2
=
da

0
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The solutions to these equations are

x +
m2l3

m1 +m2
sin(θ) = c1, y −

m2l3
m1 +m2

cos(θ) = c2,

with c1 and c2 as free parameters. Hence, a(q) is derived as follows

a(q) = φ(x +
m2l3

m1 +m2
sin(θ), y −

m2l3
m1 +m2

cos(θ)),

in which, φ is an arbitrary function.
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[17] E. Idà, T. Bruckmann, and M. Carricato, “Rest-to-rest trajectory planning for underactuated
cable-driven parallel robots,” IEEE Transactions on Robotics, vol. 35, no. 6, pp. 1338–1351,
2019.

[18] L. Barbazza, D. Zanotto, G. Rosati, and S. K. Agrawal, “Design and optimal control of
an underactuated cable-driven micro–macro robot,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 896–903, 2017.

[19] I. N. Sneddon, Elements of partial differential equations. Courier Corporation, 2006.

[20] H.-D. Do, J.-H. Seo, J.-O. Park, and K.-S. Park, “Wrench-feasible workspace analysis consid-
ering aerodynamics of aerial robotic camera under high speed,” Microsystem Technologies,
vol. 23, no. 11, pp. 5257–5269, 2017.

[21] A. T. Riechel and I. Ebert-Uphoff, “Force-feasible workspace analysis for underconstrained,
point-mass cable robots,” in IEEE International Conference on Robotics and Automation.
Proceedings., vol. 5, pp. 4956–4962, IEEE, 2004.

[22] M. Gouttefarde and C. M. Gosselin, “Analysis of the wrench-closure workspace of planar
parallel cable-driven mechanisms,” IEEE Transactions on Robotics, vol. 22, no. 3, pp. 434–
445, 2006.

[23] C. B. Pham, S. H. Yeo, G. Yang, M. S. Kurbanhusen, and I.-M. Chen, “Force-closure
workspace analysis of cable-driven parallel mechanisms,” Mechanism and Machine Theory,
vol. 41, no. 1, pp. 53–69, 2006.

[24] J. Pusey, A. Fattah, S. Agrawal, and E. Messina, “Design and workspace analysis of a 6–6
cable-suspended parallel robot,” Mechanism and machine theory, vol. 39, no. 7, pp. 761–778,
2004.

[25] A. Pott, “Workspace,” in Cable-Driven Parallel Robots, pp. 157–227, Springer, 2018.

[26] G. Barrette and C. M. Gosselin, “Determination of the dynamic workspace of cable-driven
planar parallel mechanisms,” Journal of mechanical design, vol. 127, no. 2, pp. 242–248,
2005.

[27] G. Barette and C. Gosselin, “Kinematic analysis and design of planar parallel mechanisms
actuated with cables,” in Proceedings of ASME Design Engineering Technical Conference,
pp. 391–399, 2000.

[28] A. Pott, “An improved force distribution algorithm for over-constrained cable-driven parallel
robots,” in Computational Kinematics, pp. 139–146, Springer, 2014.

[29] S.-R. Oh and S. K. Agrawal, “Cable suspended planar robots with redundant cables: Con-
trollers with positive tensions,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 457–465,
2005.

[30] A. Trevisani, “Underconstrained planar cable-direct-driven robots: A trajectory planning
method ensuring positive and bounded cable tensions,” Mechatronics, vol. 20, no. 1, pp. 113–
127, 2010.

[31] C. Gosselin, P. Ren, and S. Foucault, “Dynamic trajectory planning of a two-dof cable-
suspended parallel robot,” in Robotics and Automation (ICRA), IEEE International Con-
ference on, pp. 1476–1481, IEEE, 2012.

[32] C. Gosselin and S. Foucault, “Dynamic point-to-point trajectory planning of a two-dof cable-
suspended parallel robot,” IEEE Transactions on Robotics, vol. 30, no. 3, pp. 728–736, 2014.

[33] S. Fang, Design, modeling and motion control of tendon based parallel manipulators. VDI-
Verlag, 2005.

[34] G. El-Ghazaly, M. Gouttefarde, and V. Creuze, “Adaptive terminal sliding mode control of
a redundantly-actuated cable-driven parallel manipulator: cogiro,” in Cable-Driven Parallel
Robots, pp. 179–200, Springer, 2015.



BIBLIOGRAPHY 118

[35] M. I. Hosseini, M. J. Harandi, S. A. K. Seyedi, et al., “Adaptive fast terminal sliding mode
control of a suspended cable-driven robot,” in 2019 27th Iranian Conference on Electrical
Engineering (ICEE), pp. 985–990, IEEE, 2019.

[36] M. I. Hosseini, M. Jafari Harandi, S. Khalilpour Seyedi, and H. Taghirad, “Experimental
performance of adaptive fast terminal sliding mode control on a suspended cable robot,”
Journal of Electrical and Computer Engineering Innovations (JECEI), vol. 7, no. 1, pp. 59–
67, 2018.

[37] M. A. Khosravi and H. D. Taghirad, “Robust pid control of fully-constrained cable driven
parallel robots,” Mechatronics, vol. 24, no. 2, pp. 87–97, 2014.

[38] R. Babaghasabha, M. A. Khosravi, and H. D. Taghirad, “Adaptive robust control of fully
constrained cable robots: singular perturbation approach,” Nonlinear Dynamics, vol. 85,
no. 1, pp. 607–620, 2016.

[39] M. R. J. Harandi, S. Khalilpour, H. D. Taghirad, and J. G. Romero, “Adaptive control of
parallel robots with uncertain kinematics and dynamics,” Mechanical Systems and Signal
Processing, vol. 157, p. 107693, 2021.

[40] J. Begey, L. Cuvillon, M. Lesellier, M. Gouttefarde, and J. Gangloff, “Dynamic control of
parallel robots driven by flexible cables and actuated by position-controlled winches,” IEEE
Transactions on Robotics, 2018.

[41] M. Guerrero, D. Mercado, R. Lozano, and C. Garćıa, “Ida-pbc methodology for a quadrotor
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